Baier, Bianca: Towards greenhouse gas remote sensing evaluation using the AirCore atmospheric sampling system

Integrated Carbon Observation System (ICOS)
Integrated Carbon Observation System (ICOS)Integrated Carbon Observation System (ICOS)
TOWARD GREENHOUSE GAS REMOTE
SENSING EVALUATION USING THE AIRCORE
ATMOSPHERIC SAMPLING SYSTEM
Bianca Baier1,2, C. Sweeney2, T. Newberger1,2, J.Higgs2, S. Wolter1,2,
P.Tans2, A. Andrews2, D. Wunch3, L. Cunningham3, C. Arrowsmith3, J.
Hedelius4, P. Wennberg5, H. Parker5, G. Osterman6, H. Chen7, J.J.D.
Hooghiem7, R. Kivi8, P. Heikkinen8, M. Leuenberger9, P. Nyfeler9, C.
Crevoisier10, T. Laemmel11, M. Lopez11, M. Ramonet11 , A. Engel12, T.
Wagenhaeuser12, J. Laube13
1CIRES/UC-Boulder, USA
2NOAA/GML, USA
3U.Toronto, Canada
4Utah State Univ., USA
5Caltech, USA
6NASA/JPL, USA
7U. Groningen, Netherlands
8FMI, Finland
9U. Bern, Switzerland
10LMD, France
11LSCE, France
12GUF, Germany
13 IEK, Germany
1
Compatibility between global observing systems
2
NOAA Global Greenhouse Gas Reference Network
• Added value for understanding
carbon cycle using spaceborne
observing systems realized if
retrievals are put on same scale
as in situ observational
networks
• AirCore sampling system is a
unique remote sensing
evaluation tool:
§ Samples > 98% of
atmospheric column
§ Calibrated measurements
are traceable to WMO
scales
§ Low operational cost
relative to aircraft
measurements
3
Compatibility between global observing systems
AirCore
NOAA light aircraft ceiling
Karion et al., 2010
COCCON
• Over a decade of NOAA/GML AirCore sampling with >100 GHG profiles retrieved
• Several small-scale field campaigns targeted at Total Carbon Column Observing Network (TCCON) sites
• 2018: Remote sensing evaluation within TCCON: co-located AirCore, FTS measurements
• 2018-2019: ICOS RINGO collaboration (Sodankylä, Finland; Traînou, France)
4
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year
390
395
400
405
410
415
Pressure-weightedmeanCO2
,ppmAirCore
NOAA/GMLAirCore Sampling
398 400 402 404 406 408 410 412
AirCore XCO2
(ppm)
398
400
402
404
406
408
410
412
FTSXCO2
(ppm)
1:1 line
FTS = 1.0005 0.0003*(AirCore)
Ratio error: 0.3 ppm CO
2
, WMO surface: 0.1 ppm CO
2
15
20
25
30
35
40
45
50
55
SZA (degrees)
• AirCore-TCCON inter-comparison (2018): U.S. TCCON sites, ~3-5 AirCore flights per site, varied launch times
• AirCore captures >98% of atmospheric mass: greater potential error reduction in retrievals
• TCCON primary reference for satellite evaluation: using AirCore as apriori in retrieval allows for improvements in
retrieval processing, more rigorous comparisons between different remote sensing systems
5
TCCON XCO2 retrieval evaluation usingAirCore
Aircraft ceiling
U.S. TCCON sites:
-Park Falls, WI, USA
-Lamont, OK, USA
-Palmdale, CA, USA
• Since 2018, routine, monthly AirCore launches at NOAA are coordinated with A-train constellation in sun-
synchronous orbit with a ~13:00 LT overpass time
• To-date, 12 AirCore flights have been coincident with NASA OCO-2 satellite overpasses
• Two AirCore samplers launched on same balloon string
6
NASAOrbiting Carbon Observatory (OCO-2) XCO2 evaluation usingAirCore
400 402 404 406 408 410 412
AirCore XCO2
, ppm
398
400
402
404
406
408
410
412
414
OCO-2XCO2
,ppm
12-Dec-2017
19-Apr-2018
21-Jun-2018
03-Aug-2018
29-Nov-2018
08-Apr-2019
11-Jul-2019
13-Sep-2019
05-Nov-2019
18-Dec-2019
OCO2 = 1.001 0.001*(AirCore)
1 ppm
1:1 line
High bias, large variability
in OCO-2 XCO2 retrievals
390 400 410
CO2
, ppm
0
100
200
300
400
500
600
700
800
900
Pressure,mb
AirCore CO2
Extrap. AirCore
0.4 0.6 0.8 1
OCO-2 averaging kernel
0
100
200
300
400
500
600
700
800
900
Aircraft ceiling
CarbonTracker (CT2019) -AirCore comparisons 2009-2020
7
NOAA CCGG aircraft
network altitude ceiling
• Global models used extensively for satellite retrieval evaluation (e.g. NASA OCO-2 bias corrections)
• CarbonTracker is NOAA’s global CO2 inverse model (Jacobson et al., 2020; http://www.carbontracker.noaa.gov)
that assimilates routine NOAAAircraft Network flask CO2 measurements to ~12-13 km MSL
• AirCore samples to ~30km MSL provide some of only routine GHG measurements in UT/LS for model evaluation
