SlideShare una empresa de Scribd logo
1 de 22
Ruíz Lozano Erik Ricardo 10310380 Ecuaciones Diferenciales
Ecuaciones Diferenciales Homogéneas Son ecuaciones en las que se puede hacer un cambio de variable reduciéndolas para que resulte una ecuación de variable separada. Su forma Ordinaria es: M(x, y)dx + N(x, y)dy = 0
Formas de resolución Existen dos formas de resolver las Ecuaciones Homogéneas; ,[object Object]
Por la suma de los exponentes de cada termino.,[object Object]
Ejemplo Si tuviéramos la siguiente ecuación; F(x, y) = x - 3√(xy + 5y)      * Lo primero es sustituir los términos con «x» y «y» por sus variables con «t» de la siguiente manera: F(tx, ty) = tx - 3√(tx ty + 5ty) * = toda la ecuación entre paréntesis está bajo la raíz cuadrada
Ahora vemos si hay términos que podamos  resolver y factorizar. = tx - 3√(t^2 xy + 5ty) Factorizamos los  dos términos «t» y  los multiplicamos. Resolviendo la raíza quedaría; = tx – 3t √(xy + 5ty
Ahora volvemos a factorizar toda la ecuación: = t (x - 3√(xy + 5y)) Se puede notar que regresamos a la ecuación original, cuando esto ocurre se dice que nuestra ecuación es homogénea y el exponente en la letra «t» nos indicará de que grado es nuestra ecuación. x - 3√(xy + 5y) Ecuación homogénea de primer grado
Método de Suma de exponentes Este otro método es más sencillo pero requiere un poco más de visualización. Supongamos que tenemos la siguiente ecuación: F(x, y) = x2 + 2xy – (y3/x)
Vemos fácilmente que el primer término es de segundo grado. F(x, y) = x2 + 2xy – (y3/x) Para el segundo término vemos que es x por y, ambos de primer grado, al multiplicarlos los exponentes se suman dejando este término también en segundo grado . Finalmente el tercer término se ve que es una y a la tercera potencia mientras que abajo hay una x, no se pueden dividir como tal pero sus exponentes si se pueden restar dejando esta parte hipotéticamente en segundo grado.
Finalmente si sabemos que todos los términos son de segundo grado entonces nuestra ecuación es homogénea y por consiguiente también conocemos de que grado es: F(x, y) = x2 + 2xy – (y3/x) Ecuación homogénea de segundo grado
Resolución de Ecuaciones Homogéneas Ahora bien, lo anterior no es la resolución aún, es solo una forma de saber si la ecuación es homogénea y de que grado. Para resolverla podemos emplear un método en el que mezclemos la solución de las ecuaciones de variables separables; y = uxdy = udx + xdu x = uy	dx = udy + ydu u = x +y 	dy = du - dx
Suponga que tiene la siguiente ecuación; 2x3ydx + (x4y4)dy = 0 Primero como en el ejemplo anterior verificamos si la ecuación es homogénea y de que grado es, la manera más fácil es por la suma de sus exponentes: 2x3ydx + (x4  y4)dy = 0                       3+1=4                             4
Resolviendo… La ecuación es homogénea de cuarto grado, podemos empezar. Lo primero es sustituir alguno de los términos, o «x» o «y», por las ecuaciones en «u», no es realmente importante cual de las dos sustituyamos en este momento; 2x3ydx + (x4 + y4)dy = 0 Sustituyendo las «x» en la ecuación nos quedaría: 2u3y3y(udx +ydu) + (u4y4 + y4)dy = 0
Vemos en la ecuación que hay muchos términos elevados a una potencia por lo que podemos resolverlos al multiplicarlos o dividirlos según nos convenga. 2u3y3y(udx +ydu) + (u4y4 + y4)dy = 0 2u3y4(udx +ydu) + y4(u4 + 1)dy = 0 En la primera parte multiplicamos los dos términos «y» mientras que en la segunda parte la factorizamos.
Ahora que tenemos la ecuación así podemos ver que hay un término en común en las dos partes de la ecuación; la «y4» por lo que podemos dividir toda la ecuación entre este mismo término eliminándolo y haciendo nuestra ecuación más sencilla: 2u3y4(udx +ydu) + y4(u4 + 1)dy = 0 ÷y4 2u3(udx +ydu) + (u4 + 1)dy = 0
Ahora creerás que ya no se puede hacer más pero no es así, viéndolo bien se puede ver que puedes multiplicar los diferenciales por cada término. 2u4dy + 2u3ydu + u4dy + dy = 0 Sumamos algebraicamente términos semejantes: 3u4dy + 2u3ydu + dy = 0
Factorizamos una última vez… 3u4dy + 2u3ydu + dy = 0 (3u4 + 1)dy +2u3ydu = 0 Y ahora colocamos los términos de «dy» de un lado y los términos de «u» en otro (la técnica de variables separables); (dy/y) + (2u3du/3u4+1)
A Integrar… ∫(dy/y) + ∫(2u3du/3u4+1) El primer término es simple de la manera du/u: ∫du/u = Ln |u| + C ∫dy/y = Ln |y| + C
El segundo término quedaría es más complejo, quedaría; (*)  2∫(u3du/3u4 + 1) Donde: m = 3u4 + 1 dm = 12u3du (*) = sacamos el 2 como una constante
Nos hace falta un doce para completar la ecuación y nos damos cuenta de que la integral nos queda también de la forma de du/u, entonces; 2/12 ∫dm/m Simplificamos la ecuación y la unimos con la otra integral quedando como resultado. Ln |y| + 1/6 Ln |3u4 + 1| = C
Resultado Ahora, este no es el resultado final, necesitamos convertir los término en «u», usamos para estos las ecuaciones claves (*); x = uy u = x/y Ln |y| + 1/6 Ln |3(x4/y4) + 1| = C (*) = hay que recordar al momento de sustituir «u» que hay que sustituirla de la ecuación que tomamos, es decir si sustituimos «x» al inicio tenemos que despejar la «u» de esta ecuación.
Centro de Enseñanza Técnica Industrial Ruíz Lozano Erik Ricardo 10310380 Aula 212 Ingeniería Mecatrónica Ecuaciones Diferenciales Profesor M.E. César Octavio Martínez Padilla

