Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

Recent Advances in Dryland Agriculture

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Cargando en…3
×

Eche un vistazo a continuación

1 de 75 Anuncio

Recent Advances in Dryland Agriculture

Descargar para leer sin conexión

The Deyland agriculture has to be improved with innovative research and technologies. The soil and water conservation structures need to established for higher productivity. The bore well recharge has to be done to increase the ground water table. Runoff farming need to be adopted to increase the water availability in off season crop cultivation

The Deyland agriculture has to be improved with innovative research and technologies. The soil and water conservation structures need to established for higher productivity. The bore well recharge has to be done to increase the ground water table. Runoff farming need to be adopted to increase the water availability in off season crop cultivation

Anuncio
Anuncio

Más Contenido Relacionado

Más reciente (20)

Anuncio

Recent Advances in Dryland Agriculture

  1. 1. Recent Advances in Dryland Research Gurunath Raddy PALB 9044 University of Agricultural Sciences, GKVK, Bengaluru Ph.D. I Seminar
  2. 2. Introduction 1 Research advances 3 Why Dryland Agriculture matters? 2 Different areas of research 4 Flow of Presentation Conclusion 5 Future Line of Work 6
  3. 3.  World- 1250 m ha dryland area (80.6%)- contributes 60 % crop production  India- 73.3 m ha dryland area (52%)- 44 % food production i. 40% of human population ii. 60% of livestock population  70% - rural population  Yield gap is more due to resource constraints. Introduction Total arable land (m ha) Dryland area (m ha) % of Dryland area World 1550.0 1250.0 80.6 Africa 247.0 234.0 94.5 America 391.0 342.0 87.5 Asia 574.0 362.0 63.1 Europe 295.0 272.0 92.3 Fig.1: Global Dryland area distribution Table 1: Dryland area -continents Rao and Gopinath, 2016
  4. 4. Food Security Poverty Food Production Land Resources Ecosystems Nutrition Health Food Systems Population Climate Energy Int. Trade Water Emerging Challenges Existing Challenges
  5. 5. Why Dryland Agriculture matters ? Net cultivated area (m ha) Dryland area (m ha) % of Dryland area India 142.8 73.33 52 Rao and Gopinath, 2016 Contribution 99.9 % forest production 84-87 % coarse cereals & pulses 80 % of Horticulture 77 % Oilseeds 60 % Cotton 50 % Fine cereals Fig. 2: India dryland regions
  6. 6. Dominance of Dryland area (52%) – 73.3 M ha 44% country’s food requirements supporting 40% of human and 60% of livestock Highly Populated 324 person/km2 59% Agril. Dependence 115 M farm holders 80% small & Marginal PATH TAKEN….. Indian Agriculture Net Cultivated Land 143 M ha
  7. 7. Crop loss, yield gap Poor Post Harvest Management, No premium price for produce No monetary returns, Debt No adoption of new technology Food production ?????????? Dryland areas Erratic Rainfall, Floods, Droughts, Inadequate Irrigation Infrastructure Land Degradation, Poor Soil Fertility N AT U R A L Small Land Holdings, Poor Farmers Lower Credit off take Poor Socio-Economic growth, Illiteracy, Poverty SO C I O EC O N O M I C
  8. 8. Advances in RESEARCH
  9. 9. RAINWATER MANAGEMENT
  10. 10. Graded Bund Contour Bund Graded Border Strip Zingg terraces Scooping Grass Stabilized Bund Compartment bund Tied ridges Bench terraces
  11. 11. 11 Community water storage tanks Sand bag farm pond Farm pond Jalkund
  12. 12. Impact of subsoiler for In-situ moisture conservation in Finger millet and groundnut based intercropping system in Eastern Dry Zone of Karnataka Treatment Details  Main plot: C1 : Finger millet + Pigeon pea C2 : Groundnut + Pigeon pea  Subplot: S1: Subsoiling at 2 m interval S2: Subsoiling at 4 m interval S3: Subsoiling at 2 m interval + FYM S4: Subsoiling at 4 m interval + FYM S5: Control Anon., 2020 AICRPDA, Bangalore
  13. 13. Table 2: Soil moisture content (%) at 0-15 cm and 15-30 cm depth as influenced by subsoiler at different subsoiling spacing Treatment Soil moisture content (%) 15 DAS 60 DAS 90 DAS 15 cm 30 cm 15 cm 30 cm 15 cm 30 cm Main plot: Cropping system C1: FM + PP (8:2) 5.02 5.88 23.60 26.43 12.79 16.77 C2: GN + PP (8;2) 6.68 7.69 24.21 27.04 12.88 15.95 S.Em. ± 0.90 0.75 0.28 0.28 1.86 0.83 CD at 5 % NS NS NS NS NS NS Sub plot: Subsoiling S1 5.87 6.74 23.80 26.63 12.50 16.40 S2 4.86 5.48 23.02 25.85 11.42 14.92 S3 7.94 9.74 25.65 28.48 16.48 19.85 S4 6.33 8.45 24.68 27.52 14.37 17.60 S5 4.27 3.52 22.37 25.20 9.41 13.05 S.Em. ± 0.56 0.60 0.25 0.25 0.79 0.79 CD at 5 % 1.66 1.80 0.75 0.75 2.38 2.36 Interaction- NS Anon., 2020 AICRPDA, Bangalore
  14. 14. Table 3: Influence of subsoiler on physical properties of finger millet and groundnut based intercropping systems Treatment Bulk density (g cc-1) Pore space (%) Finger millet/ Groundnut Yield (kg ha-1) RWUE (kg ha-mm-1) Main plot: Cropping system C1: FM + PP (8:2) 1.28 46.18 2398 3.02 C2: GN + PP (8;2) 1.31 47.11 1590 1.98 S.Em. ± 0.02 0.21 80.16 CD at 5 % NS 1.26 487.74 Sub plot: Subsoiling S1 1.29 47.91 1891 2.39 S2 1.37 46.12 1836 2.31 S3 1.13 50.23 2413 3.04 S4 1.24 45.23 2205 2.78 S5 1.45 43.75 1626 1.91 S.Em. ± 0.03 0.28 77.27 CD at 5 % 0.09 0.85 231.66 Anon., 2020 AICRPDA, Bangalore