NOAA
routine
aircraft
network
ceiling
Remote sensing evaluation at “supersites”
• Tower-based in situ trace gases
• Co-located AirCore profiles
• Continuous EM27SUN
retrievals coincident with A-train
overpasses
• Assess capability for long-term
satellite evaluation with EM27
• Rigorous evaluation of EM27
retrieval biases using AirCore
• AirCore-corrected retrievals used
to evaluate satellite trace gases
• Supplemental observations for
comprehensive evaluation of
retrievals: DLiDAR, radiation
measurements
8
NOAA
• Portable, balloon-launched (~30km MSL), autopilot-recovered platform can expand AirCore profiling locations
• High-volume payload capacity is retrievable: allows for high-accuracy payload sensor suite critical for satellite
and retrieval algorithm evaluation (T, P, FPH, aerosols)
• High demand for satellite evaluation efforts, observations in tropics
On the horizon: High-altitudeAirCore Glider Platform
O3sonde
NOAA POPS aerosol
NOAA Frost point hygrometer
9
Potential for profiling at sea
Toward an internationalAirCore network
10
• Readiness of ICOS for Necessities of
integrated Global Observations
(RINGO) campaign in Sodankylä,
Finland (2018), Traînou, France (2019)
• First major successful comparisons
between AirCore groups
• Further development of AirCores and
increased sharing of knowledge
• Increased collaboration between
international AirCore groups
• Streamline AirCore profile data
reporting and retrieval algorithms
• Investigate and develop best practices
for AirCore sampling
University of Groningen, Netherlands
Goethe University Frankfurt, Germany
University of Bern, Switzerland
Finnish Met. Institute, Finland
NOAA Global Monitoring Laboratory, USA
University of East Anglia, UK/IEK, Jülich, Germany
Laboratoire de Météorologie Dynamique, Laboratoire des sciences du climat et de l’environnement, France
Summary
• As new satellites for trace gas remote sensing are launched, there is continued need
for maintaining compatibility with in situ observing networks to fully realize potential of a
synergistic global observing system
• AirCore is a unique remote sensing evaluation tool with its ability to capture >98% of
atmospheric column and GHG profile traceability to World Meteorological Organization
scales
• NOAAGML recent efforts focus on NASA satellite evaluation using AirCore and
expansion to include evaluation of other satellites using continuous EM27SUN
retrievals:
• expand collaborations with TCCON, COCCON
• extend use of these data for evaluation across satellite communities
• AirCore-Glider system could significantly expand profiling locations on land and at sea,
revolutionizing high-altitude atmospheric sampling
• Current collaborations with RINGO science team is invaluable for furthering
international AirCore network and expanding remote sensing evaluation efforts
NASA ROSES, NASA Jet Propulsion Laboratory
11
Supplemental Slides
12
OCO-2 vs. AirCore
-110 -105 -100 -95 -90 -85
longitude
36
38
40
42
44
46
48
50
52
latitude
OCO-2
AirCore
Date
Aug 3, 2018
400 402 404 406 408 410 412
AirCore XCO2
, ppm
398
400
402
404
406
408
410
412
414
OCO-2XCO2
,ppm
12-Dec-2017
19-Apr-2018
21-Jun-2018
03-Aug-2018
29-Nov-2018
08-Apr-2019
11-Jul-2019
13-Sep-2019
05-Nov-2019
18-Dec-2019
OCO2 = 1.001*AC 0.001
1 ppm
1:1 line
13
EM27/SUN Operation in NE Colorado
• Enclosure system built and tested with EM27 at NOAA using CR1000 data
logger
• First comparisons of EM27 + OCO-2 satellite target mode retrievals + AirCore
via day deployments to prospective NECO tower location
14
12:00 Local time 14:00
410 410.5 411 411.5 412 412.5 413 413.5 414
AirCore XCO2
, ppm
408
409
410
411
412
413
414
EM27XCO2
,ppm
EM27 XCO2
= 0.995*AirCore
EM27 XCO2
1 = 0.25ppm
1:1 line
New development: High-altitude AirCore sampling platform
15
• Balloon ascent, autopiloted
descent
• Large payload capacity for
housing multiple sensors (i.e.
FPH, POPS)
• Can return e.g. high-accuracy
sensors typically carried on
weather balloons
• Revolutionize surface to
stratosphere sampling,
enhance weather forecasting
capabilities, and further
satellite retrieval and
algorithm evaluation
Graphic design: Sydnee Masias
1 de 15