Más contenido relacionado

La actualidad más candente

Que es el wronskiano
Que es el wronskianoQue es el wronskiano
Que es el wronskianoEIYSC
 
Ecuaciones Diferenciales Lineales
Ecuaciones Diferenciales LinealesEcuaciones Diferenciales Lineales
Ecuaciones Diferenciales Linealesjosmal 7
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de ordenjackytas7
 
Ecuaciones Diferenciales Homogéneas
Ecuaciones Diferenciales HomogéneasEcuaciones Diferenciales Homogéneas
Ecuaciones Diferenciales HomogéneasFlightshox
 
Ecuaciones diferenciales de bernoulli
Ecuaciones diferenciales de bernoulliEcuaciones diferenciales de bernoulli
Ecuaciones diferenciales de bernoulliAlexCoeto
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1ERICK CONDE
 
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesEcuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesKike Prieto
 
Problemas ondas y sonido
Problemas ondas y sonidoProblemas ondas y sonido
Problemas ondas y sonidogyox27
 
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLSOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLJuan Manuel Garcia Ayala
 
Ecuacion de cauchy euler
Ecuacion de cauchy euler Ecuacion de cauchy euler
Ecuacion de cauchy euler seralb
 
Aplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo ordenAplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo ordenAƞdrea DitƬerǐch
 
Coeficientes indeterminados
Coeficientes indeterminadosCoeficientes indeterminados
Coeficientes indeterminadosRicardo Garibay
 
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccionalSesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccionalJuan Carlos Broncanotorres
 
265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)Manuel Miranda
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónKike Prieto
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)ratix
 
Solucionario de dennis g zill ecuaciones diferenciales
Solucionario de dennis g zill   ecuaciones diferencialesSolucionario de dennis g zill   ecuaciones diferenciales
Solucionario de dennis g zill ecuaciones diferencialesjhonpablo8830
 

La actualidad más candente (20)

Que es el wronskiano
Que es el wronskianoQue es el wronskiano
Que es el wronskiano
 
Ecuaciones Diferenciales Lineales
Ecuaciones Diferenciales LinealesEcuaciones Diferenciales Lineales
Ecuaciones Diferenciales Lineales
 
Ecuaciones diferenciales no lineales
Ecuaciones diferenciales no linealesEcuaciones diferenciales no lineales
Ecuaciones diferenciales no lineales
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de orden
 
Ecuaciones Diferenciales Homogéneas
Ecuaciones Diferenciales HomogéneasEcuaciones Diferenciales Homogéneas
Ecuaciones Diferenciales Homogéneas
 
