SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
República Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación
Instituto Universitario Politécnico
“Santiago Mariño”
Cátedra: Mecánica de Fluidos II
Realizado por:
Lisbeth del Carmen Lara Hernández
C.I. 15.953.943
Ingeniería Civil
Profesor: Julián Carneiro
FLUJO A PRESION EN
TUBERIAS
• El desarrollo de una descripción analítica de un fluido en
movimiento se basa en la expresión de leyes físicas
relacionadas con el flujo de fluidos, en una forma matemática
apropiada. La mecánica de fluidos en fusión con otras ciencias
se ha encargado del estudio de estos, ésta tarea no ha sido
nada fácil, pero se ha logrado ciertos avances muy importantes
que han sido recogidos en diferentes industrias, en especial, la
industria petrolera.
• Como cada área de estudio tiene su fraseología y
nomenclaturas propias, empezaremos introduciendo
definiciones y conceptos básicos para tener una base de
comunicación.
Los fluidos se definen como
aquellas sustancias que son
incapaces de resistir esfuerzos
cortantes. Cuando sometemos un
cuerpo sólido a la acción de un
sistema de esfuerzos cortantes,
experimenta una deformación bien
definida; por el contrario, los fluidos
se deforman continuamente bajo la
acción de los esfuerzos cortantes.
De una forma muy general,
podemos clasificar los fluidos de
acuerdo con la relación existente
entre el esfuerzo cortante aplicado y
la velocidad de deformación que se
produce en el fluido en:
newtonianos y no newtonianos
FLUIDOS REALES
 Los fluidos reales se distinguen de los ideales en que poseen una
cierta viscosidad, es decir, un rozamiento interior que origina
tensiones tangenciales entre los filetes fluidos.
 Cuando un elemento de fluido se mueve respecto a los elementos
contiguos, este movimiento es obstaculizado por la existencia de
esfuerzos tangenciales o cortantes que tienden a disminuir la
velocidad relativa del elemento considerado con respecto a los
elementos contiguos. Entonces se dice que el fluido es viscoso, y el
fenómeno recibe el nombre de viscosidad
 Además de esto los fluidos reales también poseen una cierta
COMPRESIBILIDAD (los fluidos pueden dividirse en dos tipos
COMPRESIBLES E INCOMPRESIBLES
 Podemos considerar la viscosidad como una especie de
rozamiento interno en los fluidos, en virtud del cual aparecen
esfuerzos cortantes sobre la superficie de un elemento de
fluido en movimiento relativo respecto al resto del fluido.
Tanto los líquidos como los gases presentan viscosidad,
aunque los primeros son mucho más viscosos que los
segundos
Los fluidos
newtonianos, están
basados en la ley de
newton de los fluidos y
que dice que el esfuerzo
tangencial es
proporcional a la tasa de
variación de la
velocidad, con una alta
influencia de la
temperatura, en otras
palabras obedecen a un
cambio en la viscosidad,
newtonianos: agua,
aceites….
Los que no la cumplen se llaman no newtonianos, no
newtonianos: seudoplasticos, elastómeros, resinas, gelatinas,
etc.
FLUIDO NEWTONIANO
n fluido newtoniano es un fluido con viscosidad en que las
tensiones tangenciales de rozamiento son directamente
proporcionales al gradiente de velocidades.
Un buen número de fluidos comunes se comportan como
fluidos newtonianos bajo condiciones normales de presión y
temperatura: el aire, el agua, la gasolina y algunos aceites
minerales .
VISCOSIDAD
La viscosidad es el rozamiento interno
entre las capas de fluido. A causa de la
viscosidad, es necesario ejercer una
fuerza para obligar a una capa de fluido a
deslizar sobre otra
LEY DE LA VISCOSIDAD DE NEWTON
Al comienzo hemos definido los fluidos
como aquellas sustancias que son
incapaces de resistir esfuerzos cortantes.
Cuando sometemos un cuerpo sólido a la
acción de un sistema de esfuerzos
cortantes, experimenta una deformación
bien definida; por el contrario, los fluidos
se deforman continuamente bajo la acción
de los esfuerzos cortantes.
viene expresado por:
(Donde ΔSy es el área del elemento de fluido que está
en contacto con la lámina móvil.)
la ley de la viscosidad de Newton puede expresarse
como
Cuando deseamos calcular el esfuerzo cortante en un fluido, resulta
ciertamente deseable formular una expresión de la velocidad de
deformación dα/dt en función de magnitudes más fácilmente medibles.
Para eso, consideraremos el desplazamiento lineal Δξ experimentado
por la lámina móvil durante el intervalo de tiempo Δt, que vendrá dado
por
Δt y que es el mismo que habrá experimentado la superficie del
elemento de fluido que está en contacto con dicha lámina móvil.
Puesto que el ángulo Δα es muy pequeño, también podemos
escribir
de modo que igualando ambas expresiones se obtiene
y tomando límites en ambos miembros de esta igualdad resulta
de modo que la velocidad de deformación del elemento fluido es igual al
gradiente transversal de velocidad en el mismo. De acuerdo con este