Recomendados

CUPC2015Poster por
CUPC2015PosterCUPC2015Poster
CUPC2015PosterLuke Collins
82 vistas1 diapositiva
100528 satellite obs_china_husar por
100528 satellite obs_china_husar100528 satellite obs_china_husar
100528 satellite obs_china_husarRudolf Husar
650 vistas34 diapositivas
Conference on the Environment- GUERRA presentation Nov 19, 2014 por
Conference on the Environment- GUERRA presentation Nov 19, 2014Conference on the Environment- GUERRA presentation Nov 19, 2014
Conference on the Environment- GUERRA presentation Nov 19, 2014Sergio A. Guerra
727 vistas31 diapositivas
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –... por
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
184 vistas64 diapositivas
AERMOD CHANGES AND UPDATES por
AERMOD CHANGES AND UPDATESAERMOD CHANGES AND UPDATES
AERMOD CHANGES AND UPDATESSergio A. Guerra
1.4K vistas29 diapositivas
AERMOD por
AERMODAERMOD
AERMODYing Wang
5.6K vistas66 diapositivas

Más contenido relacionado

La actualidad más candente

PosterV2small por
PosterV2smallPosterV2small
PosterV2smallMustafa Abderrahman
32 vistas1 diapositiva
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON... por
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...Sergio A. Guerra
827 vistas34 diapositivas
Using Physical Modeling to Evaluate Re-entrainment of Stack Emissions por
Using Physical Modeling to Evaluate Re-entrainment of Stack EmissionsUsing Physical Modeling to Evaluate Re-entrainment of Stack Emissions
Using Physical Modeling to Evaluate Re-entrainment of Stack EmissionsSergio A. Guerra
207 vistas41 diapositivas
Generating and Using Meteorological Data in AERMOD por
Generating and Using Meteorological Data in AERMOD Generating and Using Meteorological Data in AERMOD
Generating and Using Meteorological Data in AERMOD BREEZE Software
1.2K vistas26 diapositivas
Bella et al 2015 por
Bella et al 2015Bella et al 2015
Bella et al 2015Jarret Ealy
453 vistas22 diapositivas

La actualidad más candente(20)

INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON... por Sergio A. Guerra
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...
Sergio A. Guerra827 vistas
Using Physical Modeling to Evaluate Re-entrainment of Stack Emissions por Sergio A. Guerra
Using Physical Modeling to Evaluate Re-entrainment of Stack EmissionsUsing Physical Modeling to Evaluate Re-entrainment of Stack Emissions
Using Physical Modeling to Evaluate Re-entrainment of Stack Emissions
Sergio A. Guerra207 vistas
Generating and Using Meteorological Data in AERMOD por BREEZE Software
Generating and Using Meteorological Data in AERMOD Generating and Using Meteorological Data in AERMOD
Generating and Using Meteorological Data in AERMOD
BREEZE Software1.2K vistas
Bella et al 2015 por Jarret Ealy
Bella et al 2015Bella et al 2015
Bella et al 2015
Jarret Ealy453 vistas
Manning_3D_Cloud_ASTM_Fall_2016 por John Pham
Manning_3D_Cloud_ASTM_Fall_2016Manning_3D_Cloud_ASTM_Fall_2016
Manning_3D_Cloud_ASTM_Fall_2016
John Pham129 vistas
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON... por Sergio A. Guerra
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...
INNOVATIVE DISPERSION MODELING PRACTICES TO ACHIEVE A REASONABLE LEVEL OF CON...
Sergio A. Guerra1.2K vistas
AIR DISPERSION MODELING HIGHLIGHTS FROM 2012 ACE por Sergio A. Guerra
AIR DISPERSION MODELING HIGHLIGHTS FROM 2012 ACEAIR DISPERSION MODELING HIGHLIGHTS FROM 2012 ACE
AIR DISPERSION MODELING HIGHLIGHTS FROM 2012 ACE
Sergio A. Guerra1.4K vistas
The Role of Semantics in Harmonizing YOPP Observation and Model Data por Siri Jodha Singh Khalsa
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model Data
Pairing aermod concentrations with the 50th percentile monitored value por Sergio A. Guerra
Pairing aermod concentrations with the 50th percentile monitored valuePairing aermod concentrations with the 50th percentile monitored value
Pairing aermod concentrations with the 50th percentile monitored value
Sergio A. Guerra1.1K vistas
Effects of Wind Direction on VOC Concentrations in Southeast Kansas por Sergio A. Guerra
Effects of Wind Direction on VOC  Concentrations in Southeast KansasEffects of Wind Direction on VOC  Concentrations in Southeast Kansas
Effects of Wind Direction on VOC Concentrations in Southeast Kansas
Sergio A. Guerra1.2K vistas
Highlights from the 2016 Guideline on Air Quality Models Conference por Sergio A. Guerra
Highlights from the 2016 Guideline on Air Quality Models ConferenceHighlights from the 2016 Guideline on Air Quality Models Conference
Highlights from the 2016 Guideline on Air Quality Models Conference
Sergio A. Guerra760 vistas
AERMOD Tiering Approach Case Study for 1-Hour NO2 por BREEZE Software
AERMOD Tiering Approach Case Study for 1-Hour NO2AERMOD Tiering Approach Case Study for 1-Hour NO2
AERMOD Tiering Approach Case Study for 1-Hour NO2
BREEZE Software351 vistas
Complying with EPA's Guidance for SO2 Designations por Sergio A. Guerra
Complying with EPA's Guidance for SO2 DesignationsComplying with EPA's Guidance for SO2 Designations
Complying with EPA's Guidance for SO2 Designations
Sergio A. Guerra754 vistas
Background Concentrations and the Need for a New System to Update AERMOD por Sergio A. Guerra
Background Concentrations and the Need for a New System to Update AERMODBackground Concentrations and the Need for a New System to Update AERMOD
Background Concentrations and the Need for a New System to Update AERMOD
Sergio A. Guerra751 vistas

Similar a Baier, Bianca: Towards greenhouse gas remote sensing evaluation using the AirCore atmospheric sampling system

Gurpreet Singh Poster for LURA 2016 por
Gurpreet Singh Poster for LURA 2016Gurpreet Singh Poster for LURA 2016
Gurpreet Singh Poster for LURA 2016Gurpreet Singh
49 vistas1 diapositiva
Poster_jayson_v3 por
Poster_jayson_v3Poster_jayson_v3
Poster_jayson_v3Jayson Maldonado Vargas
109 vistas1 diapositiva
Stratospheric satellitesjun01 por
Stratospheric satellitesjun01Stratospheric satellitesjun01
Stratospheric satellitesjun01Clifford Stone
343 vistas42 diapositivas
PARABLE POSTER por
PARABLE POSTERPARABLE POSTER
PARABLE POSTERGurpreet Singh
75 vistas1 diapositiva
DRI UAV Expertise and Related Interests por
DRI UAV Expertise and Related InterestsDRI UAV Expertise and Related Interests
DRI UAV Expertise and Related InterestsDRIscience
2.7K vistas21 diapositivas
Time integration of evapotranspiration using a two source surface energy bala... por
Time integration of evapotranspiration using a two source surface energy bala...Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...Ramesh Dhungel
1.3K vistas69 diapositivas

Similar a Baier, Bianca: Towards greenhouse gas remote sensing evaluation using the AirCore atmospheric sampling system(20)

