SlideShare una empresa de Scribd logo
1 de 44
Descargar para leer sin conexión
Introduction
Asymptotically optimal strategies
Microstructure effects
Optimal discretization of hedging strategies
M. Fukasawa1 C.Y. Robert2 M. Rosenbaum3 P. Tankov4
1Department of Mathematics, Osaka University
2ISFA, Universit´e Lyon 1
3LPMA, Universit´e Pierre et Marie Curie (Paris 6)
4LPMA, Universit´e Paris Diderot (Paris 7)
8 July 2014
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 1
Introduction
Asymptotically optimal strategies
Microstructure effects
Outline
1 Introduction
2 Asymptotically optimal strategies
3 Microstructure effects
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 2
Introduction
Asymptotically optimal strategies
Microstructure effects
Outline
1 Introduction
2 Asymptotically optimal strategies
3 Microstructure effects
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 3
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging
Classical problem
A basic problem in mathematical finance is to replicate a
FT -measurable payoff HT with a portfolio involving only the
underlying asset Y and cash.
When HT = H(YT ) and Y follows a diffusion process of the
form
dYt = µ(t, Yt)dt + σ(t, Yt)dWt,
HT can be replicated with the so-called delta hedging strategy.
This means that the number of units of underlying to hold at
time t is equal to Xt = ∂P(t,Yt )
∂Y , where P(t, Yt) is the price of
the option, which is uniquely defined in such model.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 4
Introduction
Asymptotically optimal strategies
Microstructure effects
Discrete hedging
Hedging in practice
However, to implement such strategy, the hedging portfolio
must be readjusted continuously.
This is of course physically impossible and anyway irrelevant
because of the presence of microstructure effects and
transaction costs.
Thus the theoretical strategy is always replaced by a piecewise
constant one, leading to a discretization error.
In practice, traders rebalance their portfolio about once per
day.
Nevertheless, (relatively) high frequency trading technologies
offer the possibility to rebalance much more often, which
could reduce the risk.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 5
Introduction
Asymptotically optimal strategies
Microstructure effects
Computing the discretization error
Deterministic rebalancing strategies
The discretization error associated to given deterministic
rebalancing strategies has been widely studied, see Zhang (1999),
Bertsimas, Kogan and Lo (2000), Gobet and Temam (2001), Geiss
(2002), Hayashi and Mykland (2005), Geiss and Geiss (2006),
Geiss and Toivola (2007), Tankov and Voltchkova (2008),. . .
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 6
Introduction
Asymptotically optimal strategies
Microstructure effects
Regular rebalancings
Hedging error
Assume first that the hedging portfolio is readjusted at regular
time intervals of length h = T
n . Zhang (1999) (see also
Bertsimas et al ; Hayashi and Mykland) shows that the
discretization error
En
T =
T
0
XtdYt −
T
0
Xh t/h dYt
essentially satisfies
lim
h→0
nE[(En
T )2
] =
T
2
E
T
0
∂2P
∂Y 2
2
σ(s, Ys)4
ds .
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 7
Introduction
Asymptotically optimal strategies
Microstructure effects
General strategies
Optimal discretization
It is intuitively clear that readjusting the portfolio at regular
deterministic times is not optimal.
Therefore, we want to consider adaptive, path dependent
strategies. The relevant questions are then : how big is the
discretization error and what are the right rebalancing times
for the hedging portfolio ?
However, the optimal strategy for fixed n (or fixed cost) is
very difficult to compute.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 8
Introduction
Asymptotically optimal strategies
Microstructure effects
Outline
1 Introduction
2 Asymptotically optimal strategies
3 Microstructure effects
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 9
Introduction
Asymptotically optimal strategies
Microstructure effects
Asymptotic approach
Asymptotic criterion
We consider an asymptotic approach which enables us to
derive asymptotically optimal strategies in quite an easy way.
More precisely, the performances of different discretization
strategies are compared based on their asymptotic behavior as
the number of readjustment dates n tends to infinity, rather
than for fixed n.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 10
Introduction
Asymptotically optimal strategies
Microstructure effects
Asymptotic approach
Discretization
A discretization rule is a family of stopping times
0 = Tn
0 < Tn
1 < · · · < Tn
j < . . . ,
with supj |Tn
j+1 ∧ T − Tn
j ∧ T| → 0 as n → ∞.
These stopping times represent the rebalancing dates of the
portfolio.
Let Xn
s = XTn
j ∧T for s ∈ (Tn
j ∧ T − Tn
j+1 ∧ T]. The hedging
error En
T is given by En
T =
T
0 XsdYs −
T
0 Xn
s dYs, with
T
0
Xn
s dYs =
∞
j=0
XTn
j ∧T (YTn
j+1∧T − YTn
j ∧T ).
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 11
Introduction
Asymptotically optimal strategies
Microstructure effects
Asymptotic approach
Asymptotic criterion
Let Nn
T := max{j ≥ 0; Tn
j ≤ T}. To compare different
discretization strategies in terms of their asymptotic behavior,
one can use the following criterion :
lim
n→∞
E[Nn
T ]E[(En
T )2
].
A discretization rule A is considered better than a
discretization rule B if the value of the criterion for A is
smaller than for B.
This criterion is quite natural. The quantity Nn
T is viewed as a
proxy for transaction costs and so we want it small. On the
other hand we also want the error small.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 12
Introduction
Asymptotically optimal strategies
Microstructure effects
Dynamics
Notation and assumptions
We consider the following formalism (we express everything in
term of σX
t ) for the discretization of
T
0 XsdYs :
dXt = ψt(σX
t )2
dt + σX
t dWt, dYt = KtσX
t dWt,
with all the coefficients bounded (locally).
We define admissibility conditions for the rules :
supj |Tn
j+1 ∧ T − Tn
j ∧ T| → 0, supt≤T |Xt − Xn
t | ≤ cvn,
with vn → 0.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 13
Introduction
Asymptotically optimal strategies
Microstructure effects
Lower bound
Theorem
For any admissible discretization rule,
liminf
n→+∞
E[Nn
T ]E[(En
T )2
] ≥
1
6
E
T
0
Kt(σX
t )2
dt
2
.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 14
Introduction
Asymptotically optimal strategies
Microstructure effects
Upper bound
Theorem
The strategy
Tn
0 = 0, Tn
j+1 = inf t > Tn
j , (Xt − Xn
Tn
j
)2
≥
hn
KTn
j
,
with hn a positive deterministic sequence going to zero, is
asymptotically optimal.
For the chosen criterion, this improves the regular
deterministic rebalancing times strategy by at least a factor 3.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 15
Introduction
Asymptotically optimal strategies
Microstructure effects
Upper bound : example
Example
In the Black-Scholes model :
Xt =
∂P(t, Yt)
∂Y
, σX
t =
∂2P(t, Yt)
∂Y 2
σYt = ΓtσYt.
Thus,
Kt = 1/Γt
and
Tn
0 = 0, Tn
j+1 = inf t > Tn
j , (Xt − Xn
Tn
j
)2
≥ hnΓTn
j
,
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 16
Introduction
Asymptotically optimal strategies
Microstructure effects
About the preceding approach
Limitations
The above approach is quite natural and provides very explicit
results. However, it fails to take into account important factors of
market reality :
The criterion is somewhat ad hoc, and does not reflect any
specific model for the transaction costs or market impact.
The continuity assumption is arguable.
What about high frequency microstructure effects ?
Further approaches have been proposed to remedy these issues.
We discuss here the issue of microstructure effects.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 17
Introduction
Asymptotically optimal strategies
Microstructure effects
Outline
1 Introduction
2 Asymptotically optimal strategies
3 Microstructure effects
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 18
Introduction
Asymptotically optimal strategies
Microstructure effects
Transaction price and efficient price
High frequency effects
In the classical mathematical finance theory, the transaction
price is assumed to be equal to the efficient/theoretical price,
typically modeled by a Brownian semi-martingale.
However, in the high frequencies, observed prices largely differ
from observations of a semi-martingale.
We have to check high frequency effects are negligible when
using results obtained in the classical setting.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 19
Introduction
Asymptotically optimal strategies
Microstructure effects
Bund contract, one and a half year, one data every hour
0.0 0.2 0.4 0.6 0.8 1.0
112114116118120122124126
Time
Bund
.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 20
Introduction
Asymptotically optimal strategies
Microstructure effects
Bund contract, whole day and one hour, one data every
second
time
value
0 5000 10000 15000 20000 25000 30000
115.40115.45115.50115.55115.60115.65
time
value
0 500 1000 1500 2000 2500 3000 3500
115.46115.48115.50115.52115.54115.56
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 21
Introduction
Asymptotically optimal strategies
Microstructure effects
Our setting
Microstructure effects
We will work in a model that accommodates the stylized facts of
ultra high frequency prices and durations together with a
semi-martingale efficient price. In particular, transaction prices will
belong to the tick grid. Consequently :
Impossibility to buy or sell a share at the efficient price : the
microstructure leads to a cost (possibly negative).
The transaction price changes a finite number of times on a
given time period. Therefore, it is reasonable to assume that
one waits for a price change before rebalancing the hedging
portfolio.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 22
Introduction
Asymptotically optimal strategies
Microstructure effects
Microstructure modeling
We want to study microstructure effects. So we need a model
describing prices and durations in the high frequencies. In
particular, we want :
Properties of the microstructure model
Discrete prices.
Bid-Ask bounce.
