SlideShare una empresa de Scribd logo
1 de 30
Descargar para leer sin conexión
Small Solar Thermal Power
                       Systems/ Pequeños Sistemas
                             p
                             para Centrales Solares
                                    Termoeléctricas

                                   Jornada de difusión técnica
                                     Madrid, 1 de julio de 2010


  UNION EUROPEA
FONDO SOCIAL EUROPEO
IMDEA Energía

• Mission:
    • To promote the development of renewable
      energies.
    • To promote the development of clean energy
      technologies having none or minimum
      environmental impact.

• R
  Research t i
         h topics:
     • Solar energy (high flux/high temperature).
     • Sustainable fuels: biofuels wastes hydrogen
                          biofuels, wastes, hydrogen.
     • Energy storage.
     • Smart energy networks.
     • Efficient end-use of energy
     • CO2 valorisation
• 40 Researchers (18 PhD; 16
                   (       ;
from foreign R&D Centers)
High Temperature Processes Unit

                                 Objectives
Development of efficient and cost-effective high temperature technologies
                             cost effective
and applications with special emphasis on Concentrating Solar Power
Systems and production of Solar Fuels and Chemicals.


    R&D lines
 Modular concepts with minimum environmental
 impact
 Advanced thermal fluids for high temperature
 applications and energy storage
 Solar
 S l receivers and reactors
         i       d     t
 Solar concentration optics
 High flux/high temperature characterization
 techniques and simulation tools
 Efficient integration schemes into power
 conversion systems
 Solar-driven high temperature production of H2
 /Chemicals
CSP in the world




     Source: Photon International (December 2009)
     - Spain: 831 MW grid-connected by December 2010 and
     permits assigned for 2,5 GW by 2013.
     -USA: Near- to medium-term CSP pipeline over 10 GW,
     with 4.5 GW to break ground by the end of 2010.
Concentrating Solar Power:

                Cost and Availability
                                    y
                                                         • Future costs depend on many things
                                                            –   technology progress
                                                            –   production rates and continuity
           Initial SEGS Plants
                                                            –   political, economic, and financial issues
                                                            –   market needs and acceptance
                Larger SEGS Plants

                     O&M Cost Reduction at SEGS Plants




             Impact of 1-2¢ adder
                       1 2¢
                 for green power

        Conventional Technology
for Peaking or Intermediate Power
        (IEA market assumptions)
Limitations of first-generation CSP

Commercial projects use technologies of parabolic troughs with low
concentration in two dimensions and linear focus, or systems of
central tower and heliostat fields, operating with thermal fluids at
relatively modest temperatures, below 400 ºC .

The
Th most immediate consequences of these conservative d i
        i   di                  f h              i designs
are:
     the use of systems with efficiencies below 20% nominal in the
     conversion of direct solar radiation to electricity,
                                                       y,
     the tight limitation in the use of efficient energy storage          Extresol 1 and 2 (ACS/Cobra)
     systems,
     the high water consumption and land extension due to the
     inefficiency of the integration with the power block,
     the lack of rational schemes for their integration in distributed
     generation architectures and
     the limitation to reach the temperatures needed for the
     generation processes following thermochemical routes of
     solar fuels like hydrogen.



                                                                         PS10 and PS20 (Abengoa Solar)
Impact of innovation on cost reduction


100
                                              Scaling up
                                              15%
90

80
                                              R+D
                                              60%
70

60
                                              Market
50                                            series
                                              25%
40


      2005    2010     2015      2020      2025   Year
Concentrating Solar Power:

                                  Applications and Features
                   Distributed Power                                      Dispatchable Power
                                                                             p
•           distributed, on-grid (e.g., line support)                 •   utility peak and intermediate
•           stand-alone, off-grid (e.g., water                        •   high-value, green markets
            pumping, village electrification)




                     kW's to MW’s                                         10's to 100’s of MW's

    Dispatchability:
    l       hybridization with gas or liquid            • hybrid gas combined          l   thermal storage for peaking,
            fuels for extended Stirling or                  cycle                          load following, or extended
            Brayton engine operation
            B            i         i                    l   coal,
                                                            coal fuel oil or gas
                                                                      oil,                 operation
                                                            steam cycle

        Manufacturing:
        l   Relatively conventional technology (glass steel, gears heat engines etc.) allows
                                               (glass, steel gears,     engines, etc )
            rapid manufacturing scale-up, low risk, conventional maintenance
Aprovechamiento Térmico de la Energía Solar de manera
Gestionable, Eficiente y Modular en Sistemas de Alta
Concentración
SOLGEMAC

                 TODAY
Conservative first-generation schemes




                                                        1500 ºC
               SOLGEMAC                                                                                                                                • Combustibles y química
                                                                                                                                                       • Ciclo Brayton
Efficiency (high-temperature/high-flux)                                                                                                                • Calentamiento aire

Dispatchability (storage/hybrid)                                                                                                 • Ciclo Brayton
                                                                                                                                 • Calentamiento aire
Modularity (small size)
M d l it (       ll i )
                                                                                                                  • Calentamiento aire
Environmental impact (water)                                                                                                                         Receptores
                                                                                                                                                     cerámicos
Solar fuels                                                                                                                           Receptores Alta presión




                                                        100 ºC
                                                                                                                                       cerámicos Alta temperatura Receptores




                                                          00
                                                                                                                                     Baja presión               Partículas sólidas
                                                                                                                                    Alta temperatura




                                          Temperatura
                                                                                                                     Motores Stirling
                                                                                                                      solarizados
                                                                       • Ciclo Brayton          Receptores                               • Disco Stirling
                                                                       • Precalentamiento aire metálicos aire


                                                        500 ºC

                                                                                  Receptores Receptores
                                                                                    Sodio Sales nitrosas
                                                                    Receptores                              • Calentamiento aire
                                                                    Agua/vapor                              • Ciclo Rankine
                                                                                                            • Calentamiento de vapor
                                                                                 • Ciclo Rankine
                                                                                 • Calentamiento de vapor
                                                                  Receptores
                                                                    Aceite                                         Actualidad
                                                                               • Calentamiento de vapor



                                                                      Conceptos tecnológicos ACTUALES                                  Conceptos tecnológicos AVANZADOS
SOLGEMAC
                                                      (Imdea Energía Coord.)