resultado, la ley de viscosidad de Newton se escribe en la forma
Ahora consideraremos una situación algo más general, en la que un
fluido viscoso fluye en régimen laminar, de modo que las partículas
fluidas se mueven con trayectorias rectilíneas y paralelas.
Los esfuerzos cortantes sobre las caras superior e inferior vendrán
expresados por:
Coeficiente de viscosidad.-
Introduciendo un coeficiente de proporcionalidad adecuado para cada
sustancia fluida, la proporcionalidad que expresa la ley de viscosidad de
Newton se convierte en igualdad; esto es:
El coeficiente η recibe el nombre de coeficiente de viscosidad absoluta o
dinámica, o simplemente coeficiente de viscosidad, y representa el cociente
entre el esfuerzo tangencial o cortante y el gradiente transversal de velocidad;
es decir
Los movimientos de circulación de los fluidos se pueden dividir en dos
tipos:
1. Movimientos laminares, o de Poiseuille, que son flujos regulares
en los que la masa fluida esta formada por filetes yuxtapuestos,
perfectamente individualizados, en los que las superficies libres son
lisas y unidas; en realidad sólo se dan en algunos casos muy
particulares o en fluidos muy viscosos; el número de Reynolds en flujos
por el interior de tubos es inferior a 2.000. Debido a esas fuerzas
viscosas las velocidades del fluido en una sección perpendicular a la
corriente no son iguales, pues existe un rozamiento interno.
2. Movimientos turbulentos, o hidráulicos, en los que los filetes
líquidos se entrecruzan no conservan su individualidad; las
superficies libres son turbulentas y estriadas, y son los movimientos
que con más frecuencia se presentan en la práctica.
Puede observarse la transición del flujo laminar al turbulento y la
complejidad del flujo turbulento cuando el humo de un cigarrillo
asciende en aire muy tranquilo. Al principio, sube con un
movimiento laminar a lo largo de líneas de corriente, pero al cabo
de cierta distancia se hace inestable y se forma un sistema de
remolinos entrelazados.
Puede observarse la transición del flujo laminar al turbulento y la
complejidad del flujo turbulento cuando el humo de un cigarrillo
asciende en aire muy tranquilo. Al principio, sube con un
movimiento laminar a lo largo de líneas de corriente, pero al cabo
de cierta distancia se hace inestable y se forma un sistema de
remolinos entrelazados.
Puede observarse la transición del flujo laminar al
turbulento y la complejidad del flujo turbulento cuando
el humo de un cigarrillo asciende en aire muy tranquilo.
Al principio, sube con un movimiento laminar a lo largo
de líneas de corriente, pero al cabo de cierta distancia
se hace inestable y se forma un sistema de remolinos
entrelazados.
Pérdidas continuas
 Las pérdidas por rozamientos son función de la rugosidad del
conducto, de la viscosidad del fluido, del régimen de
funcionamiento (flujo laminar o flujo turbulento) y del caudal
circulante, es decir de la velocidad (a más velocidad, más
pérdidas).
 Si es L la distancia entre los puntos 1 y 2 (medidos a lo largo de
la conducción), entonces el coeficiente (pérdidas (1,2)) / L
representa la pérdida de altura por unidad de longitud de la
conducción se le llama pendiente de la línea de energía.
Denominemosla Jl
 Cuando el flujo es turbulento (número de Reynolds superior a
4.000; 2000<Re< 4000 es el flujo de transición; Re<2000 flujo
laminar), lo que ocurre en la práctica totalidad de los casos,
existen varias fórmulas, tanto teóricas (Ecuación de Darcy-
Weisbach), como experimentales (ecuación de Hazen-Williams,
ecuación de Manning, etc), que relacionan la pendiente de la
línea de energía con la velocidad de circulación del fluido. Quizás
la más sencilla y más utilizada sea la fórmula de Manning:
V = K . R_h^{2/3} . J^{0,5}
V = velocidad del agua (m/s)
K = coeficiente de rugosidad, depende del material de la tubería
y del estado de esta. Existen varias expresiones para este
coeficiente calculados en forma experimental por varios
investigadores como: Manning; Bazin; Kutter; Strickler, entre
otros.
Rh = radio hidráulico de la sección = Área mojada / Perímetro
mojado (un cuarto del diámetro para conductos circulares a
sección llena) (m)
J = gradiente de energía (m/m)
Pérdidas localizadas
En el caso de que entre las dos secciones de aplicación del Principio
de Bernoulli existan puntos en los que la línea de energía sufra
pérdidas localizadas (salidas de depósito, codos, cambios bruscos de
diámetro, válvulas, etc), las correspondientes pérdidas de altura se
suman a las correspondientes por rozamiento. En general, todas las
pérdidas localizadas son solamente función de la velocidad, viniendo
ajustadas mediante expresiones experimentales del tipo:
pl= K x V^2/2g
donde pl es la pérdida localizada
Los coeficientes K se encuentran tabulados en la literatura técnica
especializada, o deben ser proporcionados por los fabricantes de
piezas para conducciones.
