Publicidad
Publicidad

Más contenido relacionado

Publicidad

Formula General Cuadrática

  1. 4210011 0010 1010 1101 0001 0100 1011 Formula General Cuadrática
  2. Formula General Consideremos la ecuación general de segundo grado (ecuación cuadrática) que tiene la forma: ax^2+bx+c=0. Resolver esta ecuación implica encontrar el valor o los valores de x que cumplen con la expresión, si es que existen. La formula General Cuadrática es el método mas efectivo para resolver ecuaciones de segundo grado.
  3. 4210011 0010 1010 1101 0001 0100 1011 Ecuaciones de Segundo Grado ¿Qué tienen de especial? Las ecuaciones cuadráticas se pueden resolver usando una fórmula especial llamada fórmula cuadrática: El "±" quiere decir que tienes que hacer más Y menos, ¡así que normalmente hay dos soluciones!. La parte azul (b2 - 4ac) se llama discriminante, porque sirve para "discriminar" (decidir) entre los tipos posibles de respuesta: si es positivo, hay DOS soluciones; si es cero sólo hay UNA solución, y si es negativo hay dos soluciones que incluyen números imaginarios.
  4. Cuando nos enfrentamos por primera vez en la vida a esta clase de problemas, la primera forma en la que se intenta dar una respuesta es probando con varios números hasta "atinarle" (ya sea por que nos sonría la buena fortuna, o por aproximación). Algunos incluso prueban número tras número hasta hallar la solución (Método de la "Fuerza Bruta"). Las desventajas de estos métodos es que implican trabajo excesivo, y no se garantiza que se encuentre la solución de la ecuación (al menos una solución "Real").
  5. 421 0011 0010 1010 1101 0001 0100 1011 Tipos de Ecuaciones Cuadráticas Ecuaciones Cuadráticas Completas Una ecuación cuadrática se denomina completa si sus coeficientes son no nulos. Donde los tres literales: a, b y c, son distintos de cero. Ecuaciones Cuadráticas Incompletas Se llama ecuación cuadrática incompleta si carece del termino de primer grado o cuando la ecuación carece de término independiente.
  6. Analizando la raíz cuadrada, se llega a las siguientes conclusiones:  Si b^2 es menor que -4ac los resultados de X serán dos valores con parte real y parte imaginaria. Es decir, el resultado será un número complejo.  Si b^2 es mayor que -4ac obtendremos dos valores distintos de X reales.  Y si b^2 es igual que -4ac obtendremos dos valores de X reales e iguales. Al término b^2-4ac se le llama discriminante.
  7. 4210011 0010 1010 1101 0001 0100 1011 Ejemplos de Ecuaciones Cuadráticas En esta a=2, b=5 y c=3 •Aquí hay una un poco más complicada: ¿Dónde está a? En realidad a=1, porque normalmente no escribimos "1x2" •b=-3 •¿Y dónde está c? Bueno, c=0, así que no se ve. ¡Ups! Esta no es una ecuación cuadrática, porque le falta el x2 (es decir a=0, y por eso no puede ser cuadrática)
  8. Disfrazadas Qué hacer En forma estándar a, b y c x2 = 3x -1 Mueve todos los términos a la izquierda x2 - 3x + 1 = 0 a=1, b=-3, c=1 2(x2 - 2x) = 5 Desarrolla paréntesis 2x2 - 4x - 5 = 0 a=2, b=-4, c=-5 x(x-1) = 3 Desarrolla paréntesis x2 - x - 3 = 0 a=1, b=-1, c=-3 5 + 1/x - 1/x2 = 0 Multiplica por x2 5x2 + x - 1 = 0 a=5, b=1, c=-1 Ecuaciones Cuadráticas Disfrazadas Algunas ecuaciones no parece que sean cuadráticas, pero con manipulaciones astutas se pueden transformar en una:
  9. 4210011 0010 1010 1101 0001 0100 1011 Ejemplos de Ecuaciones Cuadráticas • Ecuaciones Cuadráticas: Ejemplo N° 1
  10. • Ecuaciones Cuadráticas: Ejemplo N° 2
  11. 4210011 0010 1010 1101 0001 0100 1011 • Ecuaciones Cuadráticas: Ejemplo N° 3
  12. Instituto Manuel Pagan Lozano Profe: Adán Fúnez Katherine Gisselle Aguilar II B.T.P. Informática
Publicidad