     MODULARITY                                         EFFICIENCY                                        DISPATCHABILITY
                                                                                                 A.3. ENERGY STORAGE FOR DISTRIBUTED
                                                A.2. SOLAR RECEIVERS/REACTORS FOR                GENERATION CONCENTRATING SOLAR SYSTEMS.
A.1. MODULAR CONCENTRATING                      HIGH FLUX/HIGH TEMPERATURES.
SYSTEMS                                                                                          A.3.1.Hydrogen production with thermochemical cycles
                                                A.2.1. Volumetric receivers with metallic        A.3.2. Hydrogen storage with MOF-type materiales.
A.1.1. Systemas dish/Stirling                   absorbers                                        A.3.3. Electrochemical storage
A.1.2. Multitower Modular Arrays                A.2.2. Volumetric receivers with ceramic         A.3.4. End-use of hydrogen in microturbines
A.1.3. Solarization of gas microturbines        absorbers
                                                A.2.3. Particle receivers
                                                A.2.4. Materials
                                                                                                 URJC (Coord.)
                                                                                                 CIEMAT-DQ
                                                CIEMAT-SSC (C
                                                CIEMAT SSC (Coord.)
                                                                d)                               CIEMAT-SSC
                                                                                                 CIEMAT SSC
Imdea Energía (Coord.)
                                                Imdea Energía                                    Imdea Energía
INTA                                                                                             UAM
                                                URJC
CIEMAT-SSC                                      TORRESOL                                         INTA
TORRESOL                                        Hynergreen
                                                 y   g                                           Hynergreen



                                     A4. INTEGRATION                                 INTA (Coord.)
     INTEGRATION                     A.4.1. Comparison of technologies
                                     A.4.2. Integration schemes                      URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ,
                                     A.4.3. LCA and impact                           TORRESOL, Hynergreen
STEPS TO SCALING-UP SOLAR CSP & CSFC
                            SCALING-




1-5 kW
Solar Simulator
                                               30-50 kW
                                               Solar Furnace




1-100 MW                                     100-500 kW
Central Receiver System                      Mini-tower
Discos parabólicos


 Motor solar de Augustin
Mouchot en la exposición de       Discos-Stirling Eurodish en la
   Paris de 1861 Paris             Plataforma Solar de Almería
                                   Pl t f      S l d Al      í
Discos Parabólicos con generador Stirling:

       Estado de la Tecnología
                           g

                          Varios diseños de disco y de
                          receptor han demostrado la alta
                          eficiencia necesaria para sistemas
                          comerciales
                          La durabilidad del receptor aún
                          necesita mejorarse
                          El coste del disco
                          colector/concentrador es crítico para
                          dar paso a las primeras
                          producciones comerciales.


                                                 STM
Solo


             Motores Sti li
             M t       Stirling
             avanzados están
             mostrando altas eficiencias
             y durabilidades
Expectations for Cost Degression

                        225


                        200


                        175
      ment cost in k€
                 n




                        150


                        125                                                                             Transport, Assembly
                                                                                                        Concentrator
Investm




                                                                                                        Drives
                        100                                                                             Stirlingmotor
                                                                                                        Control
                        75                                                                              Turntable
                                                                                                        Foundation

                        50


                        25


                         0
                              Prototype   DISTAL 1   DISTAL 2   EuroDish    100/Year   1000/Year   3000/Year   10000/Year
                              Stuttgart     1991       1995     2000/2001
                                1989
Pequeños sistemas de receptor central

Pequeños campos con pequeños       Configuraciones multitorre
helióstatos




                                        Multitower arrays
Mini-campos con mini-helióstatos
              agrupados: Recordando al Prof. Francia


                                       • Planta construida en Italia y
                                         montada en los EEUU en el
                                         año 1977 en el Instituto
                                         Tecnológico    de    Georgia
                                         (Advanced Component Test
                                         Facility)
                                           •550 helióstatos
                                           •Potencia térmica 400 kW
                                                                 kW.
                                           •Campo octogonal y torre
                                           central (22,8 m)
                                           •Foco rectangular d 2 44
                                            F       t    l   de 2,44
                                           m.
                                           •Espejos con seguimiento
                                           polar y tracking colectivo
                                                            colectivo.

ACTF de Georgia
Sistemas modulares multitorre

Comparison of Solar Power Technologies with respect to Integration in the Urban
                                 Environment
                      P. S h
                      P Schramek, D R Mill and W L
                               k D.R. Mills d W. Lang
Advantages of the MIUS concept

• Origin: In 1972 by US HUD. Related to Total Energy Systems,
  Power Islands, District Heating, Energy Cascade and Cogeneration
               ,                g,     gy               g
• Distributed Utility structure for large residential, commercial or
  institutional building complexes.
• Typical size: 300-1,000 dwelling units
    yp                              g
• Reduction of transmission and distribution costs
• Modular track of demand and spread construction costs over time
• Maximum utilization about 4,500 hours
                                ,
• Use of single-cycle high efficiency gas turbines plus waste heat
  applications like district heating, cooling, desalination or water
  treatment
• Increment of solar share to 50 %
                                             •Find a niche of size (a few
                    The keys for             MWe)
                                            •Find modular small CRS design
                   CRS i MIUS
                       in
                                            •Competitive investment cost
                                            •Perform with high efficiencies
INTEGRATION OF CRS INTO MIUS STRUCTURE