Stylized facts of returns, durations and volatility.
A diffusive behavior at large sampling scales.
An interpretation of the model.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 23
Introduction
Asymptotically optimal strategies
Microstructure effects
Aversion for price changes
Aversion for price changes
In an idealistic framework, transactions would occur when the
efficient price crosses the tick grid.
In practice, uncertainty about the efficient price and aversion
for price changes of the market participants.
The price changes only when market participants are
convinced that the efficient price is far from the last traded
price.
We introduce a parameter η quantifying this aversion for price
changes.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 24
Introduction
Asymptotically optimal strategies
Microstructure effects
Model with uncertainty zones
Model with uncertainty zones : notation
Efficient price : Xt.
α : tick value.
τi : time of the i-th transaction with price change.
Pτi : transaction price at time τi .
Uncertainty zones : Uk = [0, ∞) × (dk, uk) with
dk = (k + 1/2 − η)α and uk = (k + 1/2 + η)α.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 25
Introduction
Asymptotically optimal strategies
Microstructure effects
Model with uncertainty zones
Model with uncertainty zones : dynamics
d log Xu = audu + σu−dWu.
τi+1 = inf t > τi , Xt = X(α)
τi
± α(
1
2
+ η) ,
with X
(α)
τi the value of Xτi rounded to the nearest multiple of α.
Pτi = X(α)
τi
.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 26
Introduction
Asymptotically optimal strategies
Microstructure effects
Model with uncertainty zones101.00101.01101.02101.03101.04101.05101.06
Time
Price
10:00:00 10:01:07 10:01:52 10:02:41 10:03:32 10:04:5010:00:00 10:01:00 10:02:00 10:03:00 10:04:00 10:05:00
101.00101.01101.02101.03101.04101.05101.06
Time
Price
2ηα
α
τ0 τ1 τ2 τ3 τ4 τ5
L0 = 1
L1 = 1
L2 = 1
L3 = 1
L4 = 1
L5 = 2
Xτ 0
(α)
Xτ 1
(α)
Xτ 2
(α)
101.00101.01101.02101.03101.04101.05101.06
Time
Price
Observed Price
Theoretical Price
Tick
Mid Tick
Uncertainty Zone Limit
Barriers To Reach
101.00101.01101.02101.03101.04101.05101.06
Time
Price
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 27
Introduction
Asymptotically optimal strategies
Microstructure effects
Discussion
Comments on the model
The model reproduces (almost) all the stylized facts of (ultra)
high to low frequency financial data.
The parameter η quantifies the tick size of the market. A small
η (< 1/2) means that for market participants, the tick size is
too large and conversely. It can be seen as an implicit spread.
The parameter η can be very easily estimated from market
data.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 28
Introduction
Asymptotically optimal strategies
Microstructure effects
Some properties : Durations
q q q q q q q q q
09:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 17:00:00
0.0000.0050.0100.015
Volatility
q q q q q q q q q
09:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 17:00:00
050010002000
Duration
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 29
Introduction
Asymptotically optimal strategies
Microstructure effects
Some properties : The price
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
10:00:00 10:04:00 10:08:00 10:12:00 10:16:00 10:20:00 10:24:00 10:28:00
99.9100.2100.5
Observedprice
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
10:00:00 10:04:00 10:08:00 10:12:00 10:16:00 10:20:00 10:24:00 10:28:00
99.9100.2100.5
Theoreticalpricee
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 30
Introduction
Asymptotically optimal strategies
Microstructure effects
Bund and DAX, estimation of η, October 2010
Day η (Bund) η (FDAX) Day η (Bund) η (FDAX)
1 Oct. 0.18 0.41 18 Oct. 0.16 0.33
5 Oct. 0.15 0.37 19 Oct. 0.13 0.37
6 Oct. 0.15 0.37 20 Oct. 0.13 0.33
7 Oct. 0.15 0.38 21 Oct. 0.15 0.33
8 Oct. 0.15 0.41 22 Oct. 0.11 0.33
11 Oct. 0.14 0.36 25 Oct. 0.12 0.31
12 Oct. 0.14 0.36 26 Oct. 0.14 0.31
13 Oct. 0.14 0.32 27 Oct. 0.14 0.32
14 Oct. 0.16 0.35 28 Oct. 0.14 0.32
15 Oct. 0.16 0.35 29 Oct. 0.14 0.34
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 31
Introduction
Asymptotically optimal strategies
Microstructure effects
Benchmark frictionless hedging strategy
Benchmark strategy
The benchmark frictionless hedging strategy is those of an
agent deciding (possibly wrongly) that the volatility of the
efficient price at time t is equal to σ(t, Xt).
It leads to a benchmark frictionless hedging portfolio whose
value Πt satisfies
Πt = C (0, X0) +
t
0
˙Cx (u, Xu) dXu.
Note that, if the model is misspecified, Πt is different from
the model price C (t, Xt).
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 32
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging strategies in the model with uncertainty zones
Hedging strategies in the model with uncertainty zones (1)
We naturally impose that the times when the hedging
portfolio may be rebalanced are the times where the
transaction price moves. Thus, the hedging portfolio can only
be rebalanced at the transaction times τi .
In this setting, we consider strategies such that, if τi is a
rebalancing time, the number of shares in the risky asset at
time τi is ˙Cx (τi , Xτi ).
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 33
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging strategies in the model with uncertainty zones
Hedging strategies in the model with uncertainty zones (2)
We will consider two hedging strategies :
The hedging portfolio is rebalanced every time that the
transaction price moves.
The hedging portfolio is rebalanced only once the transaction
price has varied by more than a selected value.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 34
Introduction
Asymptotically optimal strategies
Microstructure effects
Components of the hedging error
Components of the hedging error
In our setting, the microstructural hedging error is due to :
Discrete trading : the hedging portfolio is rebalanced a finite
number of times.
Microstructure on the price : between two rebalancing times,
the variation of the market price (multiple of the tick size)
differs from the variation of the efficient price.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 35
Introduction
Asymptotically optimal strategies
Microstructure effects
Analysis of the hedging error
Two steps analysis
We analyse this microstructure hedging error in two steps.
First, we assume that there is no microstructure effects on the
price although the trading times are endogenous (for all i,
Pτi = Xτi ).
Second, we assume the presence of the microstructure effects
and discussed the two hedging strategies.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 36
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging error without microstructure effects on the price
Discrete trading error
Let φ (t) = sup{τi : τi < t}. In the absence of microstructure
effects on the price, the hedging error is given by
L
(1)
α,t =
t
0
[ ˙Cx (u, Xu) − ˙Cx (φ (u) , Xφ(u))]dXu.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 37
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging error without microstructure effects on the price
Theorem
As α tends to 0,
N
1/2
α,t L
(1)
α,t
I−Ls
→ L
(1)
t := f
1/2
t
t
0
c
(1)
fs
dW
(1)
fs
,
in D[0, T], where W(1) is a Brownian motion defined on an
extension of the filtered probability space (Ω, (Ft)t≥0, P) and
independent of all the preceding quantities, and
(c
(1)
s )2
=
1
6
¨C2
xx (θs, Xθs ) µ4 (χθs ) ,
ft =
t
0
m
j=1
pj (χu)j(j − 1 + 2η)
−1
σ2
uX2
u du.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 38
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging error with microstructure effects
Total hedging error
In the presence of microstructure effects on the price, the
transaction prices differ from the efficient prices. The hedging error
is now given by
L
(2)
α,t =
t
0
˙Cx (u, Xu) dXu −
t
0
˙Cx (φ (u) , Xφ(u))dPu.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 39
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging error with microstructure effects
Theorem
As α tends to 0,
L
(2)
α,t
I−Ls
→ L
(2)
t :=
t
0
b
(2)
fs
dXs +
t
0
c
(2)
fs
dW
(2)
fs
,
in D[0, T], with
b
(2)
s = (1 − 2η) ˙Cx (θs, Xθs ) µ∗
1,a (χθs ) ϕ (χθs )
and
(c
(2)
s )2
= (1 − 2η)2 ˙C2
x (θs, Xθs ) ϕ (χθs )
πa (χθs ) ϕ−1
(χθs ) − (µ∗
1,a (χθs ))2
.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 40
Introduction
Asymptotically optimal strategies
Microstructure effects
Hedging error with microstructure effects
Comments
The microstructural hedging error process is not renormalized
as in the previous case.
It means that the hedging error does not vanish even if the
number of rebalancing transactions goes to infinity.
If η = 1/2, the error due to the microstructure effects on the
price vanishes.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 41
Introduction
Asymptotically optimal strategies
Microstructure effects
Optimal rebalancing
Total hedging error
The hedging portfolio is now rebalanced only once the price has
varied by lα ticks. The hedging error is given by
L
(3)
α,t =
t
0
˙Cx (u, Xu) dXu −
t
0
˙Cx (φ(l)
(u) , Xφ(l)(u))dPu.
with φ(l) (t) = sup{τ
(l)
i : τ
(l)
i < t} and the τ
(l)
i are stopping times
associated to moves of lα ticks.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 42
Introduction
Asymptotically optimal strategies
Microstructure effects
Optimal rebalancing
Theorem
Let lα = α−1/2. As α tends to 0, we have,
(N
(l)
α,t)1/4
L
(3)
α,t
I−Ls
→ L
(3)
t := (f
(l)
t )1/4
t
0
b
(3)
f
(l)
s
dXs +
t
0
c
(3)
f
(l)
s
dW
(3)
f
(l)
s
in D[0, T], with
b
(3)
s =
(1 − 2η)
2
˙Cx (θs, Xθs )
and
(c
(3)
s )2
=
(1 − 2η)2
4
˙C2
x (θs, Xθs ) +
1
6
¨C2
xx (θs, Xθs ) .
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 43
Introduction
Asymptotically optimal strategies
Microstructure effects
Optimal rebalancing
Comments
This optimal strategy allows to reduce significantly the
hedging error in the presence of microstructure effects.
The asymptotic variance of the hedging error now depends
both on the delta and on the gamma of the derivative security.
The optimal lα is of the same order of magnitude as the
square root of the number of times where the hedging
portfolio is rebalanced.
Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 44