  15. 15. Table 4: Treatments means for SMC (%) of the root zone during after one day RF and after 10 days of rainfall. Treatment Initial period SMC (%) Development period SMC (%) Mid period SMC (%) After one day of rainfall After 10 days of rainfall After one day of rainfall After 10 days of rainfall After one day of rainfall After 10 days of rainfall Targa 54.09a 51.15a 58.90a 55.80a 54.00a 46.50a Tie ridge 45.50a 43.00ab 54.20a 52.00a 50.00a 42.60a Zai 42.32a 35.60ab 51.15a 23.20b 48.00a 31.93ab Control 40.80a 35.18b 44.00a 2630b 45.00a 30.50b CV (%) 16 16 19 16 19 18 LSD (0.05) 14 8 30 8 12 9 Naba et al., 2020 Arba Minch, Ethiopia Effect of in-situ rainwater harvesting techniques on maize production
  16. 16. Table 5: Effect of moisture conservation structures on growth parameters and B:c ratio of maize Treatment Plant height (cm) Cob length (cm) Biomass Dry matter (t ha-1) Grain yield (t ha-1) B:C ratio Targa 208a 39.36a 8.23a 7.15a 1.93 Tie ridge 202a 35.26b 7.8ab 6.19a 1.81 Zai 201a 37.30ab 5.76c 4.50b 1.02 Control 196a 35.50b 6.15bc 4.90b 1.69 CV (%) 3.90 2.96 13.00 9.40 - LSD (0.05) 15.80 2.18 1.90 1.00 - Naba et al., 2020 Arba Minch, Ethiopia
  17. 17. Save irrigation water & nutrients up to 40 to 60% Improve soil fertility and WUE Perform @ soil temperature of 50-60 0C 20% increase in performance due to better germination Reduces irrigation frequency 40% better crop growth and development 10-30% increase in yield Hydrophilic polymers 17 Source: IARI, New Delhi
  18. 18. Table 6: Effect of in-situ moisture conservation and stress management practices dry matter production, sympodial/plant and bolls/plant of rainfed cotton Treatments Dry matter production (kg/ha) Sympodial/plant Bolls /plant I1 I2 I3 Mean I1 I2 I3 Mean I1 I2 I3 Mean S1 5111 4646 4180 4646 12.4 11.2 10.3 11.3 16.1 13.7 11.2 13.7 S2 5616 5313 4992 5307 13.6 12.4 11.3 12.4 20.9 19.0 17.2 19.0 S3 5406 5149 4896 5150 13.5 12.1 10.9 12.2 17.5 16.7 15.8 16.7 S4 5848 5500 5153 5500 14.9 13.2 11.5 13.2 23.8 20.8 17.7 20.8 S5 5402 4923 4386 4904 12.9 12.0 11.2 12.0 18.3 15.2 12.0 15.2 S6 4734 4372 4010 4372 10.6 10.2 9.9 10.2 11.9 9.1 7.3 9.4 Mean 5353 4984 4603 13.0 11.9 10.9 18.1 15.8 13.5 I S I at S S at I I S I at S S at I I S I at S S at I S.Ed 103 89 156 126 0.2 0.3 0.5 0.5 0.6 0.6 1.1 1.0 CD(P<0.05) 309 184 473 260 0.5 0.6 1.0 1.0 1.6 1.2 3.7 2.1 S1: Pusa hydrogel @5 kg ha-1 S2: S1+ Foliar spray of 1% KCl, S3: S1+ Foliar spray of 5% Kaolin, S4: S1+ Foliar spray of PPFM @500 ml ha-1, S5:S1+ Foliar spray of 100 ppm salicylic acid, S6: Control and I1: BBF, I2: Ridges and furrows, I3: Compartmental bunding Ashraf and Ragavan, 2019 TNAU, Tamilnadu
  19. 19. Table 7: Effect of in-situ moisture conservation and stress management practices Bolls/plant and boll weight of rainfed cotton Treatments boll weight (g/boll) Seed cotton yield (kg ha-1) I1 I2 I3 Mean I1 I2 I3 Mean S1 3.63 3.39 3.25 3.42 1457 1373 1299 1376 S2 3.96 3.70 3.47 3.71 1656 1579 1475 1580 S3 3.77 3.47 3.27 3.50 1582 1484 1389 1485 S4 4.07 3.84 3.63 3.85 1943 1785 1631 1786 S5 3.65 3.47 3.33 3.48 1544 1472 1411 1476 S6 3.46 3.28 3.20 3.31 1328 1107 893 1109 Mean 3.76 3.53 3.36 1590 1467 1350 I S I at S S at I I S I at S S at I S.Ed 0.10 0.11 0.20 0.18 32 48 71 68 CD(P<0.05) 0.24 0.16 NS NS 117 100 178 141 S1: Pusa hydrogel @5 kg ha-1 S2: S1+ Foliar spray of 1% KCl, S3: S1+ Foliar spray of 5% Kaolin, S4: S1+ Foliar spray of PPFM @500 ml ha-1, S5:S1+ Foliar spray of 100 ppm salicylic acid, S6: Control and I1: BBF, I2: Ridges and furrows, I3: Compartmental bunding Ashraf and Ragavan, 2019 TNAU, Tamilnadu
  20. 20. Treatments Grain Yield (kg ha-1) Straw yield (kg ha-1) Gross returns (₹ ha-1) Net returns (₹ ha-1) B:C ratio RWUE (kg ha- mm-1) Khus grass Upper 2530 3541 55913 30288 2.18 4.04 Lower 2620 3799 58099 32474 2.27 4.19 Mean 2575 3671 57006 31381 2.22 4.11 Nase grass Upper 2810 3746 61820 36195 2.41 4.49 Lower 3640 4186 79079 53454 3.09 5.81 Mean 3225 3966 70449 44824 2.75 5.15 Control 2100 2662 45994 20369 1.79 3.35 Table 8: Effect of vegetative barrier on Grain, straw yield and economics of finger millet Anon., 2017 Bengaluru
  21. 21. Table 9: Effect of Ridge and furrow method of dibbling on yield and economics of pigeon pea during early season drought Particulars Ridge and furrow method of dibbling Farmers practice Plant height (cm) 187.2 175.8 Root length (cm) 16.4 9.7 Depth of moisture (cm) 13.7 7.3 Pods /plant 263 187 Seed / pod 4.1 3.6 100 seed weight 10.4 9.1 Field emergence (%) 92 83 Seed yield (q/ha) 13.2 11.4 Intervention Yield (kg ha-1) Gross cost (Rs. ha-1) Gross returns (Rs. ha-1) Net returns (Rs. ha-1) B:C ratio Ridge and furrow 13.2 22,000 71,280 49,280 3.2 Normal sowing 11.4 20,800 61,560 4,760 2.9 Anon., 2019 NICRA, Kalaburagi
  22. 22. Table 10: Influence of conservation furrow on finger millet and groundnut based intercropping system Cropping system Equivalent yield (kg/ha) Net returns (Rs./ha) B: C Ratio RWUE (kg/ha-mm) Finger millet based Finger millet + pigeonpea (8:2) 3774 44940 2.56 5.79 Finger millet 1869 23618 1.68 3.50 Groundnut based Groundnut + pigeonpea (8:2) 1623 56338 2.70 2.85 Sole groundnut 574 7189 1.31 1.05 AICRPDA, Bengaluru Ramachandrappa et al., 2016