                                                             Water
                                       7,965 GJ                              13,280 GJ
             Exhaust gases
                                                    Auxiliary boiler
                                                                             Fuel            Space heating

                             Water                                                            2,690 GJ
                                              14,690 GJ
                                                            Hot water
                                                                                               12,000 GJ
                            Steam             Wasted
                                              4,252 GJ                                   Domestic hot water
                         22,000 GJ
      Fuel            Hot gases                              Absorption
                                                                    p
                                              11,023 GJ      chiller

                                                                                     Rejected heat
                                  5.50 GWhe                                          22,793 GWh
60,526 GJ

                                                          Compression
                                      0.21 GWhe           air-conditioning
Air

                                                                             Domestic and auxiliary
                                       5.29
                                       5 29 GWhe                             electricity
                                                                              l t i it


         SOLAR TOWER

                              Example of a 450-unit apartment complex in Spain
MIUS Solar Tower:
                                                Application to a shopping center
                                                 pp                 pp g

                                                1400
- Stable demand
- 85 % during day-time                          1200
                                                                                                                       October
- High consumption at                                                                                                  November
  peak periods                                  1000




                                          We)
                                                                                                                       December




                           Power Demand (kW
- Monthly differences                                                                                                  January
  between 800-1,300 kW                          800                                                                    February
                                                                                                                       March
- Demand increase                                                                                                      april
  between June and                              600                                                                    may
                               r
  October.
                                                                                                                       June
- Peaks in July and                             400                                                                    July
  Christmas                                                                                                            August
                                                                                                                       September
                                                200


Operation strategy:                               0
                                                       0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
- Night-time: Grid
    g
                                                                               Solar Time ( )
                                                                               S          (h)
- From 6:00 to 20:00 solar
  hybrid turbine in power island                         Demand from 6 to 20 h: 4,348 MWe and
  mode                                                   18,890 MWth
Proposal of a small-size tower plant


Small tower and heliostats that reduce visual impact and
                   hel ostats              v sual mpact
achieve higher field efficiencies (up to 4% more than large
area heliostats).
Air as heat transfer media in a pressurized volumetric
receiver (3.4 MWth outlet).
Use of an efficient (39.5 %) small solar-gas turbine (1.36
MWe) ith intercooling, h t recuperation and l
MW ) with i t      li   heat          ti    d low working
                                                       ki
temperature (860 ºC).
Waste heat (670 kWth) at 198 ºC for water heating and
                                                g
space cooling/heating.
Operation in a fuel-saver mode
As in the
A i th case of di h system parks, th small t
                  f dish  t       k the   ll tower fi ld
                                                   fields
for distributed power should target maximum unattended
operation, to minimize O&M costs.
MIUS solar tower technical specifications
       Tower optical height (m)                             26
       Number heliostats                                   345
       Heliostat surface (m2)                             19.2
       Receiver surface (m2)                              16.5
       Receiver tilt angle (º)                              30
       Land (m2)                                        38,000
       Design point
           g p                                  Power    Efficiency
                                                                  y
       DNI (W/m2)                               875         ----
       Power onto mirrors area (MWt)            5.8        100 %
       Gross power onto receiver (MWt)          4.3         74 %
       Power to turbine (MWt)                   3.4
                                                34          80 %
       Gross electric power (MWe)               1.4         39 %
       Total efficiency                         ----        23 %
       Investment
       Heliostats                                        995,765 $
       Land                                               62,745 $
       Tower                                             104,575 $
       Receiver                                          484,750 $
       Inst.&Control                                     107,000 $
       Power bl k
       P       block                                   1,146,000
                                                       1 146 000 $
       Fixed cost                                         65,350 $
       Direct capital cost                          2.97 M$
       Installed cost (including turbine set)     2,120 $/kW
Heron H1 Technical Specifications




Electrical power                       1,407 kWe
Thermal power                         1,200 kWth
Fuel consumption                        3,280 kW
Heat rate                           8,392 kJ/kWh
Electrical efficiency                      42.9 %
Thermal efficiency                         36.6 %
Total efficiency                           79.5
                                           79 5 %
NOx emission                             <20 g/GJ
Theoretical solarization based on Turbine Heron H-1 and 10
                                        pressurized volumetric receivers

                                             1.0 bar                                                1.0 bar
                                             198 ºC                                                 573 ºC
    Intercooler
                                 8.9 bar
                                 151 ºC                      Recuperator
                                                                                     8.9 bar
                 3.0 bar                                                             573 ºC
                 25 ºC                                                                              740 ºC
                                                  661 ºC    757 ºC

                                             R1        R2        R3                            R7        R8
3.0 bar
137 ºC                                                                          3.1 bar
                                                                                635 ºC
                                             R4        R5        R6                            R9       R10



                                                   HPC                                          LPC
                                                                      8.9 bar                                 3.1 bar
                                                                      860 ºC                                  860 ºC
          C1                C2                                                  C3                                      PT

                                    PR=3.0
                                    PR=3 0                           PR=2.7
                                                                     PR=2 7                                                  1.36
                                                                                                                             1 36 MWe
  PR=3.0
                 1.0 bar
                 15 ºC


               Air filter                                  Heatflow
                                                           H fl SOLAR R1 R6
                                                                          R1-R6                       = 1 95 MW
                                                                                                        1.95
                                                           Heatflow SOLAR R7-R10                      = 1.49 MW
          1.0 bar                                                          Total                      = 3.44 MW
          15 ºC        Air inlet
                       m=5.15 kg/s
MIUS Solar Tower: Application to a shopping center




