SlideShare una empresa de Scribd logo
1 de 22
Power SupplyPower Supply
230V AC TO 12 V DC230V AC TO 12 V DC
JAFARALIJAFARALI
DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERINGDHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING
ELECTRICAL AND ELECTRONICS DEPARTMENTELECTRICAL AND ELECTRONICS DEPARTMENT
Power SupplyPower Supply
• All electronic circuits need a power source to
work.
• For electronic circuits made up of transistors
and/or ICs, this power source must be a DC
voltage of a specific value.
• A battery is a common DC voltage source for
some types of electronic equipment especially
portables like cell phones and iPods.
• Most non-portable equipment uses power
supplies that operate from the AC power line
but produce one or more DC outputs.
Components of a Power SupplyComponents of a Power Supply
• Main circuits in most power supplies.
AC/DC POWER SUPPLYAC/DC POWER SUPPLY
Note: This configuration applies for 230V (Europe).
Circuit diagram :
Power SupplyPower Supply
• The AC line is first passed
through a low pass filter of
the form shown in figure.
• This eliminates noise on
the AC line from bothering
the power supply circuits
and prevents unwanted
signals from the power
supply from being
transferred back into the
AC line where they might
interfere with other
equipment.
TransformerTransformer
• A transformer is commonly used to step the input AC
voltage level down or up. Most electronic circuits
operate from voltages lower than the AC line voltage so
the transformer normally steps the voltage down by its
turns ratio to a desired lower level.
• For example, a transformer with a turns ratio of 10 to 1
would convert the 120 volt 60 Hz input sine wave into a
12 volt sine wave.
Transformer:Transformer:
• Function: A transformer is a device used to increase (step up) or decrease
(step down) the AC voltage in a circuit.
• Properties: Laminated in order to reduce power losses through Eddy
Currents.
• Operation: The way transformers operate is based on the principle that an
alternating current in the primary coil will induce an alternating electro-
magnetic-field (EMF) on the secondary coil due to their mutual inductance.
RectifierRectifier
• The rectifier converts the AC sine wave into
a pulsating DC wave.
• There are several forms of rectifiers used
but all are made up of diodes.
• Rectifier types and operation will be covered
later.
Rectifier:
Diode
Ideal Diode
Real Diode
How Rectifiers WorkHow Rectifiers Work
• The simplest form of rectifier is
the half wave rectifier shown.
• Only the transformer, rectifier
diode, and load (RL) are shown
without the filter and other
components.
• The half wave rectifier produces
one sine pulse for each cycle of
the input sine wave.
• When the sine wave goes
positive, the anode of the diode
goes positive causing the diode
to be forward biased. The diode
conducts and acts like a closed
switch letting the positive pulse
of the sine wave to appear
across the load resistor.
Bridge RectifierBridge Rectifier
• Another widely used rectifier is
the bridge rectifier. It uses four
diodes.
• This is called a full wave rectifier
as it produces an output pulse
for each half cycle of the input
sine wave.
• On the positive half cycle of the
input sine wave, diodes D1 and
D2 are forward biased so act as
closed switches appearing in
series with the load.
• On the negative half cycle,
diode D1 and D2 are reverse
biased and diodes D3 and D4
are forward biased so current
flows through the load in the
same direction.
FilterFilter
• The rectifier produces a DC output but it is
pulsating rather than a constant steady
value over time like that from a battery.
• A filter is used to remove the pulsations and
create a constant output.
• The most common filter is a large capacitor.
How the Filter WorksHow the Filter Works
• A large capacitor is connected
across the load resistor. This
capacitor filters the pulses into a
more constant DC.
• When the diode conducts, the
capacitor charges up to the
peak of the sine wave.
• Then when the sine voltage
drops, the charge on the
capacitor remains. Since the
capacitor is large it forms a long
time constant with the load
resistor. The capacitor slowly
discharges into the load
maintaining a more constant
output.
• The next positive pulse comes
along recharging the capacitor
and the process continues.
RegulatorRegulator
• The regulator is a circuit that helps maintain a
fixed or constant output voltage.
• Changes in the load or the AC line voltage will
cause the output voltage to vary.
• Most electronic circuits cannot withstand the
variations since they are designed to work
properly with a fixed voltage.
• The regulator fixes the output voltage to the
desired level then maintains that value despite
any output or input variations.
DC-DC ConverterDC-DC Converter
• Most modern power supplies also contain
one or more DC-DC converters
• Modern electronics often demand different
voltages to function.
• A DC-DC converter changes one DC
voltage to another, higher or lower DC
voltage.
• A DC-DC converter is used with a power
supply to prevent the need for a second AC-
DC supply.
RippleRipple
• The capacitor does a good job of smoothing the
pulses from the rectifier into a more constant DC.
• A small variation occurs in the DC because the
capacitor discharges a small amount between the
positive and negative pulses. Then it recharges.
This variation is called ripple.
• The ripple can be reduced further by making the
capacitor larger.
• The ripple appears to be a sawtooth shaped AC
variation riding on the DC output.
• A small amount of ripple can be tolerated in some
circuits but the lower the better overall.
Smoothing:
 Note: The ripple voltage shouldn't be higher than 10% of Vs.
fC
I
Vr
.2
=
Vr
 Where: I [Amps], C [F], f [Hz] and Vr [V]
The RegulatorThe Regulator
• Most regulators are ICs .
• These are feedback control circuits that
actually monitor the output voltage to detect
variations.
• If the output varies, for whatever reason, the
regulator circuit automatically adjusts the
output back to the set value.
• Regulators hold the output to the desired value.
• Since ripple represents changes in the output,
the regulator also compensates for these
variations producing a near constant DC
output.
THREE TERMINAL REGULATORSTHREE TERMINAL REGULATORS
The output voltage from a three terminal regulator can be increased by the circuit shown above. Supposing you want an 8V supply,
but only have 5V regulators to use.
In this case, make the Zener diode 3.3V (nearest preferred value) and run it at a current of around 5mA via R (the regulator chip
requires around 0.5mA) so R = 5V/5.5mA = 909 Ohm. Here a 1k resistor will work just as well (the Zener current will then be
around 4.5mA). Don’t forget Cin and Cout
Regulation:
 Reason: While there are many circuits that will tolerate a smoothed power supply, some must have a completely regular supply
with no ripple voltage.
If the ripple voltage is too large and the input voltage to the regulator falls below the regulated voltage of the regulator, then of course
the regulator will not be able to produce the correct regulated voltage.
As a rule of thumb the input voltage to a regulator should usually be at least 2V above the regulated voltage.
REGULATORREGULATOR
THANK YOUTHANK YOU