Más contenido relacionado

Destacado

Insurance fraud through collusion - Pierre Picard
Insurance fraud through collusion - Pierre PicardInsurance fraud through collusion - Pierre Picard
Insurance fraud through collusion - Pierre PicardKezhan SHI
 
Détection de profils, application en santé et en économétrie geissler
Détection de profils, application en santé et en économétrie   geisslerDétection de profils, application en santé et en économétrie   geissler
Détection de profils, application en santé et en économétrie geisslerKezhan SHI
 
Machine learning pour les données massives algorithmes randomis´es, en ligne ...
Machine learning pour les données massives algorithmes randomis´es, en ligne ...Machine learning pour les données massives algorithmes randomis´es, en ligne ...
Machine learning pour les données massives algorithmes randomis´es, en ligne ...Kezhan SHI
 
Les enjeux de la dépendance – laure de montesquieu, scor
Les enjeux de la dépendance – laure de montesquieu, scorLes enjeux de la dépendance – laure de montesquieu, scor
Les enjeux de la dépendance – laure de montesquieu, scorKezhan SHI
 
From data and information to knowledge : the web of tomorrow - Serge abitboul...
From data and information to knowledge : the web of tomorrow - Serge abitboul...From data and information to knowledge : the web of tomorrow - Serge abitboul...
From data and information to knowledge : the web of tomorrow - Serge abitboul...Kezhan SHI
 
L'émergence d'une nouvelle filière de formation : data science
L'émergence d'une nouvelle filière de formation : data scienceL'émergence d'une nouvelle filière de formation : data science
L'émergence d'une nouvelle filière de formation : data scienceKezhan SHI
 
Arbres de régression et modèles de durée
Arbres de régression et modèles de duréeArbres de régression et modèles de durée
Arbres de régression et modèles de duréeKezhan SHI
 
Norme IFRS - Pierre Thérond - Université d'été de l'Institut des Actuaires
Norme IFRS - Pierre Thérond - Université d'été de l'Institut des ActuairesNorme IFRS - Pierre Thérond - Université d'été de l'Institut des Actuaires
Norme IFRS - Pierre Thérond - Université d'été de l'Institut des ActuairesKezhan SHI
 
Eurocroissance arnaud cohen
Eurocroissance arnaud cohenEurocroissance arnaud cohen
Eurocroissance arnaud cohenKezhan SHI
 
Confidentialité des données michel béra
Confidentialité des données   michel béraConfidentialité des données   michel béra
Confidentialité des données michel béraKezhan SHI
 
Loi hamon sébastien bachellier
Loi hamon sébastien bachellierLoi hamon sébastien bachellier
Loi hamon sébastien bachellierKezhan SHI
 
Présentation Françoise Soulié Fogelman
Présentation Françoise Soulié FogelmanPrésentation Françoise Soulié Fogelman
Présentation Françoise Soulié FogelmanKezhan SHI
 
Big data en (ré)assurance régis delayet
Big data en (ré)assurance   régis delayetBig data en (ré)assurance   régis delayet
Big data en (ré)assurance régis delayetKezhan SHI
 
Big data analytics focus technique et nouvelles perspectives pour les actuaires
Big data analytics focus technique et nouvelles perspectives pour les actuairesBig data analytics focus technique et nouvelles perspectives pour les actuaires
Big data analytics focus technique et nouvelles perspectives pour les actuairesKezhan SHI
 
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...Gael Varoquaux
 
Réseaux de neurones : alternative neuronale en tarification santé
Réseaux de neurones : alternative neuronale en tarification santéRéseaux de neurones : alternative neuronale en tarification santé
Réseaux de neurones : alternative neuronale en tarification santéKezhan SHI
 
Big data fp prez nouv. formation_datascience_15-sept
Big data fp prez nouv. formation_datascience_15-septBig data fp prez nouv. formation_datascience_15-sept
Big data fp prez nouv. formation_datascience_15-septKezhan SHI
 

Destacado (17)

Insurance fraud through collusion - Pierre Picard
Insurance fraud through collusion - Pierre PicardInsurance fraud through collusion - Pierre Picard
Insurance fraud through collusion - Pierre Picard
 
Détection de profils, application en santé et en économétrie geissler
Détection de profils, application en santé et en économétrie   geisslerDétection de profils, application en santé et en économétrie   geissler
Détection de profils, application en santé et en économétrie geissler
 
Machine learning pour les données massives algorithmes randomis´es, en ligne ...
Machine learning pour les données massives algorithmes randomis´es, en ligne ...Machine learning pour les données massives algorithmes randomis´es, en ligne ...
Machine learning pour les données massives algorithmes randomis´es, en ligne ...
 