Formulario de calculo vectorial
Formulario de calculo vectorialFormulario de calculo vectorial
Formulario de calculo vectorial
 
Ecuaciones diferenciales de bernoulli
Ecuaciones diferenciales de bernoulliEcuaciones diferenciales de bernoulli
Ecuaciones diferenciales de bernoulli
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1
 
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesEcuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
 
Problemas ondas y sonido
Problemas ondas y sonidoProblemas ondas y sonido
Problemas ondas y sonido
 
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLSOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
 
Ecuacion de cauchy euler
Ecuacion de cauchy euler Ecuacion de cauchy euler
Ecuacion de cauchy euler
 
Aplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo ordenAplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo orden
 
Coeficientes indeterminados
Coeficientes indeterminadosCoeficientes indeterminados
Coeficientes indeterminados
 
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccionalSesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
 
265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de Solución
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)
 
Solucionario de dennis g zill ecuaciones diferenciales
Solucionario de dennis g zill   ecuaciones diferencialesSolucionario de dennis g zill   ecuaciones diferenciales
Solucionario de dennis g zill ecuaciones diferenciales
 
Ecuaciones Diferenciales
Ecuaciones Diferenciales Ecuaciones Diferenciales
Ecuaciones Diferenciales
 

Similar a Resolución de Ecuaciones Diferenciales Homogéneas

ecuacioneshomogeneas-110223092904-phpapp02 (1).pdf
ecuacioneshomogeneas-110223092904-phpapp02 (1).pdfecuacioneshomogeneas-110223092904-phpapp02 (1).pdf
ecuacioneshomogeneas-110223092904-phpapp02 (1).pdfJesusPerez504434
 
Trabajo terminado de ecuaciones
Trabajo terminado de ecuacionesTrabajo terminado de ecuaciones
Trabajo terminado de ecuacionesjuliocesarmontoya
 
Los dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separablesLos dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separablesge0ser
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasEcuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasweromiky
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasEcuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneascuevashernandez
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales  homogeneasEcuaciones diferenciales  homogeneas
Ecuaciones diferenciales homogeneasbeakker
 
Ecuaciones diferenciale por variables separadas y por homogeneas
Ecuaciones diferenciale por variables separadas y por homogeneasEcuaciones diferenciale por variables separadas y por homogeneas
Ecuaciones diferenciale por variables separadas y por homogeneasLeo Casba
 
Ecuaciones diferenciales blog 2
Ecuaciones diferenciales blog 2Ecuaciones diferenciales blog 2
Ecuaciones diferenciales blog 2alexrosales
 
Métodos de solución de ecuaciones 2x2
Métodos de solución de ecuaciones 2x2Métodos de solución de ecuaciones 2x2
Métodos de solución de ecuaciones 2x2juanchiviriz
 
Ecuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneasEcuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneasjuliocesarmontoya
 
Introducción a las Ecuaciones Diferenciales MA-IV ccesa007
Introducción a las Ecuaciones Diferenciales  MA-IV  ccesa007Introducción a las Ecuaciones Diferenciales  MA-IV  ccesa007
Introducción a las Ecuaciones Diferenciales MA-IV ccesa007Demetrio Ccesa Rayme
 
Ecuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneasEcuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneasge0ser
 

Similar a Resolución de Ecuaciones Diferenciales Homogéneas (20)

ecuacioneshomogeneas-110223092904-phpapp02 (1).pdf
ecuacioneshomogeneas-110223092904-phpapp02 (1).pdfecuacioneshomogeneas-110223092904-phpapp02 (1).pdf
ecuacioneshomogeneas-110223092904-phpapp02 (1).pdf
 
Trabajo terminado de ecuaciones
Trabajo terminado de ecuacionesTrabajo terminado de ecuaciones
Trabajo terminado de ecuaciones
 
Los dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separablesLos dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separables
 
CETI Ecuaciones diferenciales homogéneas
CETI Ecuaciones diferenciales homogéneas CETI Ecuaciones diferenciales homogéneas
CETI Ecuaciones diferenciales homogéneas
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasEcuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneas
 
Trabajo matematica 22 marzo
Trabajo matematica 22 marzoTrabajo matematica 22 marzo
Trabajo matematica 22 marzo
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasEcuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneas
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasEcuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneas
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales  homogeneasEcuaciones diferenciales  homogeneas
Ecuaciones diferenciales homogeneas
 
Ecuaciones diferenciale por variables separadas y por homogeneas
Ecuaciones diferenciale por variables separadas y por homogeneasEcuaciones diferenciale por variables separadas y por homogeneas
Ecuaciones diferenciale por variables separadas y por homogeneas
 
Ecuaciones diferenciales blog 2
Ecuaciones diferenciales blog 2Ecuaciones diferenciales blog 2
Ecuaciones diferenciales blog 2
 
Concepto ecuacion dif...
Concepto  ecuacion dif...Concepto  ecuacion dif...
Concepto ecuacion dif...
 