Proceso de Calculo
 En el diseño y cálculo práctico de conducciones de agua, se parte de que
la geometría de la conducción, es decir las alturas geométricas h, son
conocidas.
 Se hace coincidir la primera sección de cálculo con un punto en que las
condiciones de velocidad y presión son también conocidas, por ejemplo la
lámina de un depósito (presión nula sobre la presión atmosférica y
velocidad nula).
 Conocida la presión o la velocidad en cualquier otro punto de la conducción
(por ejemplo en un punto de toma, presión nula), aplicando los conceptos
expuestos se puede determinar la velocidad y consecuentemente el
caudal.
 Por supuesto el proceso es iterativo. Inicialmente se supone que el
conjunto de pérdidas localizadas (sumatorio de coeficientes K) es nulo, con
lo que se determina una velocidad inicial de circulación V0. A partir de esta
velocidad se introducen las pérdidas localizadas, obteniendo V1 y así
sucesivamente, hasta que (Vi - Vj) de las dos últimas iteraciones sea tan
pequeño como se desee. Normalmente se obtiene convergencia suficiente
con un par de iteraciones.
Ejemplo Practico
Sea el sistema hidráulico de la figura compuesto por los siguientes elementos:
Depósito de cabecera (1), cuya lámina de agua se supone constante, y a cota
+70,00
Depósito de cola (3), mismas condiciones, cota +20,00
Conducción de unión, PVC, diámetro 300, longitud entre los depósitos 2.000 m
Punto bajo en esta conducción, situado a 1.500 m del depósito de cabecera, a
cota 0,00. Existe una toma con válvula por donde se puede derivar caudal.
En estas condiciones, despreciando las pérdidas localizadas, y admitiendo que
para el PVC el factor (1/n) en la fórmula de Manning vale 100, determinar.
Con la válvula de toma en el punto bajo cerrada, el caudal que fluye del
depósito de cabecera al de cola.
Determinar el máximo valor del caudal que puede evacuarse por el punto bajo
(2) con la condición de que del depósito (3) no entre ni salga agua. En esta
hipótesis, ¿cual es el valor de la presión en (2)?
Determinar el máximo caudal que puede evacuarse por la toma (2)
Primer caso
En la superficie de los depósitos P1=P3=0 (atmosférica). En esos
puntos V1=V3=0 (se supone lámina de agua constante).
Entonces, la aplicación del Principio de Bernoulli al tramo 1-3
expresa: (h1-h3) = pérdidas(1,3) = 50 m
La pérdida por rozamiento J, resultará: J = 50 /2000 = 0,025
Aplicando Manning al conducto :
Q = V.A = 2,85.0,3^2.3,14/4 <> 0,201 m³/s <> 201 l/s
EL MÉTODO DE HARDY CROSS
GENERALIDADES
El Método de Aproximaciones Sucesivas, de Hardy Cross, está basado en
el cumplimiento de dos principios o leyes:
Ley de continuidad de masa en los nudos;
Ley de conservación de la energía en los circuitos.
El planteamiento de esta última ley implica el uso de una ecuación de
pérdida de carga o de "pérdida" de energía, bien sea la ecuación de Hazen
& Williams o, bien, la ecuación de Darcy & Weisbach.
La ecuación de Hazen & Williams, de naturaleza empírica, limitada a
tuberías de diámetro mayor de 2", ha sido, por muchos años, empleada
para calcular las pérdidas de carga en los tramos de tuberías, en la
aplicación del Método de Cross. Ello obedece a que supone un valor
constante par el coeficiente de rugosidad, C, de la superficie interna de la
tubería, lo cual hace más simple el cálculo de las "pérdidas" de energía.
La ecuación de Darcy & Weisbach, de naturaleza racional y de uso
universal, casi nunca se ha empleado acoplada al método de Hardy
Cross, porque involucra el coeficiente de fricción, f, el cual es función
de la rugosidad, k, de la superficie interna del conducto, y el número
de Reynolds, R, de flujo, el que, a su vez depende de la temperatura
y viscosidad del agua, y del caudal del flujo en las tuberías.
Como quiera que el Método de Hardy Cross es un método iterativo
que parte de la suposición de los caudales iniciales en los tramos,
satisfaciendo la Ley de Continuidad de Masa en los nudos, los cuales
corrige sucesivamente con un valor particular, D Q, en cada iteración
se deben calcular los caudales actuales o corregidos en los tramos
de la red. Ello implica el cálculo de los valores de R y f de todos y
cada uno de los tramos de tuberías de la red, lo cual sería inacabable
y agotador si hubiese que "hacerlo a uña" con una calculadora
sencilla. Más aún, sabiendo que el cálculo del coeficiente de fricción,
f, es también iterativo, por aproximaciones sucesiva.
Lo anterior se constituía, hasta hoy, en algo prohibitivo u obstaculizador,
no obstante ser la manera lógica y racional de calcular las redes de
tuberías.
Hoy, esto será no sólo posible y fácil de ejecutar con la ayuda del
programa en lenguaje BASIC que aquí se presenta, sino también
permitirá hacer modificaciones en los diámetros de las tuberías y en los
caudales concentrados en los nudos, y recalcular la red completamente
cuantas veces sea conveniente.