  23. 23. Crop Yield (kg ha-1) % increase over farmers practice Gravel sand mulching Farmers practice Greengram 800-1400 200-300 300-366 Rabi Sorghum 1400-2200 600-700 133-214 Sunflower 1200-2000 400-500 200-300 Chickpea 1200-1500 300-400 275-300 Groundnut 1500-1800 700-800 114-125 Table 11 : Yield of crops as influenced by Gravel sand mulching in black soils Surakoda et al., 2014 AICRPDA, Vijayapura Table 12: Effect of trench cum bunding (TCB) on yield and economics different crops Anon., 2019 Davanagere Treatment Seed yield(q/ha) Gross returns(₹/ha) Net returns (₹/ha) B:C ratio TCB of Maize + pigeonpea (BRG-2) 62.37 87,318 44,718 2.04 Without TCB of Maize + pigeonpea (Local) 47.02 65,828 24,628 1.59 TCB of of Finger millet (ML-365) 2450 60,640 36,540 2.51 Without TCB of Finger millet (GPU-28) 1950 47,950 24,450 2.04
  24. 24. Crop Yield (kg ha-1) % increase over farmers practice Set furrow cultivation Farmers practice Pearl millet (Kharif) 1092 749 69 Sunflower (Rabi) 457 295 65 Pigeonpea 1112 732 52 Table 13: Yield of crops as influenced by set row cultivation Ramachandrappa et al., 2014 AICRPDA, Bangalore Variety DOT Dry fruit yield (kg ha-1) % increase in yield RWUE (kg ha-mm-1) Net returns (Rs.ha-1) B: C ratio With mulch Without mulch Samrudhi 24th Aug 1359 960 42 2.12 132049 5.26 Chikkaballapur local 24th Aug 1104 776 42 1.72 101449 4.27 Table 14: In-situ moisture conservation through tied ridges and mulching in chilli varieties
  25. 25. Farm pond and its multiple uses Protective irrigation  surface method- 1/3rd of the farm  sprinkler method 2.5 cm for entire catchment. Double cropping With bimodal rainfall distribution:  Fodder crops/cowpea/sesame (May- june)  Chickpea/baby corn/ chilli transplanting (Sep-Oct) with protective irrigation during flowering/ maturity  Net income of Rs. 10,244 to 64,168 ha-1 Nourishing fruit trees and/plantations During rabi/summer nourishing with stored water helps Pisciculture  Fish fingerlings @1 m2 with water stored for 6-8 months  Additional income-Rs. 3000- 5000 Nutritional/ Kitchen garden:  Vegetables, fruits, spices, flower crops  Income of Rs. 591 to 2000 Ramachandrappa et al., 2015 AICRPDA, Bangalore Azolla cultivation  Reduce evaporation  Fodder for animals
  26. 26. Crop Yield (Kg/ha) Stover yield (Kg/ha) RWUE (Kg/ha) Cost of cultivation (Rs/ha) Gross return (Rs/ha) Net Return (Rs/ha) B:C Ratio Pigeonpea 897.4 1825.5 2.8 15000 49359 34359 3.3 Chickpea+ Sorghum (4:2) 846.2 250(Chickpea) 755(Sorghum) 61.23 9000 21154 12154 2.4 Sorghum 576.9 1092 41.81 7000 14424 7423 2.1 Sapota+ Safflower 400 670.2 28.9 8000 10400 2400 1.3 Table 15: Yield, RWUE and net returns of different Cropping systems under farm pond plot during 2016-17 Anon., 2017 RARS, Vijayapura
  27. 27. Hydroponic fodder production
  28. 28. Production of low cost hydroponic maize fodder to mitigate fodder shortage for livestock during drought conditions Farmer name : Mr. K. Senthil Kumar Contact information : P. Kosavapattti, Vada Madurai, Dindugal Method : Low cost hydroponic production in an area of 8 x 8 feet: shade net as walls, metal sheets as roofing material, wooden racks in tier system, plastic trays for fodder cultivation and automatic sprinkler device Seed utilized : Maize Biomass yield : 4.40 – 5.10 kg fodder/kg of maize seed Daily fodder production : 20 kg of hydroponic maize fodder Cost of production : Rs. 3.75 per kg fodder production Experience on feeding hydroponic maize fodder to dairy cows : Can able to sustain milk production and its composition on partial replacement of paddy straw and conventional green fodders. Gunasekharan et al., 2017 Kattupakkam, Tamilnadu
  29. 29. 1. Mosquito mesh surrounded the casing pipe 3. 40 and 20 mm jelly 4. Spreading of Mosquito mesh 2. Big size boulders 6. Spreading of sand 5. Spreading of charcoal Ground water recharge
  30. 30. Months 2013 2014 Mean (2 years) Bore well No.2 Bore well No.2 Bore well No.2 Rainfall (mm) Discharge (lpm) Rainfall (mm) Discharge (lpm) Rainfall (mm) Discharge (lpm) Jan 0 7.6 Summer season 7.1 lpm 0 7.5 Summer season 7.9 lpm 0 7.6 Feb 0 7.9 0 7.8 0 7.9 Mar 8.0 5.8 10.0 8.3 9 7.1 Apr 29.0 7.6 25.5 7.8 27.25 7.7 May 81.0 6.6 81.4 8.1 81.2 7.4 Jun 110.0 15.1 Rainy season 11.9 lpm 92.0 8.1 Rainy season 10.7 lpm 101 11.6 Jul 97.0 9.7 80.8 9.5 88.9 9.6 Aug 73.0 12.4 116.4 10.4 94.7 11.4 Sept 162.0 14.9 128.4 11.2 95.2 13.1 Oct 56.0 * 428.2 12.4 242.1 12.4 Nov 35.0 11.2 28.6 12.3 31.8 11.8 Dec 0 8.0 1.0 11.2 0.5 9.6 Mean 9.7 Mean 9.5 Mean 9.7 Table 16: Yield of Bore well (with filter bed) after recharging in NICRA Project, Nelamangala Anon, 2015 Nelamangala
  31. 31. CROPS and CROPPING SYSTEM