Solar electricity production =    2,456 MWh
Fossil electricity production =   1,892 MWh
Solar electricity excess =          428 MWh
MIUS Solar Tower: Application to a shopping center




56 % power demand supplied    Few hours at loads of 20 %
by solar (683 toe)            during start-ups
                              Typical solar working load 75 %
MIUS Solar Tower: Application to a shopping center




 Solar is contributing to the waste heat produced with 4,374 GJ that
 represents 49.5% of the heat demand.
CONCLUSIONS


CSP is focusing its growth still on first generation
large-fields
The solar field should be small and modular to account
for the maximum flexibility in approaching real
systems.
Up to
U t 60% f t
        future cost reduction should come f
                  t   d ti     h ld       from
R&D.
Solgemac     project    objectives   are    modularity,
                                            modularity
dispatchability and efficiency by high flux/high T.
A potential niche for the application of dish-engine
systems and small solar towers to Modular Integrated
Utility Systems has been identified.

Más contenido relacionado

La actualidad más candente

GBF2007 - RealBuildingPerformance - S.Carpenter Enermodal
GBF2007 - RealBuildingPerformance - S.Carpenter EnermodalGBF2007 - RealBuildingPerformance - S.Carpenter Enermodal
GBF2007 - RealBuildingPerformance - S.Carpenter EnermodalToronto 2030 District
 
Solar technologies- Introduction and Basics
Solar technologies- Introduction and BasicsSolar technologies- Introduction and Basics
Solar technologies- Introduction and BasicsSumiit Mathur
 
Photovoltaic Training - Session 2 - Construction and Start-Up
Photovoltaic Training - Session 2 - Construction and Start-UpPhotovoltaic Training - Session 2 - Construction and Start-Up
Photovoltaic Training - Session 2 - Construction and Start-UpLeonardo ENERGY
 
Abb power generation solar presentacion ieee costa rica
Abb power generation   solar  presentacion ieee costa ricaAbb power generation   solar  presentacion ieee costa rica
Abb power generation solar presentacion ieee costa ricaIEEE
 
A_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_TechnologyA_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_TechnologyMark Quinn
 
Market opportunities for waste derived fuels and process heat
Market opportunities for waste derived fuels and process heatMarket opportunities for waste derived fuels and process heat
Market opportunities for waste derived fuels and process heatRicardo- AEA
 
Asis company overview english noc_vf_rev2
Asis company overview english noc_vf_rev2Asis company overview english noc_vf_rev2
Asis company overview english noc_vf_rev2Brett Wightman
 
The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...
The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...
The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...Paul van der Linden
 
Towards an age of renewables
Towards an age of renewablesTowards an age of renewables
Towards an age of renewablesSuat Furkan ISIK
 
4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...
4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...
4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...Pomcert
 
Comprehensive Power Introduction March 2013
Comprehensive Power Introduction March 2013Comprehensive Power Introduction March 2013
Comprehensive Power Introduction March 2013Jeff Sable
 
Forenergy Project_Sylvain Martin_Biella conference
Forenergy Project_Sylvain Martin_Biella conferenceForenergy Project_Sylvain Martin_Biella conference
Forenergy Project_Sylvain Martin_Biella conferenceSylvain Martin
 
Data sheet sopo_lite_web
Data sheet sopo_lite_webData sheet sopo_lite_web
Data sheet sopo_lite_webAsad Khan
 

La actualidad más candente (17)

Cultiveco_Greenhouse
Cultiveco_GreenhouseCultiveco_Greenhouse
Cultiveco_Greenhouse
 
GBF2007 - RealBuildingPerformance - S.Carpenter Enermodal
GBF2007 - RealBuildingPerformance - S.Carpenter EnermodalGBF2007 - RealBuildingPerformance - S.Carpenter Enermodal
GBF2007 - RealBuildingPerformance - S.Carpenter Enermodal
 
BORUSAN EnBW Enerji
BORUSAN EnBW EnerjiBORUSAN EnBW Enerji
BORUSAN EnBW Enerji
 
Solar technologies- Introduction and Basics
Solar technologies- Introduction and BasicsSolar technologies- Introduction and Basics
Solar technologies- Introduction and Basics
 
Photovoltaic Training - Session 2 - Construction and Start-Up
Photovoltaic Training - Session 2 - Construction and Start-UpPhotovoltaic Training - Session 2 - Construction and Start-Up
Photovoltaic Training - Session 2 - Construction and Start-Up
 
Abb power generation solar presentacion ieee costa rica
Abb power generation   solar  presentacion ieee costa ricaAbb power generation   solar  presentacion ieee costa rica
Abb power generation solar presentacion ieee costa rica
 
A_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_TechnologyA_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_Technology
 
Market opportunities for waste derived fuels and process heat
Market opportunities for waste derived fuels and process heatMarket opportunities for waste derived fuels and process heat
Market opportunities for waste derived fuels and process heat
 
Asis company overview english noc_vf_rev2
Asis company overview english noc_vf_rev2Asis company overview english noc_vf_rev2
Asis company overview english noc_vf_rev2
 
The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...
The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...
The Solar Future DE - Ingmar Wilhelm "Can solar PV compete with grid energy i...
 
Towards an age of renewables
Towards an age of renewablesTowards an age of renewables
Towards an age of renewables
 
4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...
4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...
4.1 - "Science & Technology for sustainable biogas production and use" - Jan ...
 