Más contenido relacionado

La actualidad más candente

15 flujo bidimensional
15 flujo bidimensional15 flujo bidimensional
15 flujo bidimensionalkalinna
 
Fluido a presión en tuberías
Fluido a presión en tuberíasFluido a presión en tuberías
Fluido a presión en tuberíasCarlos Campos
 
Flujos de canales abierto
Flujos de canales abiertoFlujos de canales abierto
Flujos de canales abiertofasse bohorquez
 
Flujo en canales abiertos andres sulbaran
Flujo en canales abiertos andres sulbaranFlujo en canales abiertos andres sulbaran
Flujo en canales abiertos andres sulbaranreykko011
 
Flujo en canales abiertos (alberto villalobos 25.189.616)
Flujo en canales abiertos (alberto villalobos 25.189.616)Flujo en canales abiertos (alberto villalobos 25.189.616)
Flujo en canales abiertos (alberto villalobos 25.189.616)Albertojose04
 
Mecánica de fluidos, canales abiertos
Mecánica de fluidos, canales abiertosMecánica de fluidos, canales abiertos
Mecánica de fluidos, canales abiertosnnga08
 
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...I.U.P.S.M
 
Flujo en canales abiertos
Flujo en canales abiertosFlujo en canales abiertos
Flujo en canales abiertosericurdaneta
 
Energia especifica Arianna Gonzalez
Energia especifica Arianna GonzalezEnergia especifica Arianna Gonzalez
Energia especifica Arianna GonzalezAnnaira Rodriguez
 
Manual de hidraulica_de_canales
Manual de hidraulica_de_canalesManual de hidraulica_de_canales
Manual de hidraulica_de_canalesSantiago Astudillo
 
Flujo de fluidos en tuberías
Flujo de fluidos en tuberíasFlujo de fluidos en tuberías
Flujo de fluidos en tuberíasjosedanielbm
 
unidad 4 hidraulica de canales
unidad 4 hidraulica de canales unidad 4 hidraulica de canales
unidad 4 hidraulica de canales flower henandez
 
Capitulo 3 hidraulica
Capitulo 3 hidraulicaCapitulo 3 hidraulica
Capitulo 3 hidraulicaMiguel Rosas
 
Flujo a superficie libre en canales abierto
Flujo a superficie libre en canales abierto Flujo a superficie libre en canales abierto
Flujo a superficie libre en canales abierto Javier Gonzalez
 

La actualidad más candente (20)

15 flujo bidimensional
15 flujo bidimensional15 flujo bidimensional
15 flujo bidimensional
 
Fluido a presión en tuberías
Fluido a presión en tuberíasFluido a presión en tuberías
Fluido a presión en tuberías
 
Flujos de canales abierto
Flujos de canales abiertoFlujos de canales abierto
Flujos de canales abierto
 
Flujo en canales abiertos andres sulbaran
Flujo en canales abiertos andres sulbaranFlujo en canales abiertos andres sulbaran
Flujo en canales abiertos andres sulbaran
 
Flujo bidimensional
Flujo bidimensionalFlujo bidimensional
Flujo bidimensional
 
Flujo en canales abiertos (alberto villalobos 25.189.616)
Flujo en canales abiertos (alberto villalobos 25.189.616)Flujo en canales abiertos (alberto villalobos 25.189.616)
Flujo en canales abiertos (alberto villalobos 25.189.616)
 
Flujo en canales abiertos
Flujo en canales abiertosFlujo en canales abiertos
Flujo en canales abiertos
 
Mecánica de fluidos, canales abiertos
Mecánica de fluidos, canales abiertosMecánica de fluidos, canales abiertos
Mecánica de fluidos, canales abiertos
 
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
 
Flujo en canales abiertos
Flujo en canales abiertosFlujo en canales abiertos
Flujo en canales abiertos
 
Energia especifica Arianna Gonzalez
Energia especifica Arianna GonzalezEnergia especifica Arianna Gonzalez
Energia especifica Arianna Gonzalez
 
Manual de hidraulica_de_canales
Manual de hidraulica_de_canalesManual de hidraulica_de_canales
Manual de hidraulica_de_canales
 
Flujo de fluidos en tuberías
Flujo de fluidos en tuberíasFlujo de fluidos en tuberías
Flujo de fluidos en tuberías
 
Flujo rápidamente variado
Flujo rápidamente variadoFlujo rápidamente variado
Flujo rápidamente variado
 
unidad 4 hidraulica de canales
unidad 4 hidraulica de canales unidad 4 hidraulica de canales
unidad 4 hidraulica de canales
 
Hidraulica
HidraulicaHidraulica
Hidraulica
 
Presentacion mecanica de fluidos ii
Presentacion mecanica de fluidos iiPresentacion mecanica de fluidos ii
Presentacion mecanica de fluidos ii
 
Capitulo 3 hidraulica
Capitulo 3 hidraulicaCapitulo 3 hidraulica
Capitulo 3 hidraulica
 
Flujo a superficie libre en canales abierto
Flujo a superficie libre en canales abierto Flujo a superficie libre en canales abierto
Flujo a superficie libre en canales abierto
 
Flujo a Presión en Tuberías
Flujo a Presión en Tuberías  Flujo a Presión en Tuberías
Flujo a Presión en Tuberías
 

Similar a Flujo en tuberias

Leyes Basicas para un Sistema
Leyes Basicas para un SistemaLeyes Basicas para un Sistema
Leyes Basicas para un SistemaVenus Guerra
 
Mezcla de fluidos
Mezcla de fluidosMezcla de fluidos
Mezcla de fluidosKlaramau
 
Semana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdf
Semana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdfSemana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdf
Semana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdfJulio Lovon
 
002.-.-Presentación Fenómenos de Transporte.pptx
002.-.-Presentación Fenómenos de Transporte.pptx002.-.-Presentación Fenómenos de Transporte.pptx
002.-.-Presentación Fenómenos de Transporte.pptxandrea258169
 
Conceptos Generales del Flujo de Fluidos
Conceptos Generales del Flujo de FluidosConceptos Generales del Flujo de Fluidos
Conceptos Generales del Flujo de Fluidosgerardo_mtz
 
Clasificaciondeflujos
ClasificaciondeflujosClasificaciondeflujos
Clasificaciondeflujosonsepulvedas
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoKaren M. Guillén
 