Métodos de solución de ecuaciones 2x2
Métodos de solución de ecuaciones 2x2Métodos de solución de ecuaciones 2x2
Métodos de solución de ecuaciones 2x2
 
Ecuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneasEcuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneas
 
Ecuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneasEcuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneas
 
02.6 varianza
02.6   varianza02.6   varianza
02.6 varianza
 
02.6 varianza
02.6   varianza02.6   varianza
02.6 varianza
 
Homogeneas
HomogeneasHomogeneas
Homogeneas
 
Introducción a las Ecuaciones Diferenciales MA-IV ccesa007
Introducción a las Ecuaciones Diferenciales  MA-IV  ccesa007Introducción a las Ecuaciones Diferenciales  MA-IV  ccesa007
Introducción a las Ecuaciones Diferenciales MA-IV ccesa007
 
Ecuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneasEcuaciones diferenciales homogéneas
Ecuaciones diferenciales homogéneas
 

Último

III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docxIII SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docxMaritza438836
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesRaquel Martín Contreras
 
Abregú, Podestá. Directores.Líderes en Acción.
Abregú, Podestá. Directores.Líderes en Acción.Abregú, Podestá. Directores.Líderes en Acción.
Abregú, Podestá. Directores.Líderes en Acción.profandrearivero
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicialLorenaSanchez350426
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaLuis Minaya
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...MagalyDacostaPea
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docxMagalyDacostaPea
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajeKattyMoran3
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxLudy Ventocilla Napanga
 
los cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivoslos cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivosOrdinolaSernaquIrene
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsxJuanpm27
 

Último (20)

III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docxIII SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materiales
 
Abregú, Podestá. Directores.Líderes en Acción.
Abregú, Podestá. Directores.Líderes en Acción.Abregú, Podestá. Directores.Líderes en Acción.
Abregú, Podestá. Directores.Líderes en Acción.
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicial
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguaje
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
 
los cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivoslos cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivos
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
 