Hitachi
HitachiHitachi
Hitachi
 
Comprehensive Power Introduction March 2013
Comprehensive Power Introduction March 2013Comprehensive Power Introduction March 2013
Comprehensive Power Introduction March 2013
 
Forenergy Project_Sylvain Martin_Biella conference
Forenergy Project_Sylvain Martin_Biella conferenceForenergy Project_Sylvain Martin_Biella conference
Forenergy Project_Sylvain Martin_Biella conference
 
Data sheet sopo_lite_web
Data sheet sopo_lite_webData sheet sopo_lite_web
Data sheet sopo_lite_web
 
Biomass heating project
Biomass heating projectBiomass heating project
Biomass heating project
 

Similar a Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20Stefan Larsson
 
Conferencia unifei
Conferencia  unifeiConferencia  unifei
Conferencia unifeiRED REBIBIR
 
InterSolar Formal
InterSolar FormalInterSolar Formal
InterSolar FormalIvan Menjak
 
Projects for Industries
Projects for IndustriesProjects for Industries
Projects for IndustriesLilianaSimhas
 
Projects for Industries
Projects for IndustriesProjects for Industries
Projects for IndustriesRomelectro
 
ICTs to Reduce Energy Consumption and GHG Emissions.ppt
ICTs to Reduce Energy Consumption and GHG Emissions.pptICTs to Reduce Energy Consumption and GHG Emissions.ppt
ICTs to Reduce Energy Consumption and GHG Emissions.pptssuseradc0be1
 
Combined heat power plant (chp)
Combined heat power plant (chp)Combined heat power plant (chp)
Combined heat power plant (chp)numanahmed88
 
Planning & Operating Electricty Network with Renewable Generation-5
Planning & Operating Electricty Network with Renewable Generation-5Planning & Operating Electricty Network with Renewable Generation-5
Planning & Operating Electricty Network with Renewable Generation-5Power System Operation
 
DISTRIBUTED GENERATION & POWER QUALITY
DISTRIBUTED GENERATION & POWER QUALITY DISTRIBUTED GENERATION & POWER QUALITY
DISTRIBUTED GENERATION & POWER QUALITY Power System Operation
 
Drivers and Barriers in the current CSP market
Drivers and Barriers in the current CSP marketDrivers and Barriers in the current CSP market
Drivers and Barriers in the current CSP marketLeonardo ENERGY
 
Distributed generation &amp; power quality unit 5
Distributed generation &amp; power quality unit 5Distributed generation &amp; power quality unit 5
Distributed generation &amp; power quality unit 5hariyenireddy1
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsGeorges Seil, PhD
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsGeorges Seil, PhD
 
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR eecfncci
 
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANEUTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANEiQHub
 

Similar a Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas (20)

Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20
 
Conferencia unifei
Conferencia  unifeiConferencia  unifei
Conferencia unifei
 
InterSolar Formal
InterSolar FormalInterSolar Formal
InterSolar Formal
 
Techno-economic assessment and global sensitivity analysis for biomass-based ...
Techno-economic assessment and global sensitivity analysis for biomass-based ...Techno-economic assessment and global sensitivity analysis for biomass-based ...
Techno-economic assessment and global sensitivity analysis for biomass-based ...
 
Projects for Industries
Projects for IndustriesProjects for Industries
Projects for Industries
 
Projects for Industries
Projects for IndustriesProjects for Industries
Projects for Industries
 
ICTs to Reduce Energy Consumption and GHG Emissions.ppt
ICTs to Reduce Energy Consumption and GHG Emissions.pptICTs to Reduce Energy Consumption and GHG Emissions.ppt
ICTs to Reduce Energy Consumption and GHG Emissions.ppt
 
renewablle energy.ppt
renewablle energy.pptrenewablle energy.ppt
renewablle energy.ppt
 
P3_Hebling
P3_HeblingP3_Hebling
P3_Hebling
 
Combined heat power plant (chp)
Combined heat power plant (chp)Combined heat power plant (chp)
Combined heat power plant (chp)
 
Cogeneration
CogenerationCogeneration
Cogeneration
 
Planning & Operating Electricty Network with Renewable Generation-5
Planning & Operating Electricty Network with Renewable Generation-5Planning & Operating Electricty Network with Renewable Generation-5
Planning & Operating Electricty Network with Renewable Generation-5
 
DISTRIBUTED GENERATION & POWER QUALITY
DISTRIBUTED GENERATION & POWER QUALITY DISTRIBUTED GENERATION & POWER QUALITY
DISTRIBUTED GENERATION & POWER QUALITY
 
Energy efficiency
Energy efficiencyEnergy efficiency
Energy efficiency
 
Drivers and Barriers in the current CSP market
Drivers and Barriers in the current CSP marketDrivers and Barriers in the current CSP market
Drivers and Barriers in the current CSP market
 
Distributed generation &amp; power quality unit 5
Distributed generation &amp; power quality unit 5Distributed generation &amp; power quality unit 5
Distributed generation &amp; power quality unit 5
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systems
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systems
 
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
 
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANEUTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
 

Más de IMDEA Energia

M romero diasolar_print
M romero diasolar_printM romero diasolar_print
M romero diasolar_printIMDEA Energia
 
J ajona diasolar print
J ajona diasolar printJ ajona diasolar print
J ajona diasolar printIMDEA Energia
 
J gonzalez diasolar_print
J gonzalez diasolar_printJ gonzalez diasolar_print
J gonzalez diasolar_printIMDEA Energia
 
J herrero diasolar_print
J herrero diasolar_printJ herrero diasolar_print
J herrero diasolar_printIMDEA Energia
 
Bases documental documentales_científicos_8min
Bases documental documentales_científicos_8minBases documental documentales_científicos_8min
Bases documental documentales_científicos_8minIMDEA Energia
 
Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"
Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"
Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"IMDEA Energia
 
Producción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.MonzónProducción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.MonzónIMDEA Energia
 
New catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. NielsenNew catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. NielsenIMDEA Energia
 
Biofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James ClarkBiofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James ClarkIMDEA Energia
 
Aplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-CondeAplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-CondeIMDEA Energia
 
La tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel MontesLa tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel MontesIMDEA Energia
 
Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes BallesterosBiomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes BallesterosIMDEA Energia
 
Catalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic developmentCatalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic developmentIMDEA Energia
 
Smart grids More efficient and reliable grids
Smart grids More efficient and reliable gridsSmart grids More efficient and reliable grids
Smart grids More efficient and reliable gridsIMDEA Energia
 
Redes flexibles:el reto de la Universidad
Redes flexibles:el reto de la UniversidadRedes flexibles:el reto de la Universidad
Redes flexibles:el reto de la UniversidadIMDEA Energia
 
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UKIdentifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UKIMDEA Energia
 
Redes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del SistemaRedes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del SistemaIMDEA Energia
 
Smart Energy Management Algorithms
Smart Energy Management AlgorithmsSmart Energy Management Algorithms
Smart Energy Management AlgorithmsIMDEA Energia
 
“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”IMDEA Energia
 

Más de IMDEA Energia (20)

M romero diasolar_print
M romero diasolar_printM romero diasolar_print
M romero diasolar_print
 
J ajona diasolar print
J ajona diasolar printJ ajona diasolar print
J ajona diasolar print
 
J gonzalez diasolar_print
J gonzalez diasolar_printJ gonzalez diasolar_print
J gonzalez diasolar_print
 
J herrero diasolar_print
J herrero diasolar_printJ herrero diasolar_print
J herrero diasolar_print
 
Bases documental documentales_científicos_8min
Bases documental documentales_científicos_8minBases documental documentales_científicos_8min
Bases documental documentales_científicos_8min
 
Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"
Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"
Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"
 
Aldo steinfeld
Aldo steinfeld Aldo steinfeld
Aldo steinfeld
 
Producción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.MonzónProducción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.Monzón
 
New catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. NielsenNew catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. Nielsen
 
Biofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James ClarkBiofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James Clark
 
Aplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-CondeAplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-Conde
 
La tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel MontesLa tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel Montes
 
Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes BallesterosBiomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
 
Catalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic developmentCatalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic development
 
Smart grids More efficient and reliable grids
Smart grids More efficient and reliable gridsSmart grids More efficient and reliable grids
Smart grids More efficient and reliable grids
 
Redes flexibles:el reto de la Universidad
Redes flexibles:el reto de la UniversidadRedes flexibles:el reto de la Universidad
Redes flexibles:el reto de la Universidad
 
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UKIdentifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
 
Redes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del SistemaRedes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del Sistema
 
Smart Energy Management Algorithms
Smart Energy Management AlgorithmsSmart Energy Management Algorithms
Smart Energy Management Algorithms
 
“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”
 

Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas

  • 1. Small Solar Thermal Power Systems/ Pequeños Sistemas p para Centrales Solares Termoeléctricas Jornada de difusión técnica Madrid, 1 de julio de 2010 UNION EUROPEA FONDO SOCIAL EUROPEO
  • 2. IMDEA Energía • Mission: • To promote the development of renewable energies. • To promote the development of clean energy technologies having none or minimum environmental impact. • R Research t i h topics: • Solar energy (high flux/high temperature). • Sustainable fuels: biofuels wastes hydrogen biofuels, wastes, hydrogen. • Energy storage. • Smart energy networks. • Efficient end-use of energy • CO2 valorisation • 40 Researchers (18 PhD; 16 ( ; from foreign R&D Centers)
  • 3. High Temperature Processes Unit Objectives Development of efficient and cost-effective high temperature technologies cost effective and applications with special emphasis on Concentrating Solar Power Systems and production of Solar Fuels and Chemicals. R&D lines Modular concepts with minimum environmental impact Advanced thermal fluids for high temperature applications and energy storage Solar S l receivers and reactors i d t Solar concentration optics High flux/high temperature characterization techniques and simulation tools Efficient integration schemes into power conversion systems Solar-driven high temperature production of H2 /Chemicals
  • 4.
  • 5. CSP in the world Source: Photon International (December 2009) - Spain: 831 MW grid-connected by December 2010 and permits assigned for 2,5 GW by 2013. -USA: Near- to medium-term CSP pipeline over 10 GW, with 4.5 GW to break ground by the end of 2010.
  • 6. Concentrating Solar Power: Cost and Availability y • Future costs depend on many things – technology progress – production rates and continuity Initial SEGS Plants – political, economic, and financial issues – market needs and acceptance Larger SEGS Plants O&M Cost Reduction at SEGS Plants Impact of 1-2¢ adder 1 2¢ for green power Conventional Technology for Peaking or Intermediate Power (IEA market assumptions)
  • 7. Limitations of first-generation CSP Commercial projects use technologies of parabolic troughs with low concentration in two dimensions and linear focus, or systems of central tower and heliostat fields, operating with thermal fluids at relatively modest temperatures, below 400 ºC . The Th most immediate consequences of these conservative d i i di f h i designs are: the use of systems with efficiencies below 20% nominal in the conversion of direct solar radiation to electricity, y, the tight limitation in the use of efficient energy storage Extresol 1 and 2 (ACS/Cobra) systems, the high water consumption and land extension due to the inefficiency of the integration with the power block, the lack of rational schemes for their integration in distributed generation architectures and the limitation to reach the temperatures needed for the generation processes following thermochemical routes of solar fuels like hydrogen. PS10 and PS20 (Abengoa Solar)
  • 8. Impact of innovation on cost reduction 100 Scaling up 15% 90 80 R+D 60% 70 60 Market 50 series 25% 40 2005 2010 2015 2020 2025 Year
  • 9. Concentrating Solar Power: Applications and Features Distributed Power Dispatchable Power p • distributed, on-grid (e.g., line support) • utility peak and intermediate • stand-alone, off-grid (e.g., water • high-value, green markets pumping, village electrification) kW's to MW’s 10's to 100’s of MW's Dispatchability: l hybridization with gas or liquid • hybrid gas combined l thermal storage for peaking, fuels for extended Stirling or cycle load following, or extended Brayton engine operation B i i l coal, coal fuel oil or gas oil, operation steam cycle Manufacturing: l Relatively conventional technology (glass steel, gears heat engines etc.) allows (glass, steel gears, engines, etc ) rapid manufacturing scale-up, low risk, conventional maintenance
  • 10. Aprovechamiento Térmico de la Energía Solar de manera Gestionable, Eficiente y Modular en Sistemas de Alta Concentración
  • 11. SOLGEMAC TODAY Conservative first-generation schemes 1500 ºC SOLGEMAC • Combustibles y química • Ciclo Brayton Efficiency (high-temperature/high-flux) • Calentamiento aire Dispatchability (storage/hybrid) • Ciclo Brayton • Calentamiento aire Modularity (small size) M d l it ( ll i ) • Calentamiento aire Environmental impact (water) Receptores cerámicos Solar fuels Receptores Alta presión 100 ºC cerámicos Alta temperatura Receptores 00 Baja presión Partículas sólidas Alta temperatura Temperatura Motores Stirling solarizados • Ciclo Brayton Receptores • Disco Stirling • Precalentamiento aire metálicos aire 500 ºC Receptores Receptores Sodio Sales nitrosas Receptores • Calentamiento aire Agua/vapor • Ciclo Rankine • Calentamiento de vapor • Ciclo Rankine • Calentamiento de vapor Receptores Aceite Actualidad • Calentamiento de vapor Conceptos tecnológicos ACTUALES Conceptos tecnológicos AVANZADOS
  • 12. SOLGEMAC (Imdea Energía Coord.) MODULARITY EFFICIENCY DISPATCHABILITY A.3. ENERGY STORAGE FOR DISTRIBUTED A.2. SOLAR RECEIVERS/REACTORS FOR GENERATION CONCENTRATING SOLAR SYSTEMS. A.1. MODULAR CONCENTRATING HIGH FLUX/HIGH TEMPERATURES. SYSTEMS A.3.1.Hydrogen production with thermochemical cycles A.2.1. Volumetric receivers with metallic A.3.2. Hydrogen storage with MOF-type materiales. A.1.1. Systemas dish/Stirling absorbers A.3.3. Electrochemical storage A.1.2. Multitower Modular Arrays A.2.2. Volumetric receivers with ceramic A.3.4. End-use of hydrogen in microturbines A.1.3. Solarization of gas microturbines absorbers A.2.3. Particle receivers A.2.4. Materials URJC (Coord.) CIEMAT-DQ CIEMAT-SSC (C CIEMAT SSC (Coord.) d) CIEMAT-SSC CIEMAT SSC Imdea Energía (Coord.) Imdea Energía Imdea Energía INTA UAM URJC CIEMAT-SSC TORRESOL INTA TORRESOL Hynergreen y g Hynergreen A4. INTEGRATION INTA (Coord.) INTEGRATION A.4.1. Comparison of technologies A.4.2. Integration schemes URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ, A.4.3. LCA and impact TORRESOL, Hynergreen
  • 13. STEPS TO SCALING-UP SOLAR CSP & CSFC SCALING- 1-5 kW Solar Simulator 30-50 kW Solar Furnace 1-100 MW 100-500 kW Central Receiver System Mini-tower
  • 14. Discos parabólicos Motor solar de Augustin Mouchot en la exposición de Discos-Stirling Eurodish en la Paris de 1861 Paris Plataforma Solar de Almería Pl t f S l d Al í