Les enjeux de la dépendance – laure de montesquieu, scor
Les enjeux de la dépendance – laure de montesquieu, scorLes enjeux de la dépendance – laure de montesquieu, scor
Les enjeux de la dépendance – laure de montesquieu, scor
 
From data and information to knowledge : the web of tomorrow - Serge abitboul...
From data and information to knowledge : the web of tomorrow - Serge abitboul...From data and information to knowledge : the web of tomorrow - Serge abitboul...
From data and information to knowledge : the web of tomorrow - Serge abitboul...
 
L'émergence d'une nouvelle filière de formation : data science
L'émergence d'une nouvelle filière de formation : data scienceL'émergence d'une nouvelle filière de formation : data science
L'émergence d'une nouvelle filière de formation : data science
 
Arbres de régression et modèles de durée
Arbres de régression et modèles de duréeArbres de régression et modèles de durée
Arbres de régression et modèles de durée
 
Norme IFRS - Pierre Thérond - Université d'été de l'Institut des Actuaires
Norme IFRS - Pierre Thérond - Université d'été de l'Institut des ActuairesNorme IFRS - Pierre Thérond - Université d'été de l'Institut des Actuaires
Norme IFRS - Pierre Thérond - Université d'été de l'Institut des Actuaires
 
Eurocroissance arnaud cohen
Eurocroissance arnaud cohenEurocroissance arnaud cohen
Eurocroissance arnaud cohen
 
Confidentialité des données michel béra
Confidentialité des données   michel béraConfidentialité des données   michel béra
Confidentialité des données michel béra
 
Loi hamon sébastien bachellier
Loi hamon sébastien bachellierLoi hamon sébastien bachellier
Loi hamon sébastien bachellier
 
Présentation Françoise Soulié Fogelman
Présentation Françoise Soulié FogelmanPrésentation Françoise Soulié Fogelman
Présentation Françoise Soulié Fogelman
 
Big data en (ré)assurance régis delayet
Big data en (ré)assurance   régis delayetBig data en (ré)assurance   régis delayet
Big data en (ré)assurance régis delayet
 
Big data analytics focus technique et nouvelles perspectives pour les actuaires
Big data analytics focus technique et nouvelles perspectives pour les actuairesBig data analytics focus technique et nouvelles perspectives pour les actuaires
Big data analytics focus technique et nouvelles perspectives pour les actuaires
 
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...
 
Réseaux de neurones : alternative neuronale en tarification santé
Réseaux de neurones : alternative neuronale en tarification santéRéseaux de neurones : alternative neuronale en tarification santé
Réseaux de neurones : alternative neuronale en tarification santé
 
Big data fp prez nouv. formation_datascience_15-sept
Big data fp prez nouv. formation_datascience_15-septBig data fp prez nouv. formation_datascience_15-sept
Big data fp prez nouv. formation_datascience_15-sept
 

Similar a Optimal discretization of hedging strategies rosenbaum

Optimization Methods in Finance
Optimization Methods in FinanceOptimization Methods in Finance
Optimization Methods in Financethilankm
 
Leiden_VU_Delft_seminar short.pdf
Leiden_VU_Delft_seminar short.pdfLeiden_VU_Delft_seminar short.pdf
Leiden_VU_Delft_seminar short.pdfChiheb Ben Hammouda
 
Intro to Quant Trading Strategies (Lecture 7 of 10)
Intro to Quant Trading Strategies (Lecture 7 of 10)Intro to Quant Trading Strategies (Lecture 7 of 10)
Intro to Quant Trading Strategies (Lecture 7 of 10)Adrian Aley
 
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In..."Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...Quantopian
 
The dangers of policy experiments Initial beliefs under adaptive learning
The dangers of policy experiments Initial beliefs under adaptive learningThe dangers of policy experiments Initial beliefs under adaptive learning
The dangers of policy experiments Initial beliefs under adaptive learningGRAPE
 
A C LOUD -B ASED P ROTOTYPE I MPLEMENTATION OF A D ISEASE O UTBREAK N O...
A C LOUD -B ASED  P ROTOTYPE  I MPLEMENTATION  OF A  D ISEASE  O UTBREAK  N O...A C LOUD -B ASED  P ROTOTYPE  I MPLEMENTATION  OF A  D ISEASE  O UTBREAK  N O...
A C LOUD -B ASED P ROTOTYPE I MPLEMENTATION OF A D ISEASE O UTBREAK N O...IJCSEA Journal
 
A C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOU...
A C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOU...A C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOU...
A C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOU...IJITCA Journal
 
C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOUR...
 C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOUR... C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOUR...
C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOUR...IJITCA Journal
 
PROTOTYPE APPLICATION IN ANDROID PLATFORM FOR SYSTEM ADMINISTRATION OF HPC ...
PROTOTYPE APPLICATION IN ANDROID  PLATFORM FOR SYSTEM  ADMINISTRATION OF HPC ...PROTOTYPE APPLICATION IN ANDROID  PLATFORM FOR SYSTEM  ADMINISTRATION OF HPC ...
PROTOTYPE APPLICATION IN ANDROID PLATFORM FOR SYSTEM ADMINISTRATION OF HPC ...IJITCA Journal
 
A S OFTWARE T OOL FOR L IVE - LOCK A VOIDANCE IN S YSTEMS M ODELLED USIN...
A S OFTWARE  T OOL FOR  L IVE - LOCK  A VOIDANCE IN  S YSTEMS  M ODELLED USIN...A S OFTWARE  T OOL FOR  L IVE - LOCK  A VOIDANCE IN  S YSTEMS  M ODELLED USIN...
A S OFTWARE T OOL FOR L IVE - LOCK A VOIDANCE IN S YSTEMS M ODELLED USIN...IJCSEA Journal
 
A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...
A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...
A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...IJCSEA Journal
 
Statistical Arbitrage Pairs Trading, Long-Short Strategy
Statistical Arbitrage Pairs Trading, Long-Short StrategyStatistical Arbitrage Pairs Trading, Long-Short Strategy
Statistical Arbitrage Pairs Trading, Long-Short Strategyz-score
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Asma Ben Slimene
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Asma Ben Slimene
 
Dependent processes in Bayesian Nonparametrics
Dependent processes in Bayesian NonparametricsDependent processes in Bayesian Nonparametrics
Dependent processes in Bayesian NonparametricsJulyan Arbel
 

Similar a Optimal discretization of hedging strategies rosenbaum (20)

2019 PMED Spring Course - SMARTs-Part II - Eric Laber, April 10, 2019
2019 PMED Spring Course - SMARTs-Part II - Eric Laber, April 10, 2019 2019 PMED Spring Course - SMARTs-Part II - Eric Laber, April 10, 2019
2019 PMED Spring Course - SMARTs-Part II - Eric Laber, April 10, 2019
 
Optimization Methods in Finance
Optimization Methods in FinanceOptimization Methods in Finance
Optimization Methods in Finance
 
Leiden_VU_Delft_seminar short.pdf
Leiden_VU_Delft_seminar short.pdfLeiden_VU_Delft_seminar short.pdf
Leiden_VU_Delft_seminar short.pdf
 
Intro to Quant Trading Strategies (Lecture 7 of 10)
Intro to Quant Trading Strategies (Lecture 7 of 10)Intro to Quant Trading Strategies (Lecture 7 of 10)
Intro to Quant Trading Strategies (Lecture 7 of 10)
 
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In..."Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
 
The dangers of policy experiments Initial beliefs under adaptive learning
The dangers of policy experiments Initial beliefs under adaptive learningThe dangers of policy experiments Initial beliefs under adaptive learning
The dangers of policy experiments Initial beliefs under adaptive learning
 
A C LOUD -B ASED P ROTOTYPE I MPLEMENTATION OF A D ISEASE O UTBREAK N O...
A C LOUD -B ASED  P ROTOTYPE  I MPLEMENTATION  OF A  D ISEASE  O UTBREAK  N O...A C LOUD -B ASED  P ROTOTYPE  I MPLEMENTATION  OF A  D ISEASE  O UTBREAK  N O...
A C LOUD -B ASED P ROTOTYPE I MPLEMENTATION OF A D ISEASE O UTBREAK N O...
 
A C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOU...
A C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOU...A C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOU...
A C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOU...
 