Resolución de Ecuaciones Diferenciales Homogéneas

  • 1. Ruíz Lozano Erik Ricardo 10310380 Ecuaciones Diferenciales
  • 2. Ecuaciones Diferenciales Homogéneas Son ecuaciones en las que se puede hacer un cambio de variable reduciéndolas para que resulte una ecuación de variable separada. Su forma Ordinaria es: M(x, y)dx + N(x, y)dy = 0
  • 3.
  • 4.
  • 5. Ejemplo Si tuviéramos la siguiente ecuación; F(x, y) = x - 3√(xy + 5y) * Lo primero es sustituir los términos con «x» y «y» por sus variables con «t» de la siguiente manera: F(tx, ty) = tx - 3√(tx ty + 5ty) * = toda la ecuación entre paréntesis está bajo la raíz cuadrada
  • 6. Ahora vemos si hay términos que podamos resolver y factorizar. = tx - 3√(t^2 xy + 5ty) Factorizamos los dos términos «t» y los multiplicamos. Resolviendo la raíza quedaría; = tx – 3t √(xy + 5ty
  • 7. Ahora volvemos a factorizar toda la ecuación: = t (x - 3√(xy + 5y)) Se puede notar que regresamos a la ecuación original, cuando esto ocurre se dice que nuestra ecuación es homogénea y el exponente en la letra «t» nos indicará de que grado es nuestra ecuación. x - 3√(xy + 5y) Ecuación homogénea de primer grado
  • 8. Método de Suma de exponentes Este otro método es más sencillo pero requiere un poco más de visualización. Supongamos que tenemos la siguiente ecuación: F(x, y) = x2 + 2xy – (y3/x)
  • 9. Vemos fácilmente que el primer término es de segundo grado. F(x, y) = x2 + 2xy – (y3/x) Para el segundo término vemos que es x por y, ambos de primer grado, al multiplicarlos los exponentes se suman dejando este término también en segundo grado . Finalmente el tercer término se ve que es una y a la tercera potencia mientras que abajo hay una x, no se pueden dividir como tal pero sus exponentes si se pueden restar dejando esta parte hipotéticamente en segundo grado.
  • 10. Finalmente si sabemos que todos los términos son de segundo grado entonces nuestra ecuación es homogénea y por consiguiente también conocemos de que grado es: F(x, y) = x2 + 2xy – (y3/x) Ecuación homogénea de segundo grado
  • 11. Resolución de Ecuaciones Homogéneas Ahora bien, lo anterior no es la resolución aún, es solo una forma de saber si la ecuación es homogénea y de que grado. Para resolverla podemos emplear un método en el que mezclemos la solución de las ecuaciones de variables separables; y = uxdy = udx + xdu x = uy dx = udy + ydu u = x +y dy = du - dx
  • 12. Suponga que tiene la siguiente ecuación; 2x3ydx + (x4y4)dy = 0 Primero como en el ejemplo anterior verificamos si la ecuación es homogénea y de que grado es, la manera más fácil es por la suma de sus exponentes: 2x3ydx + (x4 y4)dy = 0 3+1=4 4
  • 13. Resolviendo… La ecuación es homogénea de cuarto grado, podemos empezar. Lo primero es sustituir alguno de los términos, o «x» o «y», por las ecuaciones en «u», no es realmente importante cual de las dos sustituyamos en este momento; 2x3ydx + (x4 + y4)dy = 0 Sustituyendo las «x» en la ecuación nos quedaría: 2u3y3y(udx +ydu) + (u4y4 + y4)dy = 0
  • 14. Vemos en la ecuación que hay muchos términos elevados a una potencia por lo que podemos resolverlos al multiplicarlos o dividirlos según nos convenga. 2u3y3y(udx +ydu) + (u4y4 + y4)dy = 0 2u3y4(udx +ydu) + y4(u4 + 1)dy = 0 En la primera parte multiplicamos los dos términos «y» mientras que en la segunda parte la factorizamos.
  • 15. Ahora que tenemos la ecuación así podemos ver que hay un término en común en las dos partes de la ecuación; la «y4» por lo que podemos dividir toda la ecuación entre este mismo término eliminándolo y haciendo nuestra ecuación más sencilla: 2u3y4(udx +ydu) + y4(u4 + 1)dy = 0 ÷y4 2u3(udx +ydu) + (u4 + 1)dy = 0
  • 16. Ahora creerás que ya no se puede hacer más pero no es así, viéndolo bien se puede ver que puedes multiplicar los diferenciales por cada término. 2u4dy + 2u3ydu + u4dy + dy = 0 Sumamos algebraicamente términos semejantes: 3u4dy + 2u3ydu + dy = 0
  • 17. Factorizamos una última vez… 3u4dy + 2u3ydu + dy = 0 (3u4 + 1)dy +2u3ydu = 0 Y ahora colocamos los términos de «dy» de un lado y los términos de «u» en otro (la técnica de variables separables); (dy/y) + (2u3du/3u4+1)
  • 18. A Integrar… ∫(dy/y) + ∫(2u3du/3u4+1) El primer término es simple de la manera du/u: ∫du/u = Ln |u| + C ∫dy/y = Ln |y| + C
  • 19. El segundo término quedaría es más complejo, quedaría; (*) 2∫(u3du/3u4 + 1) Donde: m = 3u4 + 1 dm = 12u3du (*) = sacamos el 2 como una constante
  • 20. Nos hace falta un doce para completar la ecuación y nos damos cuenta de que la integral nos queda también de la forma de du/u, entonces; 2/12 ∫dm/m Simplificamos la ecuación y la unimos con la otra integral quedando como resultado. Ln |y| + 1/6 Ln |3u4 + 1| = C
  • 21. Resultado Ahora, este no es el resultado final, necesitamos convertir los término en «u», usamos para estos las ecuaciones claves (*); x = uy u = x/y Ln |y| + 1/6 Ln |3(x4/y4) + 1| = C (*) = hay que recordar al momento de sustituir «u» que hay que sustituirla de la ecuación que tomamos, es decir si sustituimos «x» al inicio tenemos que despejar la «u» de esta ecuación.
  • 22. Centro de Enseñanza Técnica Industrial Ruíz Lozano Erik Ricardo 10310380 Aula 212 Ingeniería Mecatrónica Ecuaciones Diferenciales Profesor M.E. César Octavio Martínez Padilla