Banco de [1]..
Banco de [1]..Banco de [1]..
Banco de [1]..WeDgUnI
 
Informe laminar turbulento y capilaridad
Informe laminar turbulento y capilaridadInforme laminar turbulento y capilaridad
Informe laminar turbulento y capilaridadxforce89
 
Informe laminar turbulento y capilaridad
Informe laminar turbulento y capilaridadInforme laminar turbulento y capilaridad
Informe laminar turbulento y capilaridadxforce89
 

Similar a Flujo en tuberias (20)

Fisica- Hidrodinamica
Fisica- HidrodinamicaFisica- Hidrodinamica
Fisica- Hidrodinamica
 
Leyes Basicas para un Sistema
Leyes Basicas para un SistemaLeyes Basicas para un Sistema
Leyes Basicas para un Sistema
 
Mezcla de fluidos
Mezcla de fluidosMezcla de fluidos
Mezcla de fluidos
 
Trabajo de fisicaii
Trabajo de fisicaiiTrabajo de fisicaii
Trabajo de fisicaii
 
Fluidos u. 1
Fluidos u. 1Fluidos u. 1
Fluidos u. 1
 
Cuadro de la semana
Cuadro de la semanaCuadro de la semana
Cuadro de la semana
 
Fisica. fluidos
Fisica. fluidosFisica. fluidos
Fisica. fluidos
 
Semana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdf
Semana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdfSemana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdf
Semana 5-6 - Fluidos - Resistencia al flujo en ductos circulares.pdf
 
INFORME #11 PROCESOS 2.pdf
INFORME #11 PROCESOS 2.pdfINFORME #11 PROCESOS 2.pdf
INFORME #11 PROCESOS 2.pdf
 
Viscosidad charito
Viscosidad charitoViscosidad charito
Viscosidad charito
 
Unidad 2 mecanismos
Unidad 2 mecanismosUnidad 2 mecanismos
Unidad 2 mecanismos
 
002.-.-Presentación Fenómenos de Transporte.pptx
002.-.-Presentación Fenómenos de Transporte.pptx002.-.-Presentación Fenómenos de Transporte.pptx
002.-.-Presentación Fenómenos de Transporte.pptx
 
Conceptos Generales del Flujo de Fluidos
Conceptos Generales del Flujo de FluidosConceptos Generales del Flujo de Fluidos
Conceptos Generales del Flujo de Fluidos
 
Tema 1
Tema 1Tema 1
Tema 1
 
Antologia viscosidad.
Antologia viscosidad.Antologia viscosidad.
Antologia viscosidad.
 
Clasificaciondeflujos
ClasificaciondeflujosClasificaciondeflujos
Clasificaciondeflujos
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimiento
 
Banco de [1]..
Banco de [1]..Banco de [1]..
Banco de [1]..
 
Informe laminar turbulento y capilaridad
Informe laminar turbulento y capilaridadInforme laminar turbulento y capilaridad
Informe laminar turbulento y capilaridad
 
Informe laminar turbulento y capilaridad
Informe laminar turbulento y capilaridadInforme laminar turbulento y capilaridad
Informe laminar turbulento y capilaridad
 

Último

DIAGRAMAS PID automatizacion y control.ppt
DIAGRAMAS PID automatizacion y control.pptDIAGRAMAS PID automatizacion y control.ppt
DIAGRAMAS PID automatizacion y control.pptalisonsarmiento4
 
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfSegundo Silva Maguiña
 
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdfMirkaCBauer
 
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPODIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPOSegundo Silva Maguiña
 
subestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicassubestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicaszaydaescalona
 
Matematica Basica Limites indeterminados
Matematica Basica Limites indeterminadosMatematica Basica Limites indeterminados
Matematica Basica Limites indeterminadosSALVADOR ALTEZ PALOMINO
 
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxAnonymousk8JgrnuMSr
 
TYPP_Industrialización del Petróleo.pptx
TYPP_Industrialización del Petróleo.pptxTYPP_Industrialización del Petróleo.pptx
TYPP_Industrialización del Petróleo.pptxLilibethBallesteros1
 
Myoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdf
Myoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdfMyoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdf
Myoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdfFtimaMontserratZaraz
 
Presentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdfPresentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdffernandolozano90
 
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA  Multiproposito TIPO IP.pdfFicha Técnica -Cemento YURA  Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdfEdgard Ampuero Cayo
 
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJHInmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJHVivafornai
 
Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...
Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...
Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...DayanaNivela
 
UNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxUNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxElybe Hernandez
 
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...jose880240
 
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSTEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSCarlosHuamulloDavila1
 
REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...
REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...
REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...p39961945
 
Trabajo de cristalografia. año 2024 mes de mayo
Trabajo de cristalografia. año 2024 mes de mayoTrabajo de cristalografia. año 2024 mes de mayo
Trabajo de cristalografia. año 2024 mes de mayoAntonioCardenas58
 
Sesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obrasSesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obrasBildStrify1
 

Último (20)

DIAGRAMAS PID automatizacion y control.ppt
DIAGRAMAS PID automatizacion y control.pptDIAGRAMAS PID automatizacion y control.ppt
DIAGRAMAS PID automatizacion y control.ppt
 
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
 
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
 
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPODIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
 
subestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicassubestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicas
 
Matematica Basica Limites indeterminados
Matematica Basica Limites indeterminadosMatematica Basica Limites indeterminados
Matematica Basica Limites indeterminados
 
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
 
TYPP_Industrialización del Petróleo.pptx
TYPP_Industrialización del Petróleo.pptxTYPP_Industrialización del Petróleo.pptx
TYPP_Industrialización del Petróleo.pptx
 
Myoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdf
Myoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdfMyoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdf
Myoelectric_Control_for_Upper_Limb_Prostheses.en.es (2).pdf
 
Presentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdfPresentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdf
 
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA  Multiproposito TIPO IP.pdfFicha Técnica -Cemento YURA  Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
 
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJHInmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
 
50870516-hidroponia. descargado en novppt
50870516-hidroponia. descargado en novppt50870516-hidroponia. descargado en novppt
50870516-hidroponia. descargado en novppt
 
Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...
Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...
Infografía Cronológica de Descubrimientos y Avances Tecnológicos Simple Paste...
 
UNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxUNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptx
 
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
 
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSTEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
 
REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...
REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...
REAJUSTE DE PRECIOS EN LOS CONTRATOS ADMINISTRATIVOS DE OBRA PUBLICA PACTADOS...
 
Trabajo de cristalografia. año 2024 mes de mayo
Trabajo de cristalografia. año 2024 mes de mayoTrabajo de cristalografia. año 2024 mes de mayo
Trabajo de cristalografia. año 2024 mes de mayo
 
Sesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obrasSesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obras
 

Flujo en tuberias

  • 1. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Instituto Universitario Politécnico “Santiago Mariño” Cátedra: Mecánica de Fluidos II Realizado por: Lisbeth del Carmen Lara Hernández C.I. 15.953.943 Ingeniería Civil Profesor: Julián Carneiro FLUJO A PRESION EN TUBERIAS
  • 2. • El desarrollo de una descripción analítica de un fluido en movimiento se basa en la expresión de leyes físicas relacionadas con el flujo de fluidos, en una forma matemática apropiada. La mecánica de fluidos en fusión con otras ciencias se ha encargado del estudio de estos, ésta tarea no ha sido nada fácil, pero se ha logrado ciertos avances muy importantes que han sido recogidos en diferentes industrias, en especial, la industria petrolera. • Como cada área de estudio tiene su fraseología y nomenclaturas propias, empezaremos introduciendo definiciones y conceptos básicos para tener una base de comunicación.
  • 3. Los fluidos se definen como aquellas sustancias que son incapaces de resistir esfuerzos cortantes. Cuando sometemos un cuerpo sólido a la acción de un sistema de esfuerzos cortantes, experimenta una deformación bien definida; por el contrario, los fluidos se deforman continuamente bajo la acción de los esfuerzos cortantes. De una forma muy general, podemos clasificar los fluidos de acuerdo con la relación existente entre el esfuerzo cortante aplicado y la velocidad de deformación que se produce en el fluido en: newtonianos y no newtonianos
  • 4. FLUIDOS REALES  Los fluidos reales se distinguen de los ideales en que poseen una cierta viscosidad, es decir, un rozamiento interior que origina tensiones tangenciales entre los filetes fluidos.  Cuando un elemento de fluido se mueve respecto a los elementos contiguos, este movimiento es obstaculizado por la existencia de esfuerzos tangenciales o cortantes que tienden a disminuir la velocidad relativa del elemento considerado con respecto a los elementos contiguos. Entonces se dice que el fluido es viscoso, y el fenómeno recibe el nombre de viscosidad
  • 5.  Además de esto los fluidos reales también poseen una cierta COMPRESIBILIDAD (los fluidos pueden dividirse en dos tipos COMPRESIBLES E INCOMPRESIBLES  Podemos considerar la viscosidad como una especie de rozamiento interno en los fluidos, en virtud del cual aparecen esfuerzos cortantes sobre la superficie de un elemento de fluido en movimiento relativo respecto al resto del fluido. Tanto los líquidos como los gases presentan viscosidad, aunque los primeros son mucho más viscosos que los segundos
  • 6. Los fluidos newtonianos, están basados en la ley de newton de los fluidos y que dice que el esfuerzo tangencial es proporcional a la tasa de variación de la velocidad, con una alta influencia de la temperatura, en otras palabras obedecen a un cambio en la viscosidad, newtonianos: agua, aceites….
  • 7. Los que no la cumplen se llaman no newtonianos, no newtonianos: seudoplasticos, elastómeros, resinas, gelatinas, etc. FLUIDO NEWTONIANO n fluido newtoniano es un fluido con viscosidad en que las tensiones tangenciales de rozamiento son directamente proporcionales al gradiente de velocidades. Un buen número de fluidos comunes se comportan como fluidos newtonianos bajo condiciones normales de presión y temperatura: el aire, el agua, la gasolina y algunos aceites minerales .
  • 8. VISCOSIDAD La viscosidad es el rozamiento interno entre las capas de fluido. A causa de la viscosidad, es necesario ejercer una fuerza para obligar a una capa de fluido a deslizar sobre otra
  • 9. LEY DE LA VISCOSIDAD DE NEWTON Al comienzo hemos definido los fluidos como aquellas sustancias que son incapaces de resistir esfuerzos cortantes. Cuando sometemos un cuerpo sólido a la acción de un sistema de esfuerzos cortantes, experimenta una deformación bien definida; por el contrario, los fluidos se deforman continuamente bajo la acción de los esfuerzos cortantes. viene expresado por:
  • 10. (Donde ΔSy es el área del elemento de fluido que está en contacto con la lámina móvil.) la ley de la viscosidad de Newton puede expresarse como
  • 11. Cuando deseamos calcular el esfuerzo cortante en un fluido, resulta ciertamente deseable formular una expresión de la velocidad de deformación dα/dt en función de magnitudes más fácilmente medibles. Para eso, consideraremos el desplazamiento lineal Δξ experimentado por la lámina móvil durante el intervalo de tiempo Δt, que vendrá dado por