Gurpreet Singh Poster for LURA 2016 por Gurpreet Singh
Gurpreet Singh Poster for LURA 2016Gurpreet Singh Poster for LURA 2016
Gurpreet Singh Poster for LURA 2016
Gurpreet Singh49 vistas
Stratospheric satellitesjun01 por Clifford Stone
Stratospheric satellitesjun01Stratospheric satellitesjun01
Stratospheric satellitesjun01
Clifford Stone343 vistas
DRI UAV Expertise and Related Interests por DRIscience
DRI UAV Expertise and Related InterestsDRI UAV Expertise and Related Interests
DRI UAV Expertise and Related Interests
DRIscience2.7K vistas
Time integration of evapotranspiration using a two source surface energy bala... por Ramesh Dhungel
Time integration of evapotranspiration using a two source surface energy bala...Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...
Ramesh Dhungel1.3K vistas
Ensuring the Climate Record from the NPOESS and GOES-R Spacecraft por Art Charo
Ensuring the Climate Record from the NPOESS and GOES-R SpacecraftEnsuring the Climate Record from the NPOESS and GOES-R Spacecraft
Ensuring the Climate Record from the NPOESS and GOES-R Spacecraft
Art Charo506 vistas
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA... por grssieee
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
grssieee151 vistas
DRI and UAS Applications Research por DRIscience
DRI and UAS Applications ResearchDRI and UAS Applications Research
DRI and UAS Applications Research
DRIscience2.9K vistas
DRI and UAS Applications Research por DRIscience
DRI and UAS Applications ResearchDRI and UAS Applications Research
DRI and UAS Applications Research
DRIscience245 vistas
IGARSS 2011_Priestley.ppt por grssieee
IGARSS 2011_Priestley.pptIGARSS 2011_Priestley.ppt
IGARSS 2011_Priestley.ppt
grssieee332 vistas
The 2013 NRC Decadal Survey in Solar and Space Physics (Heliophysics) por Art Charo
The 2013 NRC Decadal Survey in Solar and Space Physics (Heliophysics)The 2013 NRC Decadal Survey in Solar and Space Physics (Heliophysics)
The 2013 NRC Decadal Survey in Solar and Space Physics (Heliophysics)
Art Charo709 vistas

Más de Integrated Carbon Observation System (ICOS)

Röttger, Annette: Overview on radon metrology por
Röttger, Annette:  Overview on radon metrologyRöttger, Annette:  Overview on radon metrology
Röttger, Annette: Overview on radon metrologyIntegrated Carbon Observation System (ICOS)
50 vistas21 diapositivas
Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS... por
Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS...Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS...
Kirtzel, Hans-Jürgen: FM-CW Wind Lidar “Wind Ranger” and Multi-Path Sonic “uS...Integrated Carbon Observation System (ICOS)
113 vistas34 diapositivas
Jocher, Georg: Addressing forest canopy decoupling on a global scale por
Jocher, Georg: Addressing forest canopy decoupling on a global scaleJocher, Georg: Addressing forest canopy decoupling on a global scale
Jocher, Georg: Addressing forest canopy decoupling on a global scaleIntegrated Carbon Observation System (ICOS)
23 vistas20 diapositivas
Dukat, Paulina: How does drought impact water and carbon exchange in the temp... por
Dukat, Paulina: How does drought impact water and carbon exchange in the temp...Dukat, Paulina: How does drought impact water and carbon exchange in the temp...
Dukat, Paulina: How does drought impact water and carbon exchange in the temp...Integrated Carbon Observation System (ICOS)
13 vistas10 diapositivas
van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-... por
van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-...van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-...
van Zwieten, Ruthger: Performance assessment of the mobile g4301 Cavity Ring-...Integrated Carbon Observation System (ICOS)
10 vistas13 diapositivas
Vainio, Elisa: Carbon Action – Towards regenerative agriculture in Finland por
Vainio, Elisa: Carbon Action – Towards regenerative agriculture in FinlandVainio, Elisa: Carbon Action – Towards regenerative agriculture in Finland
Vainio, Elisa: Carbon Action – Towards regenerative agriculture in FinlandIntegrated Carbon Observation System (ICOS)
14 vistas16 diapositivas

Más de Integrated Carbon Observation System (ICOS)(20)

Último

ELECTRON TRANSPORT CHAIN por
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAINDEEKSHA RANI
18 vistas16 diapositivas
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptx por
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptxCyanobacteria as a Biofertilizer (BY- Ayushi).pptx
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptxAyushiKardam
5 vistas13 diapositivas
Assessment and Evaluation GROUP 3.pdf por
Assessment and Evaluation GROUP 3.pdfAssessment and Evaluation GROUP 3.pdf
Assessment and Evaluation GROUP 3.pdfkimberlyndelgado18
12 vistas10 diapositivas
DNA manipulation Enzymes 2.pdf por
DNA manipulation Enzymes 2.pdfDNA manipulation Enzymes 2.pdf
DNA manipulation Enzymes 2.pdfNetHelix
6 vistas42 diapositivas
BLOTTING TECHNIQUES SPECIAL por
BLOTTING TECHNIQUES SPECIALBLOTTING TECHNIQUES SPECIAL
BLOTTING TECHNIQUES SPECIALMuhammadImranMirza2
14 vistas56 diapositivas
Presentation on experimental laboratory animal- Hamster por
Presentation on experimental laboratory animal- HamsterPresentation on experimental laboratory animal- Hamster
Presentation on experimental laboratory animal- HamsterKanika13641
6 vistas8 diapositivas