C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOUR...
 C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOUR... C OMPREHENSIVE  S URVEY  O N P ERFORMANCE  A NALYSIS  O F  C HAOTIC  C OLOUR...
C OMPREHENSIVE S URVEY O N P ERFORMANCE A NALYSIS O F C HAOTIC C OLOUR...
 
PROTOTYPE APPLICATION IN ANDROID PLATFORM FOR SYSTEM ADMINISTRATION OF HPC ...
PROTOTYPE APPLICATION IN ANDROID  PLATFORM FOR SYSTEM  ADMINISTRATION OF HPC ...PROTOTYPE APPLICATION IN ANDROID  PLATFORM FOR SYSTEM  ADMINISTRATION OF HPC ...
PROTOTYPE APPLICATION IN ANDROID PLATFORM FOR SYSTEM ADMINISTRATION OF HPC ...
 
A S OFTWARE T OOL FOR L IVE - LOCK A VOIDANCE IN S YSTEMS M ODELLED USIN...
A S OFTWARE  T OOL FOR  L IVE - LOCK  A VOIDANCE IN  S YSTEMS  M ODELLED USIN...A S OFTWARE  T OOL FOR  L IVE - LOCK  A VOIDANCE IN  S YSTEMS  M ODELLED USIN...
A S OFTWARE T OOL FOR L IVE - LOCK A VOIDANCE IN S YSTEMS M ODELLED USIN...
 
A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...
A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...
A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN SYSTEMS MODELLED USING A CLASS OF ...
 
PhD defense talk slides
PhD  defense talk slidesPhD  defense talk slides
PhD defense talk slides
 
Statistical Arbitrage Pairs Trading, Long-Short Strategy
Statistical Arbitrage Pairs Trading, Long-Short StrategyStatistical Arbitrage Pairs Trading, Long-Short Strategy
Statistical Arbitrage Pairs Trading, Long-Short Strategy
 
Economicsslides
EconomicsslidesEconomicsslides
Economicsslides
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...
 
Dependent processes in Bayesian Nonparametrics
Dependent processes in Bayesian NonparametricsDependent processes in Bayesian Nonparametrics
Dependent processes in Bayesian Nonparametrics
 
50120140503004
5012014050300450120140503004
50120140503004
 
2019 PMED Spring Course - Introduction to Nonsmooth Inference - Eric Laber, A...
2019 PMED Spring Course - Introduction to Nonsmooth Inference - Eric Laber, A...2019 PMED Spring Course - Introduction to Nonsmooth Inference - Eric Laber, A...
2019 PMED Spring Course - Introduction to Nonsmooth Inference - Eric Laber, A...
 

Más de Kezhan SHI

Big data fiche data science 15 09 14
Big data fiche data science 15 09 14Big data fiche data science 15 09 14
Big data fiche data science 15 09 14Kezhan SHI
 
Big data ads gouvernance ads v2[
Big data ads   gouvernance ads v2[Big data ads   gouvernance ads v2[
Big data ads gouvernance ads v2[Kezhan SHI
 
Big data f prez formation_datascience_14-sept
Big data f prez formation_datascience_14-septBig data f prez formation_datascience_14-sept
Big data f prez formation_datascience_14-septKezhan SHI
 
B -technical_specification_for_the_preparatory_phase__part_ii_
B  -technical_specification_for_the_preparatory_phase__part_ii_B  -technical_specification_for_the_preparatory_phase__part_ii_
B -technical_specification_for_the_preparatory_phase__part_ii_Kezhan SHI
 
A -technical_specification_for_the_preparatory_phase__part_i_
A  -technical_specification_for_the_preparatory_phase__part_i_A  -technical_specification_for_the_preparatory_phase__part_i_
A -technical_specification_for_the_preparatory_phase__part_i_Kezhan SHI
 
20140806 traduction hypotheses_sous-jacentes_formule_standard
20140806 traduction hypotheses_sous-jacentes_formule_standard20140806 traduction hypotheses_sous-jacentes_formule_standard
20140806 traduction hypotheses_sous-jacentes_formule_standardKezhan SHI
 
20140613 focus-specifications-techniques-2014
20140613 focus-specifications-techniques-201420140613 focus-specifications-techniques-2014
20140613 focus-specifications-techniques-2014Kezhan SHI
 
20140516 traduction spec_tech_eiopa_2014_bilan
20140516 traduction spec_tech_eiopa_2014_bilan20140516 traduction spec_tech_eiopa_2014_bilan
20140516 traduction spec_tech_eiopa_2014_bilanKezhan SHI
 
C -annexes_to_technical_specification_for_the_preparatory_phase__part_i_
C  -annexes_to_technical_specification_for_the_preparatory_phase__part_i_C  -annexes_to_technical_specification_for_the_preparatory_phase__part_i_
C -annexes_to_technical_specification_for_the_preparatory_phase__part_i_Kezhan SHI
 
Qis5 technical specifications-20100706
Qis5 technical specifications-20100706Qis5 technical specifications-20100706
Qis5 technical specifications-20100706Kezhan SHI
 
Directive solvabilité 2
Directive solvabilité 2Directive solvabilité 2
Directive solvabilité 2Kezhan SHI
 
Directive omnibus 2
Directive omnibus 2Directive omnibus 2
Directive omnibus 2Kezhan SHI
 
Tableau de comparaison bilan S1 et bilan S2
Tableau de comparaison bilan S1 et bilan S2Tableau de comparaison bilan S1 et bilan S2
Tableau de comparaison bilan S1 et bilan S2Kezhan SHI
 
Rapport d'activité 2013 - CNIL
Rapport d'activité 2013 - CNILRapport d'activité 2013 - CNIL
Rapport d'activité 2013 - CNILKezhan SHI
 
Xavier Milaud - Techniques d'arbres de classification et de régression
Xavier Milaud - Techniques d'arbres de classification et de régressionXavier Milaud - Techniques d'arbres de classification et de régression
Xavier Milaud - Techniques d'arbres de classification et de régressionKezhan SHI
 

Más de Kezhan SHI (15)

Big data fiche data science 15 09 14
Big data fiche data science 15 09 14Big data fiche data science 15 09 14
Big data fiche data science 15 09 14
 
Big data ads gouvernance ads v2[
Big data ads   gouvernance ads v2[Big data ads   gouvernance ads v2[
Big data ads gouvernance ads v2[
 
Big data f prez formation_datascience_14-sept
Big data f prez formation_datascience_14-septBig data f prez formation_datascience_14-sept
Big data f prez formation_datascience_14-sept
 
B -technical_specification_for_the_preparatory_phase__part_ii_
B  -technical_specification_for_the_preparatory_phase__part_ii_B  -technical_specification_for_the_preparatory_phase__part_ii_
B -technical_specification_for_the_preparatory_phase__part_ii_
 
A -technical_specification_for_the_preparatory_phase__part_i_
A  -technical_specification_for_the_preparatory_phase__part_i_A  -technical_specification_for_the_preparatory_phase__part_i_
A -technical_specification_for_the_preparatory_phase__part_i_
 
20140806 traduction hypotheses_sous-jacentes_formule_standard
20140806 traduction hypotheses_sous-jacentes_formule_standard20140806 traduction hypotheses_sous-jacentes_formule_standard
20140806 traduction hypotheses_sous-jacentes_formule_standard
 
20140613 focus-specifications-techniques-2014
20140613 focus-specifications-techniques-201420140613 focus-specifications-techniques-2014
20140613 focus-specifications-techniques-2014
 
20140516 traduction spec_tech_eiopa_2014_bilan
20140516 traduction spec_tech_eiopa_2014_bilan20140516 traduction spec_tech_eiopa_2014_bilan
20140516 traduction spec_tech_eiopa_2014_bilan
 
C -annexes_to_technical_specification_for_the_preparatory_phase__part_i_
C  -annexes_to_technical_specification_for_the_preparatory_phase__part_i_C  -annexes_to_technical_specification_for_the_preparatory_phase__part_i_
C -annexes_to_technical_specification_for_the_preparatory_phase__part_i_
 
Qis5 technical specifications-20100706
Qis5 technical specifications-20100706Qis5 technical specifications-20100706
Qis5 technical specifications-20100706
 
Directive solvabilité 2
Directive solvabilité 2Directive solvabilité 2
Directive solvabilité 2
 
