Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
深層学習フレームワーク概要と
Chainerの事例紹介
Stapy x 理研AIP オープンソース研究会
@理化学研究所 ⾰新知能統合研究センター
2017年5⽉19⽇
株式会社Preferred Networks ⼤野健太
oono@pref...
大野 健太
• twitter: @delta2323_
• 経歴
• 数学専攻(修⼠) → 2011.4 PFI → 2014.10 PFN
• 担当分野
• バイオプロジェクト
• Chainerコアチーム
• インターン・採⽤チーム
2
Chainer Meetup #05
2017年6⽉10⽇
@⽇本マイクロソフト株式会社
品川オフィス
3
• 2014年3⽉設⽴
• 本社:東京 アメリカ⼦会社:カリフォルニア州サンマテオ
• 社員数:約80名(8割以上はエンジニア・リサーチャー)
• 事業内容:深層学習の産業、特に産業⽤ロボット・交通・バイオ
ヘルスケアへの応⽤
4
YouTub...
Warring states period of deep learning
frameworks
5
Technology stack of a DL framework
6
name functions example
Graphical visualization DIGITS, TensorBoard
Machine learning w...
üconstructing NNs as a Python programming
üdynamic NN construction
üCPU/GPU agnostic code with CuPy
7
Mission
Speed up res...
Software stack
8
CPU
CuPy
NVIDIA GPU
CUDA
cuDNN
BLAS
NumPy
Chainer
MKL
f g
x f g
Static
graph
construction
Data feed
x yf zg
Dynamic
graph
construction
Define-And-Run
(Most frameworks)
Define-B...
10
(MinPy)
Era of dynamic graph frameworks
Construct NNs as
Python programming
class MLP(Link):
def __int__(self):
super(MLP, self).__init__(
l1=Linear(784, 1000),
l...
Release history
• 2015/06: v1.0.0
• 2015/09: v1.3.0 (CuPy)
• 2015/11: v1.5.0 (Link/Chain, CuPy in Cython)
• 2016/06: [MinP...
Chainer v2
• First major version up that breaks backward compatibility.
• Important features (almost fixed)
• CuPy separat...
Libraries on top of Chainer
ChainerRL (beta): Reinforcement learning
ChainerMN (v0.1.0): Multi-node distributed learning
C...
ChainerRL
15
ü Implement latest deep reinforcement learning algorithms
ü Work with OpenAI Gym
ChainerMN
16
ü Distributed deep learning with MPI, NCCL
ü approx. 100x speed with 128 GPUs
ChainerCV
17
ü Dataset Wrapper For well-known CV datasets (CUB, Pascal VOC)
ü Dataset transformer (random crop, random flo...
Application of Chainer
PaintsChainer : Line draw colorization tool
PonanzaChainer : Shogi AI with Deep Learning
PaintsChainer
19https://paintschainer.preferred.tech
Ponanza Chainer
20
NumPy-like API accelerated with CUDA
# CPU
x_cpu = numpy.array([1, 2, 3])
l2_cpu = numpy.linalg.norm(x_cpu)
# GPU
x_gpu = ...
Development team (as of May 2017)
• Chainer, CuPy
• Core development team: approx. 10 members
• Reviewer team: approx. 10 ...
CI
23
Travis CI
Run all CPU tests of all PRs
Jenkins installation test
CI
24
Jenkins dairy test (internal): Run all tests with various configuration
Community activities
25
Chainer meetup (#0 - #4)
#5 will be held in June 10th 2017
Deep learning mini course @UCSF
applica...
Conclusion
• Chainer is a Python-based deep learning framework that
leverages flexible and intuitive description of NNs.
•...
Try Chainer ! http://chainer.org
27
Seiya
Tokui
Kenta
Oono
Yuya
Unno
Ryosuke
Okuta
Chainer core development team
Brian
Vog...
Próxima SlideShare
Cargando en…5
×

深層学習フレームワーク概要とChainerの事例紹介

1.157 visualizaciones

Publicado el

2017年5月19日 Stapy x 理研AIP オープンソース研究会
https://startpython.connpass.com/event/55579/