Último(20)

ELECTRON TRANSPORT CHAIN por DEEKSHA RANI
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAIN
DEEKSHA RANI18 vistas
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptx por AyushiKardam
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptxCyanobacteria as a Biofertilizer (BY- Ayushi).pptx
Cyanobacteria as a Biofertilizer (BY- Ayushi).pptx
AyushiKardam5 vistas
DNA manipulation Enzymes 2.pdf por NetHelix
DNA manipulation Enzymes 2.pdfDNA manipulation Enzymes 2.pdf
DNA manipulation Enzymes 2.pdf
NetHelix6 vistas
Presentation on experimental laboratory animal- Hamster por Kanika13641
Presentation on experimental laboratory animal- HamsterPresentation on experimental laboratory animal- Hamster
Presentation on experimental laboratory animal- Hamster
Kanika136416 vistas
Generative AI to Accelerate Discovery of Materials por Deakin University
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of Materials
Eukaryotic microbiology lab Dos and Donts.pptx por Prasanna Kumar
Eukaryotic microbiology lab Dos and Donts.pptxEukaryotic microbiology lab Dos and Donts.pptx
Eukaryotic microbiology lab Dos and Donts.pptx
Prasanna Kumar8 vistas
Towards Error-Corrected Quantum Computing with Neutral Atoms por Yuval Boger
Towards Error-Corrected Quantum Computing with Neutral AtomsTowards Error-Corrected Quantum Computing with Neutral Atoms
Towards Error-Corrected Quantum Computing with Neutral Atoms
Yuval Boger5 vistas
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe... por Anmol Vishnu Gupta
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...
Anmol Vishnu Gupta28 vistas
Real Science Radio - Dr Paul Homan Climate Change.pptx por Fred Williams
Real Science Radio - Dr Paul Homan Climate Change.pptxReal Science Radio - Dr Paul Homan Climate Change.pptx
Real Science Radio - Dr Paul Homan Climate Change.pptx
Fred Williams8 vistas
selection of preformed arch wires during the alignment stage of preadjusted o... por MaherFouda1
selection of preformed arch wires during the alignment stage of preadjusted o...selection of preformed arch wires during the alignment stage of preadjusted o...
selection of preformed arch wires during the alignment stage of preadjusted o...
MaherFouda18 vistas
COMPLEXOMETRIC TITRATION OR CHEALATOMETRIC TITRATION por Poonam Aher Patil
COMPLEXOMETRIC TITRATION OR CHEALATOMETRIC TITRATIONCOMPLEXOMETRIC TITRATION OR CHEALATOMETRIC TITRATION
COMPLEXOMETRIC TITRATION OR CHEALATOMETRIC TITRATION
Poonam Aher Patil200 vistas
Worldviews and their (im)plausibility: Science and Holism por JohnWilkins48
Worldviews and their (im)plausibility: Science and HolismWorldviews and their (im)plausibility: Science and Holism
Worldviews and their (im)plausibility: Science and Holism
JohnWilkins4844 vistas
INTRODUCTION TO PLANT SYSTEMATICS.pptx por RASHMI M G
INTRODUCTION TO PLANT SYSTEMATICS.pptxINTRODUCTION TO PLANT SYSTEMATICS.pptx
INTRODUCTION TO PLANT SYSTEMATICS.pptx
RASHMI M G 5 vistas
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy... por Anmol Vishnu Gupta
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...
Exploring the nature and synchronicity of early cluster formation in the Larg... por Sérgio Sacani
Exploring the nature and synchronicity of early cluster formation in the Larg...Exploring the nature and synchronicity of early cluster formation in the Larg...
Exploring the nature and synchronicity of early cluster formation in the Larg...
Sérgio Sacani1.5K vistas
AI for automated materials discovery via learning to represent, predict, gene... por Deakin University
AI for automated materials discovery via learning to represent, predict, gene...AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...