  • 12. Δt y que es el mismo que habrá experimentado la superficie del elemento de fluido que está en contacto con dicha lámina móvil. Puesto que el ángulo Δα es muy pequeño, también podemos escribir
  • 13. de modo que igualando ambas expresiones se obtiene y tomando límites en ambos miembros de esta igualdad resulta
  • 14. de modo que la velocidad de deformación del elemento fluido es igual al gradiente transversal de velocidad en el mismo. De acuerdo con este resultado, la ley de viscosidad de Newton se escribe en la forma Ahora consideraremos una situación algo más general, en la que un fluido viscoso fluye en régimen laminar, de modo que las partículas fluidas se mueven con trayectorias rectilíneas y paralelas.
  • 15. Los esfuerzos cortantes sobre las caras superior e inferior vendrán expresados por:
  • 16. Coeficiente de viscosidad.- Introduciendo un coeficiente de proporcionalidad adecuado para cada sustancia fluida, la proporcionalidad que expresa la ley de viscosidad de Newton se convierte en igualdad; esto es:
  • 17. El coeficiente η recibe el nombre de coeficiente de viscosidad absoluta o dinámica, o simplemente coeficiente de viscosidad, y representa el cociente entre el esfuerzo tangencial o cortante y el gradiente transversal de velocidad; es decir
  • 18. Los movimientos de circulación de los fluidos se pueden dividir en dos tipos: 1. Movimientos laminares, o de Poiseuille, que son flujos regulares en los que la masa fluida esta formada por filetes yuxtapuestos, perfectamente individualizados, en los que las superficies libres son lisas y unidas; en realidad sólo se dan en algunos casos muy particulares o en fluidos muy viscosos; el número de Reynolds en flujos por el interior de tubos es inferior a 2.000. Debido a esas fuerzas viscosas las velocidades del fluido en una sección perpendicular a la corriente no son iguales, pues existe un rozamiento interno.
  • 19. 2. Movimientos turbulentos, o hidráulicos, en los que los filetes líquidos se entrecruzan no conservan su individualidad; las superficies libres son turbulentas y estriadas, y son los movimientos que con más frecuencia se presentan en la práctica. Puede observarse la transición del flujo laminar al turbulento y la complejidad del flujo turbulento cuando el humo de un cigarrillo asciende en aire muy tranquilo. Al principio, sube con un movimiento laminar a lo largo de líneas de corriente, pero al cabo de cierta distancia se hace inestable y se forma un sistema de remolinos entrelazados. Puede observarse la transición del flujo laminar al turbulento y la complejidad del flujo turbulento cuando el humo de un cigarrillo asciende en aire muy tranquilo. Al principio, sube con un movimiento laminar a lo largo de líneas de corriente, pero al cabo de cierta distancia se hace inestable y se forma un sistema de remolinos entrelazados.
  • 20. Puede observarse la transición del flujo laminar al turbulento y la complejidad del flujo turbulento cuando el humo de un cigarrillo asciende en aire muy tranquilo. Al principio, sube con un movimiento laminar a lo largo de líneas de corriente, pero al cabo de cierta distancia se hace inestable y se forma un sistema de remolinos entrelazados.
  • 21. Pérdidas continuas  Las pérdidas por rozamientos son función de la rugosidad del conducto, de la viscosidad del fluido, del régimen de funcionamiento (flujo laminar o flujo turbulento) y del caudal circulante, es decir de la velocidad (a más velocidad, más pérdidas).  Si es L la distancia entre los puntos 1 y 2 (medidos a lo largo de la conducción), entonces el coeficiente (pérdidas (1,2)) / L representa la pérdida de altura por unidad de longitud de la conducción se le llama pendiente de la línea de energía. Denominemosla Jl
  • 22.  Cuando el flujo es turbulento (número de Reynolds superior a 4.000; 2000<Re< 4000 es el flujo de transición; Re<2000 flujo laminar), lo que ocurre en la práctica totalidad de los casos, existen varias fórmulas, tanto teóricas (Ecuación de Darcy- Weisbach), como experimentales (ecuación de Hazen-Williams, ecuación de Manning, etc), que relacionan la pendiente de la línea de energía con la velocidad de circulación del fluido. Quizás la más sencilla y más utilizada sea la fórmula de Manning:
  • 23. V = K . R_h^{2/3} . J^{0,5} V = velocidad del agua (m/s) K = coeficiente de rugosidad, depende del material de la tubería y del estado de esta. Existen varias expresiones para este coeficiente calculados en forma experimental por varios investigadores como: Manning; Bazin; Kutter; Strickler, entre otros. Rh = radio hidráulico de la sección = Área mojada / Perímetro mojado (un cuarto del diámetro para conductos circulares a sección llena) (m) J = gradiente de energía (m/m)
  • 24. Pérdidas localizadas En el caso de que entre las dos secciones de aplicación del Principio de Bernoulli existan puntos en los que la línea de energía sufra pérdidas localizadas (salidas de depósito, codos, cambios bruscos de diámetro, válvulas, etc), las correspondientes pérdidas de altura se suman a las correspondientes por rozamiento. En general, todas las pérdidas localizadas son solamente función de la velocidad, viniendo ajustadas mediante expresiones experimentales del tipo: pl= K x V^2/2g donde pl es la pérdida localizada Los coeficientes K se encuentran tabulados en la literatura técnica especializada, o deben ser proporcionados por los fabricantes de piezas para conducciones.