  32. 32. Treatments Yield (kg ha-1) CEY (kg ha-1) RWUE (kg ha-mm-1) B:C ratio SEY Crop1 Crop 2 Crop 1 Crop 2 Crop 1 Crop 2 Main plot-Forage crops South African maize (SA Tall) 36807 720 61662 216 6.52 2.66 1.52 0.681 Sweet sorghum (SSV-74) 23254 680 45940 198 7.43 2.82 1.73 0.461 Giant bajra 42459 865 71589 245 8.98 3.08 2.09 0.819 S.Em ± 423.0 17.5 470.3 C.D (P=0.05) 1662.0 68.7 1846.7 Sub plot- Chickpea varieties Annigeri-1 725 58172 7.30 1.70 0.913 JG-11 786 61295 7.99 1.86 0.964 S.Em ± 6.9 598.9 C.D (P=0.05) 23.8 2072.5 Sub-Sub plots-Fertilizer levels 100% RDF 800 61433 8.02 1.63 1.017 75% RDF 71 58033 7.26 1.47 0.959 S.Em ± 8.3 725.7 C.D (P=0.05) 25.6 2236.2 Table 18: Performance of forage crops and chickpea under double cropping system Ramachandrappa et al., 2019 AICRPDA, Bangalore
  33. 33. Location Crop Variety Duration Varanasi Rice Pigeon pea Vadana T-21 95 150-160 Phulbani Pigeon pea T-21, BRG-2 150-160 Arjia Maize Surya 70-75 Anantapur Groundnut Vemana 105-110 Indore Soybean JS-90-41 87-98 Rewa Rice Kalinga -3 110 Akola Cotton AKH-081 150-160 Bijapur Sunflower KBSH-1 90-95 Sholapur Sorghum Mauli 105-110 Hisar Pearl millet HHB-67 60-62 Bangalore Finger millet GPU-26, GPU-48 90-105 CRIDA, Hyderabad
  34. 34. Table 19: Effect of Improved cultivars over local on yield and economics Treatments Seed yield (q/hq) % increase in yield Gross cost (Rs. /ha) Gross returns (Rs. /ha) Net returns (Rs. /ha) B: C ratio Improved practice Pigeonpea BRG-2 12.2 28.42 22,500 50,020 27,520 2.2 Farmer’s practice Pigeonpea local 9.5 21,600 38,950 17,350 1.8 Improved practice finger millet ML-365 26.8 32.4 22,540 56,350 33,810 2.5 Farmer’s practice finger millet local 19.5 22,130 39,834 17,704 1.8 Improved practice Aerobic paddy MAS-26 32 30.7 19,150 38,400 19,250 2.0 Farmer’s practice Aerobic paddy local variety 26 18,500 31,200 12,700 1.7 Anon., 2019 Hirehalli, Tumakuru
  35. 35. Table 20: Performance of drought resistant varieties in intercropping system. Year Area (ha) Variety Crop stage experienced dry spells Yield (q/ha) B:C ratio Yield increase over farmer’s practice (q/ha) Pigeonpea 0.2 TS-3R Pod formation stage 14.5 3.34 5.5 Pigeonpea 0.2 Gulyal Pod formation stage 9 2.15 Impact of varietal demonstration of drought tolerant blackgram (DBGV-5) Blackgram 0.4 DBGV-5 Flowering and pod formation stage 10.95 2.99 2.80 Blackgram (farmers practice) 0.4 local Flowering and pod formation stage 8.15 2.27 Anon., 2019 NICRA, Kalaburagi
  36. 36. Table 23: Integration of livestock in the farming system and viability of dryland farming system (2009-10 to 2013-14) Summer Kharif Rabi Crop Area (ha) Crop Area (ha) Crop Area (ha) Anola 0.40 Anola 0.40 Anola 0.40 Fallow (0.40) Pigeonpea + Pearlmillet (0.40) Fallow (0.40) Fallow (0.30) Cowpea 0.30 Rabi sorghum 0.30 Fallow (0.10) Fodder Maize 0.10 Fodder Sorghum 0.10 Fallow (0.15) Fallow 0.15 Gram 0.15 Total 0.95 0.95 0.95 Bhosale et al., 2016 ZARS, Solapur. 55% 40% 3% 2% Area (1 ha) Crop production Horticulture Livestock Border plantation Livestock components Dairy farming (1 milking buffalo) Poultry farming (100 birds/batch) Goat rearing (20 goats)
  37. 37. Table 24: Grain yield and fodder yield obtained from crop production component in IFS (Average of 5 years data) Crop/variety Area (ha) Grain yield (qt) Fodder yield (qt) Pearlmillet (Shanti) 0.26 3.38 7.09 Pigeonpea (Vipula) 0.14 1.00 1.90 Cowpea (Phule pandhari) 0.30 1.42 12.90 Rabi Sorghum(Chitra) 0.30 1.46 6.45 Gram (Digvijay) 0.15 1.06 1.20 Fodder crops (Maize) 0.10 - 34.80 Fodder Sorghum (Phule Amruta) 0.10 - 19 Total 8.32 83.34 Bhosale et al., 2016 Zonal Agricultural research Station, Solapur.
  38. 38. Table 25: Economics of the IFS model during experiment period (Average of 5 years data) Components Area (ha) Cost of production (Rs) Gross income (Rs) Net income (Rs) B:C ratio Crop production 0.55 17476 29400 11924 1.68 Horticulture 0.40 1.68 5655 1432 1.34 Dairy farming 0.03 20650 32075 11425 1.55 Poultry farming 9427 16373 6946 1.73 Goat rearing 22520 31889 9369 1.41 Border plantation 0.02 1102 1940 838 1.76 Total 1.00 75398 117332 41934 1.55 Bhosale et al., 2016 Zonal Agricultural research Station, Solapur.
  39. 39. Table 27: Real time contingency plan in performance of varieties of finger millet Anon., 2019 Bengaluru Sowing time Variety Duration (Days) Yield (kg ha-1) RWUE (kg ha-mm-1) Net returns (₹ ha-1) B: C ratio Grain Straw July first fortnight GPU-48 105-110 1950 2620 3.30 35607 2.24 GPU-28 110-120 2450 2930 4.15 51572 2.79 MR-1 120-130 2750 3450 4.65 61652 3.14 July second fortnight GPU-48 105-110 1950 2690 3.30 35712 2.24 GPU-28 110-120 2220 3320 3.76 45027 2.56 MR-1 120-130 2910 3860 4.92 67227 3.34 August first fortnight GPU-48 105-110 2200 3160 3.72 44167 2.54 GPU-28 110-120 2566 3410 4.34 55888 2.94 MR-1 120-130 2400 3120 4.06 50307 2.75 August second fortnight GPU-48 105-110 2350 3245 3.98 48944 2.70 GPU-28 110-120 2200 2841 3.72 43688 2.52 MR-1 120-130 2300 2955 3.89 46959 2.63
  40. 40. Table 26: Performance of Crops to Real Time Climate Resilient Agricultural Practices Climate Resilient Practices Improved Practices Traditional Practice Increase in Yield (%) Finger millet planting technique Transplanting Direct sowing 12.4 Modified bullock drawn seed drill Farmer’s practice 36.6 Drought mitigation chemicals Thiourea Without foliar spray 45.0 2% KCl 35.0 Organic mulch in chilli Mulching and tied ridging Without mulch 75.0 Ramachandrappa et al., 2016 AICRPDA, Bangalore