Directive omnibus 2
Directive omnibus 2Directive omnibus 2
Directive omnibus 2
 
Tableau de comparaison bilan S1 et bilan S2
Tableau de comparaison bilan S1 et bilan S2Tableau de comparaison bilan S1 et bilan S2
Tableau de comparaison bilan S1 et bilan S2
 
Rapport d'activité 2013 - CNIL
Rapport d'activité 2013 - CNILRapport d'activité 2013 - CNIL
Rapport d'activité 2013 - CNIL
 
Xavier Milaud - Techniques d'arbres de classification et de régression
Xavier Milaud - Techniques d'arbres de classification et de régressionXavier Milaud - Techniques d'arbres de classification et de régression
Xavier Milaud - Techniques d'arbres de classification et de régression
 

Último

modul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptxmodul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptxaleedritatuxx
 
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Boston Institute of Analytics
 
Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Seán Kennedy
 
What To Do For World Nature Conservation Day by Slidesgo.pptx
What To Do For World Nature Conservation Day by Slidesgo.pptxWhat To Do For World Nature Conservation Day by Slidesgo.pptx
What To Do For World Nature Conservation Day by Slidesgo.pptxSimranPal17
 
FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024
FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024
FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024Susanna-Assunta Sansone
 
IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaManalVerma4
 
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdfEnglish-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdfblazblazml
 
Semantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptxSemantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptxMike Bennett
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...Amil Baba Dawood bangali
 
World Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdf
World Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdfWorld Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdf
World Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdfsimulationsindia
 
Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Seán Kennedy
 
Real-Time AI Streaming - AI Max Princeton
Real-Time AI  Streaming - AI Max PrincetonReal-Time AI  Streaming - AI Max Princeton
Real-Time AI Streaming - AI Max PrincetonTimothy Spann
 
Decoding Patterns: Customer Churn Prediction Data Analysis Project
Decoding Patterns: Customer Churn Prediction Data Analysis ProjectDecoding Patterns: Customer Churn Prediction Data Analysis Project
Decoding Patterns: Customer Churn Prediction Data Analysis ProjectBoston Institute of Analytics
 
Rithik Kumar Singh codealpha pythohn.pdf
Rithik Kumar Singh codealpha pythohn.pdfRithik Kumar Singh codealpha pythohn.pdf
Rithik Kumar Singh codealpha pythohn.pdfrahulyadav957181
 
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelBoston Institute of Analytics
 
Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)Cathrine Wilhelmsen
 
Networking Case Study prepared by teacher.pptx
Networking Case Study prepared by teacher.pptxNetworking Case Study prepared by teacher.pptx
Networking Case Study prepared by teacher.pptxHimangsuNath
 
Learn How Data Science Changes Our World
Learn How Data Science Changes Our WorldLearn How Data Science Changes Our World
Learn How Data Science Changes Our WorldEduminds Learning
 

Último (20)

modul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptxmodul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptx
 
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
 
Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...
 
Data Analysis Project: Stroke Prediction
Data Analysis Project: Stroke PredictionData Analysis Project: Stroke Prediction
Data Analysis Project: Stroke Prediction
 
What To Do For World Nature Conservation Day by Slidesgo.pptx
What To Do For World Nature Conservation Day by Slidesgo.pptxWhat To Do For World Nature Conservation Day by Slidesgo.pptx
What To Do For World Nature Conservation Day by Slidesgo.pptx
 
FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024
FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024
FAIR, FAIRsharing, FAIR Cookbook and ELIXIR - Sansone SA - Boston 2024
 
Insurance Churn Prediction Data Analysis Project
Insurance Churn Prediction Data Analysis ProjectInsurance Churn Prediction Data Analysis Project
Insurance Churn Prediction Data Analysis Project
 
IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in India
 
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdfEnglish-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
 
Semantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptxSemantic Shed - Squashing and Squeezing.pptx
Semantic Shed - Squashing and Squeezing.pptx
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
 
World Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdf
World Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdfWorld Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdf
World Economic Forum Metaverse Ecosystem By Utpal Chakraborty.pdf
 
Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...
 
Real-Time AI Streaming - AI Max Princeton
Real-Time AI  Streaming - AI Max PrincetonReal-Time AI  Streaming - AI Max Princeton
Real-Time AI Streaming - AI Max Princeton
 
Decoding Patterns: Customer Churn Prediction Data Analysis Project
Decoding Patterns: Customer Churn Prediction Data Analysis ProjectDecoding Patterns: Customer Churn Prediction Data Analysis Project
Decoding Patterns: Customer Churn Prediction Data Analysis Project
 
Rithik Kumar Singh codealpha pythohn.pdf
Rithik Kumar Singh codealpha pythohn.pdfRithik Kumar Singh codealpha pythohn.pdf
Rithik Kumar Singh codealpha pythohn.pdf
 
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
 
Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)
 
Networking Case Study prepared by teacher.pptx
Networking Case Study prepared by teacher.pptxNetworking Case Study prepared by teacher.pptx
Networking Case Study prepared by teacher.pptx
 
Learn How Data Science Changes Our World
Learn How Data Science Changes Our WorldLearn How Data Science Changes Our World
Learn How Data Science Changes Our World
 