  • 25. Proceso de Calculo  En el diseño y cálculo práctico de conducciones de agua, se parte de que la geometría de la conducción, es decir las alturas geométricas h, son conocidas.  Se hace coincidir la primera sección de cálculo con un punto en que las condiciones de velocidad y presión son también conocidas, por ejemplo la lámina de un depósito (presión nula sobre la presión atmosférica y velocidad nula).  Conocida la presión o la velocidad en cualquier otro punto de la conducción (por ejemplo en un punto de toma, presión nula), aplicando los conceptos expuestos se puede determinar la velocidad y consecuentemente el caudal.
  • 26.  Por supuesto el proceso es iterativo. Inicialmente se supone que el conjunto de pérdidas localizadas (sumatorio de coeficientes K) es nulo, con lo que se determina una velocidad inicial de circulación V0. A partir de esta velocidad se introducen las pérdidas localizadas, obteniendo V1 y así sucesivamente, hasta que (Vi - Vj) de las dos últimas iteraciones sea tan pequeño como se desee. Normalmente se obtiene convergencia suficiente con un par de iteraciones.
  • 27. Ejemplo Practico Sea el sistema hidráulico de la figura compuesto por los siguientes elementos: Depósito de cabecera (1), cuya lámina de agua se supone constante, y a cota +70,00 Depósito de cola (3), mismas condiciones, cota +20,00 Conducción de unión, PVC, diámetro 300, longitud entre los depósitos 2.000 m Punto bajo en esta conducción, situado a 1.500 m del depósito de cabecera, a cota 0,00. Existe una toma con válvula por donde se puede derivar caudal. En estas condiciones, despreciando las pérdidas localizadas, y admitiendo que para el PVC el factor (1/n) en la fórmula de Manning vale 100, determinar. Con la válvula de toma en el punto bajo cerrada, el caudal que fluye del depósito de cabecera al de cola. Determinar el máximo valor del caudal que puede evacuarse por el punto bajo (2) con la condición de que del depósito (3) no entre ni salga agua. En esta hipótesis, ¿cual es el valor de la presión en (2)? Determinar el máximo caudal que puede evacuarse por la toma (2)
  • 28.
  • 29. Primer caso En la superficie de los depósitos P1=P3=0 (atmosférica). En esos puntos V1=V3=0 (se supone lámina de agua constante). Entonces, la aplicación del Principio de Bernoulli al tramo 1-3 expresa: (h1-h3) = pérdidas(1,3) = 50 m La pérdida por rozamiento J, resultará: J = 50 /2000 = 0,025 Aplicando Manning al conducto : Q = V.A = 2,85.0,3^2.3,14/4 <> 0,201 m³/s <> 201 l/s
  • 30. EL MÉTODO DE HARDY CROSS GENERALIDADES El Método de Aproximaciones Sucesivas, de Hardy Cross, está basado en el cumplimiento de dos principios o leyes: Ley de continuidad de masa en los nudos; Ley de conservación de la energía en los circuitos. El planteamiento de esta última ley implica el uso de una ecuación de pérdida de carga o de "pérdida" de energía, bien sea la ecuación de Hazen & Williams o, bien, la ecuación de Darcy & Weisbach. La ecuación de Hazen & Williams, de naturaleza empírica, limitada a tuberías de diámetro mayor de 2", ha sido, por muchos años, empleada para calcular las pérdidas de carga en los tramos de tuberías, en la aplicación del Método de Cross. Ello obedece a que supone un valor constante par el coeficiente de rugosidad, C, de la superficie interna de la tubería, lo cual hace más simple el cálculo de las "pérdidas" de energía.
  • 31. La ecuación de Darcy & Weisbach, de naturaleza racional y de uso universal, casi nunca se ha empleado acoplada al método de Hardy Cross, porque involucra el coeficiente de fricción, f, el cual es función de la rugosidad, k, de la superficie interna del conducto, y el número de Reynolds, R, de flujo, el que, a su vez depende de la temperatura y viscosidad del agua, y del caudal del flujo en las tuberías. Como quiera que el Método de Hardy Cross es un método iterativo que parte de la suposición de los caudales iniciales en los tramos, satisfaciendo la Ley de Continuidad de Masa en los nudos, los cuales corrige sucesivamente con un valor particular, D Q, en cada iteración se deben calcular los caudales actuales o corregidos en los tramos de la red. Ello implica el cálculo de los valores de R y f de todos y cada uno de los tramos de tuberías de la red, lo cual sería inacabable y agotador si hubiese que "hacerlo a uña" con una calculadora sencilla. Más aún, sabiendo que el cálculo del coeficiente de fricción, f, es también iterativo, por aproximaciones sucesiva.
  • 32. Lo anterior se constituía, hasta hoy, en algo prohibitivo u obstaculizador, no obstante ser la manera lógica y racional de calcular las redes de tuberías. Hoy, esto será no sólo posible y fácil de ejecutar con la ayuda del programa en lenguaje BASIC que aquí se presenta, sino también permitirá hacer modificaciones en los diámetros de las tuberías y en los caudales concentrados en los nudos, y recalcular la red completamente cuantas veces sea conveniente.