Baier, Bianca: Towards greenhouse gas remote sensing evaluation using the AirCore atmospheric sampling system

  • 1. TOWARD GREENHOUSE GAS REMOTE SENSING EVALUATION USING THE AIRCORE ATMOSPHERIC SAMPLING SYSTEM Bianca Baier1,2, C. Sweeney2, T. Newberger1,2, J.Higgs2, S. Wolter1,2, P.Tans2, A. Andrews2, D. Wunch3, L. Cunningham3, C. Arrowsmith3, J. Hedelius4, P. Wennberg5, H. Parker5, G. Osterman6, H. Chen7, J.J.D. Hooghiem7, R. Kivi8, P. Heikkinen8, M. Leuenberger9, P. Nyfeler9, C. Crevoisier10, T. Laemmel11, M. Lopez11, M. Ramonet11 , A. Engel12, T. Wagenhaeuser12, J. Laube13 1CIRES/UC-Boulder, USA 2NOAA/GML, USA 3U.Toronto, Canada 4Utah State Univ., USA 5Caltech, USA 6NASA/JPL, USA 7U. Groningen, Netherlands 8FMI, Finland 9U. Bern, Switzerland 10LMD, France 11LSCE, France 12GUF, Germany 13 IEK, Germany 1
  • 2. Compatibility between global observing systems 2 NOAA Global Greenhouse Gas Reference Network
  • 3. • Added value for understanding carbon cycle using spaceborne observing systems realized if retrievals are put on same scale as in situ observational networks • AirCore sampling system is a unique remote sensing evaluation tool: § Samples > 98% of atmospheric column § Calibrated measurements are traceable to WMO scales § Low operational cost relative to aircraft measurements 3 Compatibility between global observing systems AirCore NOAA light aircraft ceiling Karion et al., 2010
  • 4. COCCON • Over a decade of NOAA/GML AirCore sampling with >100 GHG profiles retrieved • Several small-scale field campaigns targeted at Total Carbon Column Observing Network (TCCON) sites • 2018: Remote sensing evaluation within TCCON: co-located AirCore, FTS measurements • 2018-2019: ICOS RINGO collaboration (Sodankylä, Finland; Traînou, France) 4 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Year 390 395 400 405 410 415 Pressure-weightedmeanCO2 ,ppmAirCore NOAA/GMLAirCore Sampling
  • 5. 398 400 402 404 406 408 410 412 AirCore XCO2 (ppm) 398 400 402 404 406 408 410 412 FTSXCO2 (ppm) 1:1 line FTS = 1.0005 0.0003*(AirCore) Ratio error: 0.3 ppm CO 2 , WMO surface: 0.1 ppm CO 2 15 20 25 30 35 40 45 50 55 SZA (degrees) • AirCore-TCCON inter-comparison (2018): U.S. TCCON sites, ~3-5 AirCore flights per site, varied launch times • AirCore captures >98% of atmospheric mass: greater potential error reduction in retrievals • TCCON primary reference for satellite evaluation: using AirCore as apriori in retrieval allows for improvements in retrieval processing, more rigorous comparisons between different remote sensing systems 5 TCCON XCO2 retrieval evaluation usingAirCore Aircraft ceiling U.S. TCCON sites: -Park Falls, WI, USA -Lamont, OK, USA -Palmdale, CA, USA
  • 6. • Since 2018, routine, monthly AirCore launches at NOAA are coordinated with A-train constellation in sun- synchronous orbit with a ~13:00 LT overpass time • To-date, 12 AirCore flights have been coincident with NASA OCO-2 satellite overpasses • Two AirCore samplers launched on same balloon string 6 NASAOrbiting Carbon Observatory (OCO-2) XCO2 evaluation usingAirCore 400 402 404 406 408 410 412 AirCore XCO2 , ppm 398 400 402 404 406 408 410 412 414 OCO-2XCO2 ,ppm 12-Dec-2017 19-Apr-2018 21-Jun-2018 03-Aug-2018 29-Nov-2018 08-Apr-2019 11-Jul-2019 13-Sep-2019 05-Nov-2019 18-Dec-2019 OCO2 = 1.001 0.001*(AirCore) 1 ppm 1:1 line High bias, large variability in OCO-2 XCO2 retrievals 390 400 410 CO2 , ppm 0 100 200 300 400 500 600 700 800 900 Pressure,mb AirCore CO2 Extrap. AirCore 0.4 0.6 0.8 1 OCO-2 averaging kernel 0 100 200 300 400 500 600 700 800 900 Aircraft ceiling
  • 7. CarbonTracker (CT2019) -AirCore comparisons 2009-2020 7 NOAA CCGG aircraft network altitude ceiling • Global models used extensively for satellite retrieval evaluation (e.g. NASA OCO-2 bias corrections) • CarbonTracker is NOAA’s global CO2 inverse model (Jacobson et al., 2020; http://www.carbontracker.noaa.gov) that assimilates routine NOAAAircraft Network flask CO2 measurements to ~12-13 km MSL • AirCore samples to ~30km MSL provide some of only routine GHG measurements in UT/LS for model evaluation NOAA routine aircraft network ceiling