  41. 41. Table 22: Performance of improved foxtail millet variety over local variety Year Area (ha) Crop Yield (q/hq) B:C ratio % increase in yield over control 2015-16 2 Local (Halanavane Var.) 13.5 1.54 24.44 Demonstration (DHFt-109- 3 variety) 16.8 1.86 2016-17 16 Local (Halanavane Var.) 10.64 1.32 24.43 Demonstration (DHFt-109- 3 variety) 13.24 1.53 Anon., 2019 Hulkoti, Gadag Year Yield (kg/ha) Foxtail millet Little millet Kodo millet Proso millet 2011 729 986 2508 494 2012 486 972 368 226 2013 1579 1080 869 659 2014 970 739 1247 923 2015 933 923 1173 914 Average 939 940 1233 643 Table 21: Minor millets as contingency crops Anon., 2013
  42. 42. Crop Foliar spray Performance Maize Potassium solution at 2% and thiourea at 250 g ha-1 Gave higher yield up to 24% compared to no foliar spray Cotton Two foliar sprays of MgSO4 and ZnSO4 Gave an additional yield of 300 kg ha-1 over farmers practice. Chickpea Application of urea, KCL, kaolin and selenite Gave higher yield 1215 kg ha-1 compared to no foliar spray Anon., 2018 Hyderabad Affected zone Intervention Impact Southern zone of Tamil Nadu Supplemental irrigation (SI) to cotton Higher seed cotton yield (1210 kg ha-1) compared to rainfed crop (1065 kg ha-1) Northern Saurashtra zone SI (50 mm at pod development stage) to groundnut Yield increased by 40% with higher returns (Rs. 27250 kg ha-1) Central Maharashtra SI at pod development and seed filling stage of soybean Gave 72% higher yield (768 kg ha-1) 42
  43. 43. Soil health and nutrient management
  44. 44. Table 30: Soil organic carbon, microbial biomass carbon and grain yield of finger millet as influenced by tillage and nutrient management practices Treatment Organic Carbon Microbial biomass carbon (µ g soil-1) Grain yield (t ha-1) 2014 2015 Poole d 2014 2015 Pooled Tillage practices T1 0.46 0.47 0.46 318.7 3.20 2.88 3.04 T2 0.49 0.50 0.50 407.0 2.76 2.45 2.61 T3 0.55 0.57 0.56 557.5 2.30 1.87 2.09 CD @5% 0.05 0.05 0.03 43.6 0.30 0.31 0.18 Nutrient management practices N1 0.45 0.46 0.45 342.0 2.48 2.16 2.32 N2 0.60 0.61 0.60 572.0 3.25 2.81 3.03 N3 0.46 0.47 0.47 387.7 2.79 2.42 2.61 N4 0.53 0.54 0.53 440.0 2.37 2.10 2.24 N5 0.47 0.48 0.48 396.9 2.88 2.52 2.70 CD @5% 0.03 0.03 0.02 32.6 0.19 0.25 0.15 Hatti et al., 2017 UAS, GKVK, Bangalore T1 : CT(2 ploughings + 1 harrowing + 2 intercultivations at 25 and 50 days after sowing) with drill sown finger millet, T2 : MT (1 ploughing + 1 harrowing + application of pre-emergence herbicide - isoproturon at 565 g a.i. ha-1 ) - drill sown finger millet and T3 :ZT (glyphosate 41 SL at 10 ml l at 15 days before transplanting) with transplanted finger millet at 25 days after sowing (DAS) N1 : 100% RDF-NPK (50:40:25 kg ha -1), N2 : 100% RDF-NPK + 7.5 t FYM ha, N3 : horsegram residue mulch + 100% RDF -NPK, N4 : horsegram residue mulch + 50% RDF(NPK) + 25% N through FYM + Azatobactor seed treatment and N5 : horsegram residue mulch + fertilizers based on soil test results
  45. 45. Table 34: Effect of site specific nutrient management on productivity in rainfed fingermillet + pigeonpea intercropping system in Alfisols of south India Treatment Nutrient uptake (kg ha-1) Grain yield (kg ha-1) SYI Yield response (%) B:C ratio N P K T1 77.6 47.9 45.6 2367 0.458 0.00 2.04 T2 79.2 28.1 61.3 2647 0.532 11.85 2.19 T3 141.0 70.7 111.0 2840 0.583 20.00 2.38 T4 134.0 63.2 48.6 3164 0.668 33.70 2.34 T5 149.0 68.1 105.0 2936 0.608 24.07 2.43 T6 188.0 71.2 124.0 3217 0.682 35.94 2.38 T7 189.0 89.2 133.0 3794 0.834 60.32 2.73 T8 66.5 27.1 47.6 1681 0.277 -29.98 1.73 Ramachandrappa et al., 2015 AICRPDA, Bangalore T1: 100 % N, P2O5 and K2O (50:40:25 kg ha-1), T2: T1 + ZnSO4 @12.5 kg ha-1 , T3: Recommended P2O5 + 125%of N, K2O , T4: T3 + ZnSO4 @12.5 kg ha-1 + lime (300 kg ha-1 ), T5: Recommended P2O5 + 150% N, K2O, T6: T5 + ZnSO4 @12.5 kg ha-1 + lime (300 kg ha ), T7: SSNM for targeted yield of 4.0 t ha-1 (155:45:203 kg N, P2O5 and K2O ha-1 ), T8: Control (No Fertilizers)
  46. 46. Table 35: Soil chemical and physical properties as influenced by continuous application of FYM and NPK fertilizers under rotation and monocropping Treatments Finger millet monocropping Finger millet- groundnut rotation OC (%) IR (cm/h) BD (g/cc) WHC (%) OC (%) IR (cm/h) BD (g/cc) WHC (%) T1 0.28 18.40 1.40 27.94 0.33 10.80 1.31 30.64 T2 0.58 12.60 1.39 28.89 0.53 11.10 1.34 31.23 T3 0.61 8.75 1.43 26.53 0.54 12.40 1.31 32.55 T4 0.60 20.00 1.32 29.29 0.56 16.40 1.25 31.92 T5 0.40 20.50 1.30 30.17 0.42 22.40 1.28 31.11 S. Em. ± 0.02 1.69 0.06 2.05 0.02 1.03 0.03 1.33 C.D (P=0.05) 0.09 6.64 - - 0.09 4.06 - - T1- Control, T2 -FYM (10 t/ha), T3- FYM (10 t/ha) + 50% N, P2O5& K2O, T4- FYM (10 t/ha) + 100% N, P2O5& K2O, T5- Rec. N, P2O5& K2O Satish et al., 2016 AICRPDA, Bangalore
  47. 47. Table 36: Influence of long-term FYM and manufactured fertilizer applications on yield of finger millet under rotation and monocropping Treatments Finger millet monocropping Finger millet- groundnut rotation Increase in yield (%) Yield (kg/ha) SYI SQI Yield (kg/ha) SYI SQI T1 356 -0.27 2.52 756 -0.13 3.70 144.66 T2 2637 0.41 4.49 3068 0.47 6.09 27.09 T3 3256 0.57 4.80 3633 0.61 675 24.97 T4 3754 0.63 4.88 3884 0.68 7.29 25.78 T5 2477 0.14 3.44 2517 0.33 4.53 60.32 S. Em. ± 156 - - - - C.D (P=0.05) 612 - - - - T1- Control, T2 -FYM (10 t/ha), T3- FYM (10 t/ha) + 50% N, P2O5& K2O, T4- FYM (10 t/ha) + 100% N, P2O5& K2O, T5- Rec. N, P2O5& K2O Satish et al., 2016 AICRPDA, Bangalore