Más contenido relacionado

La actualidad más candente

regulated power supply
regulated power supplyregulated power supply
regulated power supplyHalaKamal9
 
Cyclo converters
Cyclo convertersCyclo converters
Cyclo convertersJaya Shree
 
CE, CB, CC AMPLIFIERS
 CE, CB, CC AMPLIFIERS CE, CB, CC AMPLIFIERS
CE, CB, CC AMPLIFIERSbharath405
 
Direct coupled amplifier
Direct coupled amplifierDirect coupled amplifier
Direct coupled amplifierhome
 
DC-DC power processing
DC-DC power processingDC-DC power processing
DC-DC power processingTaimur Ijaz
 
Alternating current circuits
Alternating current circuitsAlternating current circuits
Alternating current circuitscse1014
 
Diode Application
Diode ApplicationDiode Application
Diode ApplicationUMAR ALI
 
power electronics(ii)
power electronics(ii)power electronics(ii)
power electronics(ii)Darya khan
 
Electronic Components
Electronic ComponentsElectronic Components
Electronic Componentsdevikkang
 
THE FABRICATION OF REGULATED DC POWER SUPPLY
THE FABRICATION OF REGULATED DC POWER SUPPLYTHE FABRICATION OF REGULATED DC POWER SUPPLY
THE FABRICATION OF REGULATED DC POWER SUPPLYSAURAV DAYAL SING
 
Fundamentals of electric circuits
Fundamentals of electric circuitsFundamentals of electric circuits
Fundamentals of electric circuitsAbdullah Al Mahfuj
 
