Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
Molecular dynamics simulation is a powerful biophysical tool to gain theoretical insights into protein action. In mechanobiology, conformational change of bacterial mechanosensitive ion channels has been studied extensively. Here we studied transient receptor potential cation channel subfamily V member 2 (TRPV2), a mammalian mechanosensitive ion channel, using coarse grained molecular dynamics simulation. Coarse grained geometry of TRPV2 was generated based on a full atomic cryo-electron microscopy structure (PDB ID: 5HI9). The TRPV2 protein was embedded in a membrane composed of POPC/POPS phospholipid bilayer and solvated. The structure of TRPV2 homotetramer was stable during 1 μs simulation period. While a bacterial mechanosensitive channel MscS showed significant increase in pore radius in response to membrane tension, TRPV2 did not, as suggested by previous experimental studies. Transmembrane helix tilt, which was observed in mechanosensitive opening of MscS, was not observed in TRPV2 in membrane tension. This result suggests that mechanosensitive alteration of TRPV2 structure requires external force other than the membrane tension.
Molecular dynamics simulation is a powerful biophysical tool to gain theoretical insights into protein action. In mechanobiology, conformational change of bacterial mechanosensitive ion channels has been studied extensively. Here we studied transient receptor potential cation channel subfamily V member 2 (TRPV2), a mammalian mechanosensitive ion channel, using coarse grained molecular dynamics simulation. Coarse grained geometry of TRPV2 was generated based on a full atomic cryo-electron microscopy structure (PDB ID: 5HI9). The TRPV2 protein was embedded in a membrane composed of POPC/POPS phospholipid bilayer and solvated. The structure of TRPV2 homotetramer was stable during 1 μs simulation period. While a bacterial mechanosensitive channel MscS showed significant increase in pore radius in response to membrane tension, TRPV2 did not, as suggested by previous experimental studies. Transmembrane helix tilt, which was observed in mechanosensitive opening of MscS, was not observed in TRPV2 in membrane tension. This result suggests that mechanosensitive alteration of TRPV2 structure requires external force other than the membrane tension.
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!