  48. 48. Table 31: Yield of fingermillet with horse gram in-situ green manuring Year Crop yield (kg ha-1) Fingermillet Straw State average % increase 2008-2009 2682 6300 1466 82.95 2009-2010 3958 2521 1565 57.00 2011-2012 4482 - 2015 122 2012-2013 3000 3300 1871 60.34 2013-2014 3000 3000 1988 50.90 Average 3424 3780 1781 92.25 Table 32: Yield of fingermillet with horse gram ex-situ green manuring of glyricidia Year Crop yield (kg ha-1) Fingermillet Straw State average % increase 2011-2012 4192 - 2015 124.05 2012-2013 4000 6500 1871 113.79 2013-2014 3000 4000 1988 50.91 Average 3731 5250 1958 90.55 Ramachandrapp et al., 2015 AICRPDA, Bangalore
  49. 49. Fig. 4: Carbon assimilated in the nutrient management systems and C input (ex situ + in situ) into the soil. O = no fertilizer, F = 100% inorganic fertilizers, LE = opportunity legume crop (Vigna radiata), GM = green manuring, FYM = farmyard manure, WS = wheat stubble, RS = rice stubble. Bhardwaj et al., 2019 CSSRI, Karnal
  50. 50. Fig. 5: Carbon sequestration potential (CSP) and soil C stock under different nutrient management after 10 years of initiation (2005–2015). O = no fertilizer, F = 100% inorganic fertilizers, LE = opportunity legume crop (Vigna radiata), GM = green manuring, FYM = farmyard manure, WS = wheat stubble, RS = rice stubble, OC = organic carbon, CSP = carbon sequestration potential. Bhardwaj et al., 2019 CSSRI, Karnal
  51. 51.  Capable to increase I. Rate of soil carbon sequestration and II. Improves the soil fertility and crop yield. Biochar production: Thermo-chemical conversion process at low temperatures (~350–600 OC) in an environment with little or no oxygen. • Simple process also called pyrolysis or gasification.  Low cost biochar kiln fabricated at CRIDA. Biochar production - Strategy for recycling bio-residues Hyderbad Rao et al., 2015
  52. 52. Dryland Agricultural Research station, Karaikudi, Tamil Nadu Alfisols Pandian et al., 2016 Table 37: Effect of biochar application rates on growth and yield of groundnut Treatments pH CEC (cmol+ kg-1) Available nutrients (kg ha-1) Dry matter (kg/ha) Pod yield (kg/ha) Shelling (%) N P K Control 5.72 5.6 158 23 179 1659 1281 60 CCP 6.23 6.5 179 28 198 2040 1599 66 EFYM 5.99 6.0 168 26 188 1838 1425 63 MSB 2.5 t ha 6.08 6.0 166 28 191 1970 1528 64 MSB 5 t/ha 6.31 6.4 172 32 195 2137 1644 67 CSB 2.5 t/ha 6.14 6.0 168 25 190 1843 1536 64 CSB 5 t/ha 6.30 6.4 174 29 196 2119 1598 66 RSB 2.5 t/ha 6.19 6.0 166 28 192 1891 1568 6 RSB 5 t/ha 6.28 6.5 178 31 197 2202 1661 68 PB 2.5 t/ha 6.23 6.1 160 26 188 1812 1498 63 PB 5 t/ha 6.33 6.4 168 27 193 2008 1588 64 S.Em.± 0.1 0.2 3 1.5 3 80.0 47 0.6 C.D.(p<0.05) 0.4 0.5 8 4.3 9 237.0 140 2.0 Control (NPK alone – 10:10:45 kg ha-1) , CSB – Cotton stalk biochar, RSB – Redgram stalk biochar , CCP – Composted coir pith, PB – Prosopis biochar, EFYM – Enriched farmyard manure, MSB – Maize stalk biochar
  53. 53. Land use diversification systems • Efficient utilization of different categories of lands through capability based • Resource planning and • Generation of food, fodder and fuel, • Promotion of tree borne oilseeds for non-arable lands, • Horticulture and livestock based production system
  54. 54. AEY- Amla Equivalent Yield; RWUE-Rain Water Use Efficiency Table 38: Alternate land use - Amla based Agri-horti System, Bangalore Treatment AEY (kg ha-1) RWUE (kg ha-1 mm-1) 2012 2013 Mean 2012 2013 Mean T1: Amla + Finger millet 1843 1849 1846 5.45 3.74 4.60 T2: Amla + Cowpea 737 1903 1320 2.25 4.16 3.21 T3: Amla + Horse gram 587 1264 926 1.74 2.56 2.15 T4: Amla+ Field bean 725 1255 990 4.18 2.54 3.36 T5: Amla+ Fodder maize 12332 858 6595 42.60 1.87 22.24 T6:Amla+Grain amaranth 1106 825 966 3.59 1.67 2.63 T7: Finger millet 1872 1616 1744 5.53 4.91 5.22 T8: Cowpea 795 1540 1168 2.43 2.02 2.23 T9: Horse gram 615 1030 823 1.82 2.09 1.96 T10: Field bean 769 808 789 4.43 1.96 3.20 T11: Fodder maize 13846 538 7192 47.83 23.5 35.67 T12: Grain amaranth 1295 576 936 4.20 2.33 3.27 T13: Amla - 493 493 - - - S. Em. ± - 51.88 - - - - C. D. (p=0.05) - 151 - - - - Higher Amla equivalent yield was obtained with Fodder maize followed by finger millet and Cowpea
  55. 55. Treatment Custard apple yield (kg ha-1) Intercrop yield (kg ha-1) CEY (kg ha-1) 2014 2015 Mean 2014 2015 Mean 2014 2015 Mean T1: CA + Finger millet 699 1130 915 2479 2276 2378 1731 1965 1848 T2: CA + Fodder maize 759 1092 926 56871 38323 47597 1707 2050 1879 T3: CA + Field bean 887 1350 1119 668 547 608 1444 1851 1648 T4: CA + Niger 466 989 728 474 202 338 940 1192 1066 T5: CA + Green chilli 666 1116 891 2160 3346 2753 1386 1952 1669 T6: CA + Cow pea 687 1167 927 479 643 561 1087 1703 1395 T7: CA + Foxtail millet 652 1006 829 748 497 623 1027 1255 1141 T8: Custard apple (CA) 713 1141 927 - - - 713 1141 927 T9: Finger millet - - - 3285 2500 2893 1369 917 1143 T10: Fodder maize - - - 72869 41509 57189 1214 692 953 T11: Field bean - - - 1268 727 998 1057 666 862 T12: Niger - - - 502 345 424 502 345 424 T13: Green chilli - - - 5077 4767 4922 1692 1192 1442 T14: Cow pea - - - 726 865 796 605 721 663 T15: Foxtail millet - - - 1063 868 966 532 434 483 S. Em. ± 26.49 56.75 - - - - 48.1 69.0 C. D. (p=0.05) 80.35 172.14 - - - - 139.4 199.8 Table 39: Custard apple based Agri-horti system for rainfed condition in Alfisols Anon., 2015 Bangalore