  • 15. Discos Parabólicos con generador Stirling: Estado de la Tecnología g Varios diseños de disco y de receptor han demostrado la alta eficiencia necesaria para sistemas comerciales La durabilidad del receptor aún necesita mejorarse El coste del disco colector/concentrador es crítico para dar paso a las primeras producciones comerciales. STM Solo Motores Sti li M t Stirling avanzados están mostrando altas eficiencias y durabilidades
  • 16. Expectations for Cost Degression 225 200 175 ment cost in k€ n 150 125 Transport, Assembly Concentrator Investm Drives 100 Stirlingmotor Control 75 Turntable Foundation 50 25 0 Prototype DISTAL 1 DISTAL 2 EuroDish 100/Year 1000/Year 3000/Year 10000/Year Stuttgart 1991 1995 2000/2001 1989
  • 17. Pequeños sistemas de receptor central Pequeños campos con pequeños Configuraciones multitorre helióstatos Multitower arrays
  • 18. Mini-campos con mini-helióstatos agrupados: Recordando al Prof. Francia • Planta construida en Italia y montada en los EEUU en el año 1977 en el Instituto Tecnológico de Georgia (Advanced Component Test Facility) •550 helióstatos •Potencia térmica 400 kW kW. •Campo octogonal y torre central (22,8 m) •Foco rectangular d 2 44 F t l de 2,44 m. •Espejos con seguimiento polar y tracking colectivo colectivo. ACTF de Georgia
  • 19. Sistemas modulares multitorre Comparison of Solar Power Technologies with respect to Integration in the Urban Environment P. S h P Schramek, D R Mill and W L k D.R. Mills d W. Lang
  • 20. Advantages of the MIUS concept • Origin: In 1972 by US HUD. Related to Total Energy Systems, Power Islands, District Heating, Energy Cascade and Cogeneration , g, gy g • Distributed Utility structure for large residential, commercial or institutional building complexes. • Typical size: 300-1,000 dwelling units yp g • Reduction of transmission and distribution costs • Modular track of demand and spread construction costs over time • Maximum utilization about 4,500 hours , • Use of single-cycle high efficiency gas turbines plus waste heat applications like district heating, cooling, desalination or water treatment • Increment of solar share to 50 % •Find a niche of size (a few The keys for MWe) •Find modular small CRS design CRS i MIUS in •Competitive investment cost •Perform with high efficiencies
  • 21. INTEGRATION OF CRS INTO MIUS STRUCTURE Water 7,965 GJ 13,280 GJ Exhaust gases Auxiliary boiler Fuel Space heating Water 2,690 GJ 14,690 GJ Hot water 12,000 GJ Steam Wasted 4,252 GJ Domestic hot water 22,000 GJ Fuel Hot gases Absorption p 11,023 GJ chiller Rejected heat 5.50 GWhe 22,793 GWh 60,526 GJ Compression 0.21 GWhe air-conditioning Air Domestic and auxiliary 5.29 5 29 GWhe electricity l t i it SOLAR TOWER Example of a 450-unit apartment complex in Spain
  • 22. MIUS Solar Tower: Application to a shopping center pp pp g 1400 - Stable demand - 85 % during day-time 1200 October - High consumption at November peak periods 1000 We) December Power Demand (kW - Monthly differences January between 800-1,300 kW 800 February March - Demand increase april between June and 600 may r October. June - Peaks in July and 400 July Christmas August September 200 Operation strategy: 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - Night-time: Grid g Solar Time ( ) S (h) - From 6:00 to 20:00 solar hybrid turbine in power island Demand from 6 to 20 h: 4,348 MWe and mode 18,890 MWth
  • 23. Proposal of a small-size tower plant Small tower and heliostats that reduce visual impact and hel ostats v sual mpact achieve higher field efficiencies (up to 4% more than large area heliostats). Air as heat transfer media in a pressurized volumetric receiver (3.4 MWth outlet). Use of an efficient (39.5 %) small solar-gas turbine (1.36 MWe) ith intercooling, h t recuperation and l MW ) with i t li heat ti d low working ki temperature (860 ºC). Waste heat (670 kWth) at 198 ºC for water heating and g space cooling/heating. Operation in a fuel-saver mode As in the A i th case of di h system parks, th small t f dish t k the ll tower fi ld fields for distributed power should target maximum unattended operation, to minimize O&M costs.
  • 24. MIUS solar tower technical specifications Tower optical height (m) 26 Number heliostats 345 Heliostat surface (m2) 19.2 Receiver surface (m2) 16.5 Receiver tilt angle (º) 30 Land (m2) 38,000 Design point g p Power Efficiency y DNI (W/m2) 875 ---- Power onto mirrors area (MWt) 5.8 100 % Gross power onto receiver (MWt) 4.3 74 % Power to turbine (MWt) 3.4 34 80 % Gross electric power (MWe) 1.4 39 % Total efficiency ---- 23 % Investment Heliostats 995,765 $ Land 62,745 $ Tower 104,575 $ Receiver 484,750 $ Inst.&Control 107,000 $ Power bl k P block 1,146,000 1 146 000 $ Fixed cost 65,350 $ Direct capital cost 2.97 M$ Installed cost (including turbine set) 2,120 $/kW
  • 25. Heron H1 Technical Specifications Electrical power 1,407 kWe Thermal power 1,200 kWth Fuel consumption 3,280 kW Heat rate 8,392 kJ/kWh Electrical efficiency 42.9 % Thermal efficiency 36.6 % Total efficiency 79.5 79 5 % NOx emission <20 g/GJ
  • 26. Theoretical solarization based on Turbine Heron H-1 and 10 pressurized volumetric receivers 1.0 bar 1.0 bar 198 ºC 573 ºC Intercooler 8.9 bar 151 ºC Recuperator 8.9 bar 3.0 bar 573 ºC 25 ºC 740 ºC 661 ºC 757 ºC R1 R2 R3 R7 R8 3.0 bar 137 ºC 3.1 bar 635 ºC R4 R5 R6 R9 R10 HPC LPC 8.9 bar 3.1 bar 860 ºC 860 ºC C1 C2 C3 PT PR=3.0 PR=3 0 PR=2.7 PR=2 7 1.36 1 36 MWe PR=3.0 1.0 bar 15 ºC Air filter Heatflow H fl SOLAR R1 R6 R1-R6 = 1 95 MW 1.95 Heatflow SOLAR R7-R10 = 1.49 MW 1.0 bar Total = 3.44 MW 15 ºC Air inlet m=5.15 kg/s
  • 27. MIUS Solar Tower: Application to a shopping center Solar electricity production = 2,456 MWh Fossil electricity production = 1,892 MWh Solar electricity excess = 428 MWh
  • 28. MIUS Solar Tower: Application to a shopping center 56 % power demand supplied Few hours at loads of 20 % by solar (683 toe) during start-ups Typical solar working load 75 %
  • 29. MIUS Solar Tower: Application to a shopping center Solar is contributing to the waste heat produced with 4,374 GJ that represents 49.5% of the heat demand.
  • 30. CONCLUSIONS CSP is focusing its growth still on first generation large-fields The solar field should be small and modular to account for the maximum flexibility in approaching real systems. Up to U t 60% f t future cost reduction should come f t d ti h ld from R&D. Solgemac project objectives are modularity, modularity dispatchability and efficiency by high flux/high T. A potential niche for the application of dish-engine systems and small solar towers to Modular Integrated Utility Systems has been identified.