Variable Regulated Power Supply
Variable Regulated Power SupplyVariable Regulated Power Supply
Variable Regulated Power SupplyBhanu Bhawesh
 

La actualidad más candente (20)

Boost converter
Boost converterBoost converter
Boost converter
 
regulated power supply
regulated power supplyregulated power supply
regulated power supply
 
Unit 3
Unit 3Unit 3
Unit 3
 
Cyclo converters
Cyclo convertersCyclo converters
Cyclo converters
 
Capacitance and inductor
Capacitance and inductorCapacitance and inductor
Capacitance and inductor
 
DC power supply
DC power supplyDC power supply
DC power supply
 
CE, CB, CC AMPLIFIERS
 CE, CB, CC AMPLIFIERS CE, CB, CC AMPLIFIERS
CE, CB, CC AMPLIFIERS
 
Direct coupled amplifier
Direct coupled amplifierDirect coupled amplifier
Direct coupled amplifier
 
Inductors
InductorsInductors
Inductors
 
DC-DC power processing
DC-DC power processingDC-DC power processing
DC-DC power processing
 
Alternating current circuits
Alternating current circuitsAlternating current circuits
Alternating current circuits
 
Power supply basics
Power supply   basicsPower supply   basics
Power supply basics
 
Diode Application
Diode ApplicationDiode Application
Diode Application
 
power electronics(ii)
power electronics(ii)power electronics(ii)
power electronics(ii)
 
Electronic Components
Electronic ComponentsElectronic Components
Electronic Components
 
Thyristor
ThyristorThyristor
Thyristor
 
THE FABRICATION OF REGULATED DC POWER SUPPLY
THE FABRICATION OF REGULATED DC POWER SUPPLYTHE FABRICATION OF REGULATED DC POWER SUPPLY
THE FABRICATION OF REGULATED DC POWER SUPPLY
 
Rectifier
RectifierRectifier
Rectifier
 
Fundamentals of electric circuits
Fundamentals of electric circuitsFundamentals of electric circuits
Fundamentals of electric circuits
 
Variable Regulated Power Supply
Variable Regulated Power SupplyVariable Regulated Power Supply
Variable Regulated Power Supply
 

Similar a Power supply 230v AC to 12v DC

powersupply-120904002231-phpapp02.pdf
powersupply-120904002231-phpapp02.pdfpowersupply-120904002231-phpapp02.pdf
powersupply-120904002231-phpapp02.pdfHebaEng
 
Introduction_Power_Supply-6-9-10.pptx
Introduction_Power_Supply-6-9-10.pptxIntroduction_Power_Supply-6-9-10.pptx
Introduction_Power_Supply-6-9-10.pptxJagrutiParmar20
 
Introduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.pptIntroduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.pptDharaMilanPatel
 
Introduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.pptIntroduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.pptLyka Gumatay
 
1 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp021 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp02Pawar Chander
 
lecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxlecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxJohnkamanda3
 
MODULE2 PRESENTATION About electronics.pptx
MODULE2 PRESENTATION About electronics.pptxMODULE2 PRESENTATION About electronics.pptx
MODULE2 PRESENTATION About electronics.pptxalamigageraldjob33
 
Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...Shirshendu Das
 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptxpriyakunduq
 
Inverters (DC-AC)
Inverters (DC-AC)Inverters (DC-AC)
Inverters (DC-AC)Taimur Ijaz
 
Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1Ankit Dubey
 
Unit 4 Rectifiers.pptx
Unit 4 Rectifiers.pptxUnit 4 Rectifiers.pptx
Unit 4 Rectifiers.pptxbhattparthiv23
 
08_electronics.basics and introduction12
08_electronics.basics and introduction1208_electronics.basics and introduction12
08_electronics.basics and introduction12vikknaguem
 
08_electronics.basics and introduction23
08_electronics.basics and introduction2308_electronics.basics and introduction23
08_electronics.basics and introduction23vikknaguem
 

Similar a Power supply 230v AC to 12v DC (20)

powersupply-120904002231-phpapp02.pdf
powersupply-120904002231-phpapp02.pdfpowersupply-120904002231-phpapp02.pdf
powersupply-120904002231-phpapp02.pdf
 