  56. 56. Farm energy management with emphasis on small farm mechanization • Development of low-cost seeding and inter-cultural devices, • Solar and low lift pumps for lifting water from ponds Socio-economic aspects • Socio-economic and policy research studies, • Knowledge management, • Impact of research, • Constraints and feedback, • Transfer of technology
  57. 57. Mechanized sowing of major rainfed crops using precision planter cum herbicide applicator Fig. 7: CRIDA Six Row Planter Fig. 8: Precision Planter Cum Herbicide Applicator Korwar et al., 2015 CRIDA, Hyderabad
  58. 58. Table 40: Performance of Selected Planters in Undulating Lands Plante r Pigeonpea Castor Maize Germi nation % Deviat ion in spacin g Deviat ion in depth Germi nation % Deviat ion in spacin g Deviat ion in depth Germi nation % Deviat ion in spacin g Deviat ion in depth CP 82.0 4.2 -2.1 87.5 3.7 -2.2 82.0 4.1 -1.7 5.1 -0.3 2.8 -2.4 3.2 -4.7 3.2 0.0 3.1 -1.5 2.2 -2.1 SD 3.01 1.55 2.59 1.81 2.73 1.01 PP 92.5 1.2 -0.8 94.6 0.0 0.7 94.0 1.2 0.7 0.9 0.6 1.8 0.4 -0.8 0.6 1.4 0.2 0.9 0.6 0.0 0.0 SD 1.03 0.61 0.99 0.41 0.92 0.79 Korwar et al., 2015 CRIDA, Hyderabad Fig.9: Germination of Different Crops with Conventional and Precision Planter in Undulating Lands Fig.10: Variation in Weeds with CP method of Herbicide Application and with PP Cum Herbicide Applicator
  59. 59. Application of solar energy in Dryland crop production 59
  60. 60. START Enter the sowing distance If digging Motor Rotates - 360 degrees Start Digging Motor If the sowing distance – 30 cm Stop digging motor Start Seeding Motor If ‘’1 seed” Drops in the pit Stop seeding motor Stop No No Yes Yes No Yes Fig. 11: Flow chart of solar seed sowing machine Pune, India Anuja et al., 2017 Solar operated sowing machine 60
  61. 61. Solar fencing • The Solar module generates the DC energy and charges the Battery. • The output of the battery is connected to Energizer. • The energizer will produce a short, high voltage pulse at regular rate of one pulse per second. • The live wire of the energizer is connected to the fence wire and the earth system. The basic building blocks of a power fence are: 1. Energizer 2. Earthing (Grounding System) and 3. Fence system 61
  62. 62. Fig. 12: Block diagram of solar operated sprayer Maharashtra, India Pritam et al., 2016 62
  63. 63. Table 41: Comparison between Solar Photovoltaic operated knapsack sprayer and Hand lever operated knapsack sprayer. Parameters SPV operated knapsack sprayer Hand lever operated knapsack sprayer Time for Spray (hr/ha) 12.6 21.50 Swath width (m) 0.51 0.46 Speed of operation (km/hr) 1.80 1.18 Theoretical field capacity (ha/hr) 0.092 0.054 Actual Field Capacity (ha/hr) 0.082 0.044 Field Efficiency (%) 89.42 80.39 Solution required (lit/ha) 498 512 Maharashtra Shubham et al., 2018 63
  64. 64. Solar insect traps • Size - 8’’ X 8’’ X 8’’ box • 2’’ size and a funnel made of glass or iron sheet. • The solar light system includes a 12volt, 7.5 amp battery, 10 watt power solar panel, solar charging unit, 12watt LED lamp (dc).  The scientist from ZARS, Mohitnagar developed the solar light trap  Found that as an alternate of chemical pesticide.  This tool is eco-friendly nature and low cost involvement to both the farmers and agricultural experts.  Found to be most effective IPM tool which provide better safeguard to the nature in comparison to the other method of pest control. Bera, 2015 64 West bengal
  65. 65. Solar pump 65 Suppose we have to run 2HP motor for irrigation.  1.5 KW Energy required and with voltage of 240 V 1.5 KW=1500 watt  Nearly 8 solar panels are required to generate 1500 Kw (1 solar panel of 72 cells generates 200 W)  2 batteries are required (Rechargeable batteries of 120 V) Component Unit Cost Quantity Total Cost ( Rs.) Solar Panel (1.4m2) 24000 8 192000 Converter Circuit 400 1 400 Battery of 120V 8250 2 16500 Total cost 208900 Table 42: Cost analysis of 2HP solar pump for irrigation Coimbatore, India Harishankar et al., 2014
  66. 66. Table 43: Number of fruit and fruit yield of Brinjal crop as influenced by mono pump operated solar drip and furrow method of irrigation. Treatments Number of fruits per plot (g) Fruit yield per ha (tonnes) SPDI @75% irrigation 400.75 30.39 SPDI @100% irrigation 432.15 32.25 SPDI @125% irrigation 502.75 32.68 Ridge and furrow irrigation @75 % irrigation 340.00 18.95 Ridge and furrow irrigation @100% irrigation 406.00 26.51 Ridge and furrow irrigation @125% irrigation 235.00 23.45 SEm 25.16 0.256 CD @ 5% 75.83 0.774 UAS, Bengaluru. Asundi et al., 2016 66 SPDI – Solar Powered Drip Irrigation