Optimal discretization of hedging strategies rosenbaum

  • 1. Introduction Asymptotically optimal strategies Microstructure effects Optimal discretization of hedging strategies M. Fukasawa1 C.Y. Robert2 M. Rosenbaum3 P. Tankov4 1Department of Mathematics, Osaka University 2ISFA, Universit´e Lyon 1 3LPMA, Universit´e Pierre et Marie Curie (Paris 6) 4LPMA, Universit´e Paris Diderot (Paris 7) 8 July 2014 Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 1
  • 2. Introduction Asymptotically optimal strategies Microstructure effects Outline 1 Introduction 2 Asymptotically optimal strategies 3 Microstructure effects Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 2
  • 3. Introduction Asymptotically optimal strategies Microstructure effects Outline 1 Introduction 2 Asymptotically optimal strategies 3 Microstructure effects Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 3
  • 4. Introduction Asymptotically optimal strategies Microstructure effects Hedging Classical problem A basic problem in mathematical finance is to replicate a FT -measurable payoff HT with a portfolio involving only the underlying asset Y and cash. When HT = H(YT ) and Y follows a diffusion process of the form dYt = µ(t, Yt)dt + σ(t, Yt)dWt, HT can be replicated with the so-called delta hedging strategy. This means that the number of units of underlying to hold at time t is equal to Xt = ∂P(t,Yt ) ∂Y , where P(t, Yt) is the price of the option, which is uniquely defined in such model. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 4
  • 5. Introduction Asymptotically optimal strategies Microstructure effects Discrete hedging Hedging in practice However, to implement such strategy, the hedging portfolio must be readjusted continuously. This is of course physically impossible and anyway irrelevant because of the presence of microstructure effects and transaction costs. Thus the theoretical strategy is always replaced by a piecewise constant one, leading to a discretization error. In practice, traders rebalance their portfolio about once per day. Nevertheless, (relatively) high frequency trading technologies offer the possibility to rebalance much more often, which could reduce the risk. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 5
  • 6. Introduction Asymptotically optimal strategies Microstructure effects Computing the discretization error Deterministic rebalancing strategies The discretization error associated to given deterministic rebalancing strategies has been widely studied, see Zhang (1999), Bertsimas, Kogan and Lo (2000), Gobet and Temam (2001), Geiss (2002), Hayashi and Mykland (2005), Geiss and Geiss (2006), Geiss and Toivola (2007), Tankov and Voltchkova (2008),. . . Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 6
  • 7. Introduction Asymptotically optimal strategies Microstructure effects Regular rebalancings Hedging error Assume first that the hedging portfolio is readjusted at regular time intervals of length h = T n . Zhang (1999) (see also Bertsimas et al ; Hayashi and Mykland) shows that the discretization error En T = T 0 XtdYt − T 0 Xh t/h dYt essentially satisfies lim h→0 nE[(En T )2 ] = T 2 E T 0 ∂2P ∂Y 2 2 σ(s, Ys)4 ds . Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 7
  • 8. Introduction Asymptotically optimal strategies Microstructure effects General strategies Optimal discretization It is intuitively clear that readjusting the portfolio at regular deterministic times is not optimal. Therefore, we want to consider adaptive, path dependent strategies. The relevant questions are then : how big is the discretization error and what are the right rebalancing times for the hedging portfolio ? However, the optimal strategy for fixed n (or fixed cost) is very difficult to compute. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 8
  • 9. Introduction Asymptotically optimal strategies Microstructure effects Outline 1 Introduction 2 Asymptotically optimal strategies 3 Microstructure effects Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 9
  • 10. Introduction Asymptotically optimal strategies Microstructure effects Asymptotic approach Asymptotic criterion We consider an asymptotic approach which enables us to derive asymptotically optimal strategies in quite an easy way. More precisely, the performances of different discretization strategies are compared based on their asymptotic behavior as the number of readjustment dates n tends to infinity, rather than for fixed n. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 10
  • 11. Introduction Asymptotically optimal strategies Microstructure effects Asymptotic approach Discretization A discretization rule is a family of stopping times 0 = Tn 0 < Tn 1 < · · · < Tn j < . . . , with supj |Tn j+1 ∧ T − Tn j ∧ T| → 0 as n → ∞. These stopping times represent the rebalancing dates of the portfolio. Let Xn s = XTn j ∧T for s ∈ (Tn j ∧ T − Tn j+1 ∧ T]. The hedging error En T is given by En T = T 0 XsdYs − T 0 Xn s dYs, with T 0 Xn s dYs = ∞ j=0 XTn j ∧T (YTn j+1∧T − YTn j ∧T ). Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 11
  • 12. Introduction Asymptotically optimal strategies Microstructure effects Asymptotic approach Asymptotic criterion Let Nn T := max{j ≥ 0; Tn j ≤ T}. To compare different discretization strategies in terms of their asymptotic behavior, one can use the following criterion : lim n→∞ E[Nn T ]E[(En T )2 ]. A discretization rule A is considered better than a discretization rule B if the value of the criterion for A is smaller than for B. This criterion is quite natural. The quantity Nn T is viewed as a proxy for transaction costs and so we want it small. On the other hand we also want the error small. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 12
  • 13. Introduction Asymptotically optimal strategies Microstructure effects Dynamics Notation and assumptions We consider the following formalism (we express everything in term of σX t ) for the discretization of T 0 XsdYs : dXt = ψt(σX t )2 dt + σX t dWt, dYt = KtσX t dWt, with all the coefficients bounded (locally). We define admissibility conditions for the rules : supj |Tn j+1 ∧ T − Tn j ∧ T| → 0, supt≤T |Xt − Xn t | ≤ cvn, with vn → 0. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 13
  • 14. Introduction Asymptotically optimal strategies Microstructure effects Lower bound Theorem For any admissible discretization rule, liminf n→+∞ E[Nn T ]E[(En T )2 ] ≥ 1 6 E T 0 Kt(σX t )2 dt 2 . Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 14
  • 15. Introduction Asymptotically optimal strategies Microstructure effects Upper bound Theorem The strategy Tn 0 = 0, Tn j+1 = inf t > Tn j , (Xt − Xn Tn j )2 ≥ hn KTn j , with hn a positive deterministic sequence going to zero, is asymptotically optimal. For the chosen criterion, this improves the regular deterministic rebalancing times strategy by at least a factor 3. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 15
  • 16. Introduction Asymptotically optimal strategies Microstructure effects Upper bound : example Example In the Black-Scholes model : Xt = ∂P(t, Yt) ∂Y , σX t = ∂2P(t, Yt) ∂Y 2 σYt = ΓtσYt. Thus, Kt = 1/Γt and Tn 0 = 0, Tn j+1 = inf t > Tn j , (Xt − Xn Tn j )2 ≥ hnΓTn j , Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 16
  • 17. Introduction Asymptotically optimal strategies Microstructure effects About the preceding approach Limitations The above approach is quite natural and provides very explicit results. However, it fails to take into account important factors of market reality : The criterion is somewhat ad hoc, and does not reflect any specific model for the transaction costs or market impact. The continuity assumption is arguable. What about high frequency microstructure effects ? Further approaches have been proposed to remedy these issues. We discuss here the issue of microstructure effects. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 17
  • 18. Introduction Asymptotically optimal strategies Microstructure effects Outline 1 Introduction 2 Asymptotically optimal strategies 3 Microstructure effects Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 18
  • 19. Introduction Asymptotically optimal strategies Microstructure effects Transaction price and efficient price High frequency effects In the classical mathematical finance theory, the transaction price is assumed to be equal to the efficient/theoretical price, typically modeled by a Brownian semi-martingale. However, in the high frequencies, observed prices largely differ from observations of a semi-martingale. We have to check high frequency effects are negligible when using results obtained in the classical setting. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 19
  • 20. Introduction Asymptotically optimal strategies Microstructure effects Bund contract, one and a half year, one data every hour 0.0 0.2 0.4 0.6 0.8 1.0 112114116118120122124126 Time Bund . Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 20
  • 21. Introduction Asymptotically optimal strategies Microstructure effects Bund contract, whole day and one hour, one data every second time value 0 5000 10000 15000 20000 25000 30000 115.40115.45115.50115.55115.60115.65 time value 0 500 1000 1500 2000 2500 3000 3500 115.46115.48115.50115.52115.54115.56 Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 21
  • 22. Introduction Asymptotically optimal strategies Microstructure effects Our setting Microstructure effects We will work in a model that accommodates the stylized facts of ultra high frequency prices and durations together with a semi-martingale efficient price. In particular, transaction prices will belong to the tick grid. Consequently : Impossibility to buy or sell a share at the efficient price : the microstructure leads to a cost (possibly negative). The transaction price changes a finite number of times on a given time period. Therefore, it is reasonable to assume that one waits for a price change before rebalancing the hedging portfolio. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 22
  • 23. Introduction Asymptotically optimal strategies Microstructure effects Microstructure modeling We want to study microstructure effects. So we need a model describing prices and durations in the high frequencies. In particular, we want : Properties of the microstructure model Discrete prices. Bid-Ask bounce. Stylized facts of returns, durations and volatility. A diffusive behavior at large sampling scales. An interpretation of the model. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 23