Introduction_Power_Supply-6-9-10.pptx
Introduction_Power_Supply-6-9-10.pptxIntroduction_Power_Supply-6-9-10.pptx
Introduction_Power_Supply-6-9-10.pptx
 
Introduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.pptIntroduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.ppt
 
Introduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.pptIntroduction_Power_Supply-6-9-10.ppt
Introduction_Power_Supply-6-9-10.ppt
 
Power supplies
Power suppliesPower supplies
Power supplies
 
1 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp021 linearpowersupply-120916082113-phpapp02
1 linearpowersupply-120916082113-phpapp02
 
Chapter 1.
Chapter 1.Chapter 1.
Chapter 1.
 
ELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITSELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITS
 
lecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxlecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptx
 
MODULE2 PRESENTATION About electronics.pptx
MODULE2 PRESENTATION About electronics.pptxMODULE2 PRESENTATION About electronics.pptx
MODULE2 PRESENTATION About electronics.pptx
 
Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...Pre Final Year project/ mini project for Electronics and communication engine...
Pre Final Year project/ mini project for Electronics and communication engine...
 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
 
Bridge Rectifier
Bridge RectifierBridge Rectifier
Bridge Rectifier
 
Inverters (DC-AC)
Inverters (DC-AC)Inverters (DC-AC)
Inverters (DC-AC)
 
Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1
 
Shivam k11915
Shivam k11915Shivam k11915
Shivam k11915
 
Unit 4 Rectifiers.pptx
Unit 4 Rectifiers.pptxUnit 4 Rectifiers.pptx
Unit 4 Rectifiers.pptx
 
08_electronics.basics and introduction12
08_electronics.basics and introduction1208_electronics.basics and introduction12
08_electronics.basics and introduction12
 
08_electronics.basics and introduction23
08_electronics.basics and introduction2308_electronics.basics and introduction23
08_electronics.basics and introduction23
 
Power supply
Power supplyPower supply
Power supply
 

Último

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 

Último (20)