Publicado en: Tecnología
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

深層学習フレームワーク概要とChainerの事例紹介

  1. 1. 深層学習フレームワーク概要と Chainerの事例紹介 Stapy x 理研AIP オープンソース研究会 @理化学研究所 ⾰新知能統合研究センター 2017年5⽉19⽇ 株式会社Preferred Networks ⼤野健太 oono@preferred.jp
  2. 2. 大野 健太 • twitter: @delta2323_ • 経歴 • 数学専攻(修⼠) → 2011.4 PFI → 2014.10 PFN • 担当分野 • バイオプロジェクト • Chainerコアチーム • インターン・採⽤チーム 2
  3. 3. Chainer Meetup #05 2017年6⽉10⽇ @⽇本マイクロソフト株式会社 品川オフィス 3
  4. 4. • 2014年3⽉設⽴ • 本社:東京 アメリカ⼦会社:カリフォルニア州サンマテオ • 社員数:約80名(8割以上はエンジニア・リサーチャー) • 事業内容:深層学習の産業、特に産業⽤ロボット・交通・バイオ ヘルスケアへの応⽤ 4 YouTube Channel preferredjp Factory Robot Healthcare Automotive
  5. 5. Warring states period of deep learning frameworks 5
  6. 6. Technology stack of a DL framework 6 name functions example Graphical visualization DIGITS, TensorBoard Machine learning workflow management Dataset prep, Save/Load Training loop Keras, TF slim Computational graph(CG) management Build/Optimize CGs Forward/Back prop Theano, TensorFlow Torch.nn Multi-dimensional array processing High-level array manipulation NumPy, CuPy Eigen, Torch (core) Numerical computation Matrix operation Convolution BLAS(OpenBLAS, MKL), cuBLAS, cuDNN, MKL DNN Computational device CPU, GPU, TPU, FPGA
  7. 7. üconstructing NNs as a Python programming üdynamic NN construction üCPU/GPU agnostic code with CuPy 7 Mission Speed up research and development of deep learning and its applications. Features Flexible and intuitive description of complex NNs by http://chainer.org *NN = Neural Network
  8. 8. Software stack 8 CPU CuPy NVIDIA GPU CUDA cuDNN BLAS NumPy Chainer MKL
  9. 9. f g x f g Static graph construction Data feed x yf zg Dynamic graph construction Define-And-Run (Most frameworks) Define-By-Run (Chainer) 9 x yf x z Static Dynamic Optimization ✓ △ Flexibility △ ✓
  10. 10. 10 (MinPy) Era of dynamic graph frameworks
  11. 11. Construct NNs as Python programming class MLP(Link): def __int__(self): super(MLP, self).__init__( l1=Linear(784, 1000), l2=Linear(1000, 1000), l3=Linear(1000, 10)) def __call__(x): h1 = F.relu(self.l1(x)) h2 = F.relu(self.l2(l1)) return self.l3(h2) Linear l1 x W bias ReLU Linear l2 h1 W bias ReLU Linear l3 h2 W bias 11
  12. 12. Release history • 2015/06: v1.0.0 • 2015/09: v1.3.0 (CuPy) • 2015/11: v1.5.0 (Link/Chain, CuPy in Cython) • 2016/06: [MinPy] • 2016/07: v1.11.0 (Trainer) • 2017/01: [PyTorch, TensorFlow Fold] • 2017/02: v2.0.0a • 2017/04: v2.0.0b • 2017/05: v1.24.0 (Last v1 release)
  13. 13. Chainer v2 • First major version up that breaks backward compatibility. • Important features (almost fixed) • CuPy separation • Unified configuration (chainer.config, esp. train mode) • train argument is removed from many functions • Variable updated: Parameter class, uninitialized var, volatile removed • Funcion.retain_inputs and retain_outputs to reduce memory usage • New-style parameter/child link registration (just setting them as an attribute) • UpdateRule customized for each parameter • Extention.initialize added, invoke_before_training removed • No duplicated memory between training graph and evaluation graph • Input size is made optional in many links (L.Linear(100)) • wscale option is removed from many links 13 Will release on May 30th 2017
  14. 14. Libraries on top of Chainer ChainerRL (beta): Reinforcement learning ChainerMN (v0.1.0): Multi-node distributed learning ChainerCV (v0.4.5): Computer vision
  15. 15. ChainerRL 15 ü Implement latest deep reinforcement learning algorithms ü Work with OpenAI Gym
  16. 16. ChainerMN 16 ü Distributed deep learning with MPI, NCCL ü approx. 100x speed with 128 GPUs
  17. 17. ChainerCV 17 ü Dataset Wrapper For well-known CV datasets (CUB, Pascal VOC) ü Dataset transformer (random crop, random flop) ü Implements typical workflow in CV
  18. 18. Application of Chainer PaintsChainer : Line draw colorization tool PonanzaChainer : Shogi AI with Deep Learning
  19. 19. PaintsChainer 19https://paintschainer.preferred.tech
  20. 20. Ponanza Chainer 20
  21. 21. NumPy-like API accelerated with CUDA # CPU x_cpu = numpy.array([1, 2, 3]) l2_cpu = numpy.linalg.norm(x_cpu) # GPU x_gpu = cupy.array([1, 2, 3]) l2_gpu = cupy.linalg.norm(x_gpu) CuPy will be an independent project from Chainer from Chainer v2. >150 NumPy functions are supported
  22. 22. Development team (as of May 2017) • Chainer, CuPy • Core development team: approx. 10 members • Reviewer team: approx. 10 members • Chainer user group: approx. 5 members • Chainer RL, Chainer MN, Chainer CV: 2, 3 members for each • Paints Chainer: approx. 10 members 22 * some members overlap
  23. 23. CI 23 Travis CI Run all CPU tests of all PRs Jenkins installation test
  24. 24. CI 24 Jenkins dairy test (internal): Run all tests with various configuration
  25. 25. Community activities 25 Chainer meetup (#0 - #4) #5 will be held in June 10th 2017 Deep learning mini course @UCSF application for biology Google group (ja, en), Slack (ja, en), Twitter (ja, en)
  26. 26. Conclusion • Chainer is a Python-based deep learning framework that leverages flexible and intuitive description of NNs. • Many libraries and services are being developed on top of Chainer (ChainerRL/MN/CV, PaintsChainer, PonanzaChainer, CuPy). • Introduced the development and the user-group teams of Chainer 26
  27. 27. Try Chainer ! http://chainer.org 27 Seiya Tokui Kenta Oono Yuya Unno Ryosuke Okuta Chainer core development team Brian Vogel Gentaro Watanabe Shunta Saito Daisuke Nishino and many contributors ! Contact: oono@preferred.jp Google Group: Chainer User Group

×