  • 8. Remote sensing evaluation at “supersites” • Tower-based in situ trace gases • Co-located AirCore profiles • Continuous EM27SUN retrievals coincident with A-train overpasses • Assess capability for long-term satellite evaluation with EM27 • Rigorous evaluation of EM27 retrieval biases using AirCore • AirCore-corrected retrievals used to evaluate satellite trace gases • Supplemental observations for comprehensive evaluation of retrievals: DLiDAR, radiation measurements 8 NOAA
  • 9. • Portable, balloon-launched (~30km MSL), autopilot-recovered platform can expand AirCore profiling locations • High-volume payload capacity is retrievable: allows for high-accuracy payload sensor suite critical for satellite and retrieval algorithm evaluation (T, P, FPH, aerosols) • High demand for satellite evaluation efforts, observations in tropics On the horizon: High-altitudeAirCore Glider Platform O3sonde NOAA POPS aerosol NOAA Frost point hygrometer 9 Potential for profiling at sea
  • 10. Toward an internationalAirCore network 10 • Readiness of ICOS for Necessities of integrated Global Observations (RINGO) campaign in Sodankylä, Finland (2018), Traînou, France (2019) • First major successful comparisons between AirCore groups • Further development of AirCores and increased sharing of knowledge • Increased collaboration between international AirCore groups • Streamline AirCore profile data reporting and retrieval algorithms • Investigate and develop best practices for AirCore sampling University of Groningen, Netherlands Goethe University Frankfurt, Germany University of Bern, Switzerland Finnish Met. Institute, Finland NOAA Global Monitoring Laboratory, USA University of East Anglia, UK/IEK, Jülich, Germany Laboratoire de Météorologie Dynamique, Laboratoire des sciences du climat et de l’environnement, France
  • 11. Summary • As new satellites for trace gas remote sensing are launched, there is continued need for maintaining compatibility with in situ observing networks to fully realize potential of a synergistic global observing system • AirCore is a unique remote sensing evaluation tool with its ability to capture >98% of atmospheric column and GHG profile traceability to World Meteorological Organization scales • NOAAGML recent efforts focus on NASA satellite evaluation using AirCore and expansion to include evaluation of other satellites using continuous EM27SUN retrievals: • expand collaborations with TCCON, COCCON • extend use of these data for evaluation across satellite communities • AirCore-Glider system could significantly expand profiling locations on land and at sea, revolutionizing high-altitude atmospheric sampling • Current collaborations with RINGO science team is invaluable for furthering international AirCore network and expanding remote sensing evaluation efforts NASA ROSES, NASA Jet Propulsion Laboratory 11
  • 13. OCO-2 vs. AirCore -110 -105 -100 -95 -90 -85 longitude 36 38 40 42 44 46 48 50 52 latitude OCO-2 AirCore Date Aug 3, 2018 400 402 404 406 408 410 412 AirCore XCO2 , ppm 398 400 402 404 406 408 410 412 414 OCO-2XCO2 ,ppm 12-Dec-2017 19-Apr-2018 21-Jun-2018 03-Aug-2018 29-Nov-2018 08-Apr-2019 11-Jul-2019 13-Sep-2019 05-Nov-2019 18-Dec-2019 OCO2 = 1.001*AC 0.001 1 ppm 1:1 line 13
  • 14. EM27/SUN Operation in NE Colorado • Enclosure system built and tested with EM27 at NOAA using CR1000 data logger • First comparisons of EM27 + OCO-2 satellite target mode retrievals + AirCore via day deployments to prospective NECO tower location 14 12:00 Local time 14:00 410 410.5 411 411.5 412 412.5 413 413.5 414 AirCore XCO2 , ppm 408 409 410 411 412 413 414 EM27XCO2 ,ppm EM27 XCO2 = 0.995*AirCore EM27 XCO2 1 = 0.25ppm 1:1 line
  • 15. New development: High-altitude AirCore sampling platform 15 • Balloon ascent, autopiloted descent • Large payload capacity for housing multiple sensors (i.e. FPH, POPS) • Can return e.g. high-accuracy sensors typically carried on weather balloons • Revolutionize surface to stratosphere sampling, enhance weather forecasting capabilities, and further satellite retrieval and algorithm evaluation Graphic design: Sydnee Masias