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 

Power supply 230v AC to 12v DC

  • 1. Power SupplyPower Supply 230V AC TO 12 V DC230V AC TO 12 V DC JAFARALIJAFARALI DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERINGDHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING ELECTRICAL AND ELECTRONICS DEPARTMENTELECTRICAL AND ELECTRONICS DEPARTMENT
  • 2. Power SupplyPower Supply • All electronic circuits need a power source to work. • For electronic circuits made up of transistors and/or ICs, this power source must be a DC voltage of a specific value. • A battery is a common DC voltage source for some types of electronic equipment especially portables like cell phones and iPods. • Most non-portable equipment uses power supplies that operate from the AC power line but produce one or more DC outputs.
  • 3. Components of a Power SupplyComponents of a Power Supply • Main circuits in most power supplies.
  • 4. AC/DC POWER SUPPLYAC/DC POWER SUPPLY Note: This configuration applies for 230V (Europe). Circuit diagram :
  • 5. Power SupplyPower Supply • The AC line is first passed through a low pass filter of the form shown in figure. • This eliminates noise on the AC line from bothering the power supply circuits and prevents unwanted signals from the power supply from being transferred back into the AC line where they might interfere with other equipment.
  • 6. TransformerTransformer • A transformer is commonly used to step the input AC voltage level down or up. Most electronic circuits operate from voltages lower than the AC line voltage so the transformer normally steps the voltage down by its turns ratio to a desired lower level. • For example, a transformer with a turns ratio of 10 to 1 would convert the 120 volt 60 Hz input sine wave into a 12 volt sine wave.
  • 7. Transformer:Transformer: • Function: A transformer is a device used to increase (step up) or decrease (step down) the AC voltage in a circuit. • Properties: Laminated in order to reduce power losses through Eddy Currents. • Operation: The way transformers operate is based on the principle that an alternating current in the primary coil will induce an alternating electro- magnetic-field (EMF) on the secondary coil due to their mutual inductance.
  • 8. RectifierRectifier • The rectifier converts the AC sine wave into a pulsating DC wave. • There are several forms of rectifiers used but all are made up of diodes. • Rectifier types and operation will be covered later.
  • 10. How Rectifiers WorkHow Rectifiers Work • The simplest form of rectifier is the half wave rectifier shown. • Only the transformer, rectifier diode, and load (RL) are shown without the filter and other components. • The half wave rectifier produces one sine pulse for each cycle of the input sine wave. • When the sine wave goes positive, the anode of the diode goes positive causing the diode to be forward biased. The diode conducts and acts like a closed switch letting the positive pulse of the sine wave to appear across the load resistor.
  • 11. Bridge RectifierBridge Rectifier • Another widely used rectifier is the bridge rectifier. It uses four diodes. • This is called a full wave rectifier as it produces an output pulse for each half cycle of the input sine wave. • On the positive half cycle of the input sine wave, diodes D1 and D2 are forward biased so act as closed switches appearing in series with the load. • On the negative half cycle, diode D1 and D2 are reverse biased and diodes D3 and D4 are forward biased so current flows through the load in the same direction.
  • 12. FilterFilter • The rectifier produces a DC output but it is pulsating rather than a constant steady value over time like that from a battery. • A filter is used to remove the pulsations and create a constant output. • The most common filter is a large capacitor.
  • 13. How the Filter WorksHow the Filter Works • A large capacitor is connected across the load resistor. This capacitor filters the pulses into a more constant DC. • When the diode conducts, the capacitor charges up to the peak of the sine wave. • Then when the sine voltage drops, the charge on the capacitor remains. Since the capacitor is large it forms a long time constant with the load resistor. The capacitor slowly discharges into the load maintaining a more constant output. • The next positive pulse comes along recharging the capacitor and the process continues.
  • 14. RegulatorRegulator • The regulator is a circuit that helps maintain a fixed or constant output voltage. • Changes in the load or the AC line voltage will cause the output voltage to vary. • Most electronic circuits cannot withstand the variations since they are designed to work properly with a fixed voltage. • The regulator fixes the output voltage to the desired level then maintains that value despite any output or input variations.
  • 15. DC-DC ConverterDC-DC Converter • Most modern power supplies also contain one or more DC-DC converters • Modern electronics often demand different voltages to function. • A DC-DC converter changes one DC voltage to another, higher or lower DC voltage. • A DC-DC converter is used with a power supply to prevent the need for a second AC- DC supply.
  • 16. RippleRipple • The capacitor does a good job of smoothing the pulses from the rectifier into a more constant DC. • A small variation occurs in the DC because the capacitor discharges a small amount between the positive and negative pulses. Then it recharges. This variation is called ripple. • The ripple can be reduced further by making the capacitor larger. • The ripple appears to be a sawtooth shaped AC variation riding on the DC output. • A small amount of ripple can be tolerated in some circuits but the lower the better overall.
  • 17. Smoothing:  Note: The ripple voltage shouldn't be higher than 10% of Vs. fC I Vr .2 = Vr  Where: I [Amps], C [F], f [Hz] and Vr [V]
  • 18. The RegulatorThe Regulator • Most regulators are ICs . • These are feedback control circuits that actually monitor the output voltage to detect variations. • If the output varies, for whatever reason, the regulator circuit automatically adjusts the output back to the set value. • Regulators hold the output to the desired value. • Since ripple represents changes in the output, the regulator also compensates for these variations producing a near constant DC output.
  • 19. THREE TERMINAL REGULATORSTHREE TERMINAL REGULATORS The output voltage from a three terminal regulator can be increased by the circuit shown above. Supposing you want an 8V supply, but only have 5V regulators to use. In this case, make the Zener diode 3.3V (nearest preferred value) and run it at a current of around 5mA via R (the regulator chip requires around 0.5mA) so R = 5V/5.5mA = 909 Ohm. Here a 1k resistor will work just as well (the Zener current will then be around 4.5mA). Don’t forget Cin and Cout
  • 20. Regulation:  Reason: While there are many circuits that will tolerate a smoothed power supply, some must have a completely regular supply with no ripple voltage. If the ripple voltage is too large and the input voltage to the regulator falls below the regulated voltage of the regulator, then of course the regulator will not be able to produce the correct regulated voltage. As a rule of thumb the input voltage to a regulator should usually be at least 2V above the regulated voltage.