  • 24. Introduction Asymptotically optimal strategies Microstructure effects Aversion for price changes Aversion for price changes In an idealistic framework, transactions would occur when the efficient price crosses the tick grid. In practice, uncertainty about the efficient price and aversion for price changes of the market participants. The price changes only when market participants are convinced that the efficient price is far from the last traded price. We introduce a parameter η quantifying this aversion for price changes. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 24
  • 25. Introduction Asymptotically optimal strategies Microstructure effects Model with uncertainty zones Model with uncertainty zones : notation Efficient price : Xt. α : tick value. τi : time of the i-th transaction with price change. Pτi : transaction price at time τi . Uncertainty zones : Uk = [0, ∞) × (dk, uk) with dk = (k + 1/2 − η)α and uk = (k + 1/2 + η)α. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 25
  • 26. Introduction Asymptotically optimal strategies Microstructure effects Model with uncertainty zones Model with uncertainty zones : dynamics d log Xu = audu + σu−dWu. τi+1 = inf t > τi , Xt = X(α) τi ± α( 1 2 + η) , with X (α) τi the value of Xτi rounded to the nearest multiple of α. Pτi = X(α) τi . Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 26
  • 27. Introduction Asymptotically optimal strategies Microstructure effects Model with uncertainty zones101.00101.01101.02101.03101.04101.05101.06 Time Price 10:00:00 10:01:07 10:01:52 10:02:41 10:03:32 10:04:5010:00:00 10:01:00 10:02:00 10:03:00 10:04:00 10:05:00 101.00101.01101.02101.03101.04101.05101.06 Time Price 2ηα α τ0 τ1 τ2 τ3 τ4 τ5 L0 = 1 L1 = 1 L2 = 1 L3 = 1 L4 = 1 L5 = 2 Xτ 0 (α) Xτ 1 (α) Xτ 2 (α) 101.00101.01101.02101.03101.04101.05101.06 Time Price Observed Price Theoretical Price Tick Mid Tick Uncertainty Zone Limit Barriers To Reach 101.00101.01101.02101.03101.04101.05101.06 Time Price Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 27
  • 28. Introduction Asymptotically optimal strategies Microstructure effects Discussion Comments on the model The model reproduces (almost) all the stylized facts of (ultra) high to low frequency financial data. The parameter η quantifies the tick size of the market. A small η (< 1/2) means that for market participants, the tick size is too large and conversely. It can be seen as an implicit spread. The parameter η can be very easily estimated from market data. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 28
  • 29. Introduction Asymptotically optimal strategies Microstructure effects Some properties : Durations q q q q q q q q q 09:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 17:00:00 0.0000.0050.0100.015 Volatility q q q q q q q q q 09:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 17:00:00 050010002000 Duration Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 29
  • 30. Introduction Asymptotically optimal strategies Microstructure effects Some properties : The price q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 10:00:00 10:04:00 10:08:00 10:12:00 10:16:00 10:20:00 10:24:00 10:28:00 99.9100.2100.5 Observedprice q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 10:00:00 10:04:00 10:08:00 10:12:00 10:16:00 10:20:00 10:24:00 10:28:00 99.9100.2100.5 Theoreticalpricee Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 30
  • 31. Introduction Asymptotically optimal strategies Microstructure effects Bund and DAX, estimation of η, October 2010 Day η (Bund) η (FDAX) Day η (Bund) η (FDAX) 1 Oct. 0.18 0.41 18 Oct. 0.16 0.33 5 Oct. 0.15 0.37 19 Oct. 0.13 0.37 6 Oct. 0.15 0.37 20 Oct. 0.13 0.33 7 Oct. 0.15 0.38 21 Oct. 0.15 0.33 8 Oct. 0.15 0.41 22 Oct. 0.11 0.33 11 Oct. 0.14 0.36 25 Oct. 0.12 0.31 12 Oct. 0.14 0.36 26 Oct. 0.14 0.31 13 Oct. 0.14 0.32 27 Oct. 0.14 0.32 14 Oct. 0.16 0.35 28 Oct. 0.14 0.32 15 Oct. 0.16 0.35 29 Oct. 0.14 0.34 Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 31
  • 32. Introduction Asymptotically optimal strategies Microstructure effects Benchmark frictionless hedging strategy Benchmark strategy The benchmark frictionless hedging strategy is those of an agent deciding (possibly wrongly) that the volatility of the efficient price at time t is equal to σ(t, Xt). It leads to a benchmark frictionless hedging portfolio whose value Πt satisfies Πt = C (0, X0) + t 0 ˙Cx (u, Xu) dXu. Note that, if the model is misspecified, Πt is different from the model price C (t, Xt). Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 32
  • 33. Introduction Asymptotically optimal strategies Microstructure effects Hedging strategies in the model with uncertainty zones Hedging strategies in the model with uncertainty zones (1) We naturally impose that the times when the hedging portfolio may be rebalanced are the times where the transaction price moves. Thus, the hedging portfolio can only be rebalanced at the transaction times τi . In this setting, we consider strategies such that, if τi is a rebalancing time, the number of shares in the risky asset at time τi is ˙Cx (τi , Xτi ). Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 33
  • 34. Introduction Asymptotically optimal strategies Microstructure effects Hedging strategies in the model with uncertainty zones Hedging strategies in the model with uncertainty zones (2) We will consider two hedging strategies : The hedging portfolio is rebalanced every time that the transaction price moves. The hedging portfolio is rebalanced only once the transaction price has varied by more than a selected value. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 34
  • 35. Introduction Asymptotically optimal strategies Microstructure effects Components of the hedging error Components of the hedging error In our setting, the microstructural hedging error is due to : Discrete trading : the hedging portfolio is rebalanced a finite number of times. Microstructure on the price : between two rebalancing times, the variation of the market price (multiple of the tick size) differs from the variation of the efficient price. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 35
  • 36. Introduction Asymptotically optimal strategies Microstructure effects Analysis of the hedging error Two steps analysis We analyse this microstructure hedging error in two steps. First, we assume that there is no microstructure effects on the price although the trading times are endogenous (for all i, Pτi = Xτi ). Second, we assume the presence of the microstructure effects and discussed the two hedging strategies. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 36
  • 37. Introduction Asymptotically optimal strategies Microstructure effects Hedging error without microstructure effects on the price Discrete trading error Let φ (t) = sup{τi : τi < t}. In the absence of microstructure effects on the price, the hedging error is given by L (1) α,t = t 0 [ ˙Cx (u, Xu) − ˙Cx (φ (u) , Xφ(u))]dXu. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 37
  • 38. Introduction Asymptotically optimal strategies Microstructure effects Hedging error without microstructure effects on the price Theorem As α tends to 0, N 1/2 α,t L (1) α,t I−Ls → L (1) t := f 1/2 t t 0 c (1) fs dW (1) fs , in D[0, T], where W(1) is a Brownian motion defined on an extension of the filtered probability space (Ω, (Ft)t≥0, P) and independent of all the preceding quantities, and (c (1) s )2 = 1 6 ¨C2 xx (θs, Xθs ) µ4 (χθs ) , ft = t 0 m j=1 pj (χu)j(j − 1 + 2η) −1 σ2 uX2 u du. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 38
  • 39. Introduction Asymptotically optimal strategies Microstructure effects Hedging error with microstructure effects Total hedging error In the presence of microstructure effects on the price, the transaction prices differ from the efficient prices. The hedging error is now given by L (2) α,t = t 0 ˙Cx (u, Xu) dXu − t 0 ˙Cx (φ (u) , Xφ(u))dPu. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 39
  • 40. Introduction Asymptotically optimal strategies Microstructure effects Hedging error with microstructure effects Theorem As α tends to 0, L (2) α,t I−Ls → L (2) t := t 0 b (2) fs dXs + t 0 c (2) fs dW (2) fs , in D[0, T], with b (2) s = (1 − 2η) ˙Cx (θs, Xθs ) µ∗ 1,a (χθs ) ϕ (χθs ) and (c (2) s )2 = (1 − 2η)2 ˙C2 x (θs, Xθs ) ϕ (χθs ) πa (χθs ) ϕ−1 (χθs ) − (µ∗ 1,a (χθs ))2 . Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 40
  • 41. Introduction Asymptotically optimal strategies Microstructure effects Hedging error with microstructure effects Comments The microstructural hedging error process is not renormalized as in the previous case. It means that the hedging error does not vanish even if the number of rebalancing transactions goes to infinity. If η = 1/2, the error due to the microstructure effects on the price vanishes. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 41
  • 42. Introduction Asymptotically optimal strategies Microstructure effects Optimal rebalancing Total hedging error The hedging portfolio is now rebalanced only once the price has varied by lα ticks. The hedging error is given by L (3) α,t = t 0 ˙Cx (u, Xu) dXu − t 0 ˙Cx (φ(l) (u) , Xφ(l)(u))dPu. with φ(l) (t) = sup{τ (l) i : τ (l) i < t} and the τ (l) i are stopping times associated to moves of lα ticks. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 42
  • 43. Introduction Asymptotically optimal strategies Microstructure effects Optimal rebalancing Theorem Let lα = α−1/2. As α tends to 0, we have, (N (l) α,t)1/4 L (3) α,t I−Ls → L (3) t := (f (l) t )1/4 t 0 b (3) f (l) s dXs + t 0 c (3) f (l) s dW (3) f (l) s in D[0, T], with b (3) s = (1 − 2η) 2 ˙Cx (θs, Xθs ) and (c (3) s )2 = (1 − 2η)2 4 ˙C2 x (θs, Xθs ) + 1 6 ¨C2 xx (θs, Xθs ) . Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 43
  • 44. Introduction Asymptotically optimal strategies Microstructure effects Optimal rebalancing Comments This optimal strategy allows to reduce significantly the hedging error in the presence of microstructure effects. The asymptotic variance of the hedging error now depends both on the delta and on the gamma of the derivative security. The optimal lα is of the same order of magnitude as the square root of the number of times where the hedging portfolio is rebalanced. Fukasawa, Robert, Rosenbaum, Tankov Optimal discretization of hedging strategies 44