  67. 67.  Agriculture is highly sensitive to weather and its variability  Minor weather variations have major impacts on farm output  Agromet Advisory Services (AAS) provides climate and weather information along with farm management options  AAS empowers farmers to minimize weather risks and provides access to new technologies for higher productivity and better livelihoods. Real time agro-advisory services agro-advisories Standing crop Harvested crop germinated due to continuous rainfall
  68. 68. Crops/ cropping system AAS farmers Non AAs farmers Additional income to AAS farmers % gain in income over Non AAS farmers Yield (kg/ha) Returns (Rs./ha) B: C ratio Yield (kg/ha) Returns (Rs./ha) B: C ratio Transplanting of finger millet 2502 31633 2.53 2149 25961 2.30 5672 22 Finger millet + pigeonpea (8:2) 2961 38115 2.80 1921 21293 2.05 16822 79 Groundnut + pigeonpea (8:2) 1389 38724 3.00 648 7798 1.85 30926 397 Pigeonpea + cowpea (1:1) 1165 37777 2.72 684 17879 1.72 19898 111 Pigeonpea + field bean (1:1) 1278 47305 3.02 684 17879 1.72 29426 165  AAS farmers registered higher yield and income than the non AAS farmers Table 44: Impact of agro-advisory services on productivity and economics of cropping systems (mean of 5 years) Ramachandrappa et al., 2018 AICRPDA, Bengaluru
  69. 69. Productive and stress tolerant breeds of animals were introduced in NICRA villages adopted by farmers. Improved poultry breeds:  Vanaraja and Gramapriya (Dimapur, Senapati, CoochBehar)  Rajashree (Anantapur)  Kalinga Brown (Cachar)  Chabro (Jhansi)  Kadaknath (Balaghat) Improved breeds of goat :  Sirohi (Ahmednagar, Augrangabad & Nandurbar)  Jamunapari and Lalitpuri (Datia) Sheep breed: Telichery and Nari Suvarna (Namakkal) Introduction of stress tolerant breeds Anon., 2017 NICRA
  70. 70. 4.2: Custom Hiring Centre (CHC)  Committee is formed involving 9 Farmers and Scientists  Equipments required were decided in a meeting with farmers and scientists  Indent and receipts have been maintained  Bank account opened for each CHC.  The hire charges collected from the CHC has been deposited in the joint account in the names of three farmers in a co-operative bank  Repair of implements are attended after having a meeting with committee members Most Popular Implements I. Zero till drill II. Drum seeder & Rotavator III. Happy seeder IV. Ridge & furrow planter V. Multi crop planter VI. Multi crop thresher
  71. 71. Resource characterization • Rainfall and soil characteristics, • Length of growing season, • Land capability-based potential and constraints, • Climatic analysis, • Crop weather modeling and • Geographic information system. Climate change vulnerability assessment and adaptation • To understand the nature of climate change and its impacts on dryland agriculture. • To evolve suitable adaptation and mitigation measures with special emphasis to small and marginal landholders.
  72. 72. Table 45: Soil Morphological characteristics of Kalmali North-1 MWS Soil series Mapping unit Soil texture Slope (%) Physiography Erosion Drainage Fatepur FTPmB2 Clay 1-3 Upland Moderate Mod. well Gonala GNLmC3 Clay 3-5 Upland Moderate Mod. well Kalmala KLMmB2 Clay 1-3 Upland Moderate Mod. well Merchad MERmB2 Clay 1-3 Upland Moderate Mod. well Raichur RCHmC2 Clay 3-5 Upland Moderate Mod. well Venkatpur VKPmC3 Clay 3-5 Upland Moderate Mod. well Rajesh et al., 2019 Raichur, Karnataka
  73. 73. Crop Yield levels before WDP(q/ha) Yield levels after WDP(q/ha) % increase (Y) K G D G K G D G K G D G Kharif Cotton 8 10 16.1 15.4 12.1 19 21 20.2 51 90 30 31 Soyabean 20 22.1 11 Rice (I) 20.9 68.3 37.2 59.6 27.7 95 55 70.7 33 39 48 19 Sorguhm 10 14.7 47 Vegetables 15.1 18 14.3 20.1 25 18.7 33 39 31 Pigeonpea 9.7 16.8 73 Green gram 10.8 8.43 15.2 12.4 41 48 Blackgram 5.1 9.7 90 Maize 18.9 29.2 54 Rabi Rice (I) 17.9 40.3 40.4 25.2 56.3 51 41 40 26 Wheat (I) 7 12.5 79 Chickpea 8.1 11.2 38 Table 46: Impact of watershed development on crop productivity increase Osman et al., 2017 CRIDA, Hyderabad
  74. 74. Development and application of a new drought severity index for categorizing drought-prone areas: a case study: Andhra Pradesh state, India CRIDA Drought Severity Index= ((0.25 ∗ MIDF + 0.50 ∗ MODF + 0.75 ∗ SDF) ∗ 100)/NY Fig. 12: Drought severity status in different mandals and districts in Andhra Pradesh, (a) frequency distribution of all agricultural droughts (b) without considering the extent of irrigation (c)after considering the extent of irrigation a b c Kumar et al., 2019 CRIDA, Hyderabad
  75. 75. Conclusion Future Line of Work  Subsoiling at 2 m interval + FYM will help to conserve higher moisture (28.45 %) and produce higher fingermillet yield (2413 kg ha-1).  Giant bajra fodder sowing in May month followed by chickpea (JG-11) with 100 per cent recommended dose of fertilizer provides better yield and sustainability.  Legume (Vigna radiata) and green manure crop (Sesbania) based management gives high biomass incorporation into the soil, because of high N and narrow C : N ratio.  Agro advisory services on real time basis realized 22 to 379 per cent higher economic benefits for adopting farmers compared to non-adopters.  In depth study on the utilization of solar energy for different cultivation practices for sustainable energy utilization.  Need to evaluate use of harvested farm pond water to sustain the productivity of hydroponic fodder production in dryland.

×