SlideShare una empresa de Scribd logo
1 de 25
Descargar para leer sin conexión
1
Metal Oxide Semiconductor
Field Effect Transistor (MOSFET)
Structure:
metal oxide
semiconductor
p+
n n
S G D
2
MOSFET operation
p+
n n
S
G
D
If VG=0
n
Assuming VD=high, VS=0
No current
3
p+
n n
S
G
D
If VG=high
n
+ + + +
An n type channel
is formed
Now if VD=high, there is a current
flow between D and S
Gate voltage attracts
electrons and pushes
holes away
MOSFET operation
4
MOSFET structures and circuit symbols
p- type substr ate
Sour ce Dr ai n
Gate
Substr ate
Si O2
Dr ai n
Sour ce Sour ce
Dr ai n
Gate
Sour ce
Dr ai n
Bul k
Channel
Depl eti on r egi on
n
+
n+
(a) (b) (d)(c)
(a) Schematic structure of n-channel MOSFET (NMOS) and
circuit symbols for (b) MOSFET, (c) n-channel MOSFET, and (d)
n-channel MOSFET when the bulk (substrate) potential has to
be specified in a circuit.
5
Complementary MOSFET pairs
Schematic structure of Complementary MOSFET (CMOS) and
circuit symbols for p-channel MOSFET (PMOS). Minuses and
pluses show the depletion regions.
p- type substr at e
n
+
Sour ce Dr ai n
Gate
Subst r ate
Si O2
Sour ce
Dr ai n
Gate
Sour ce
Dr ai n
Bul k
p
+
n- channel p- channel
n- type wel l
Si O2
6
Sub-threshold mode of MOSFET operation
• VG = 0; the MOSFET conducting channel
is not formed
Ec
EF
²E F1
²E F2
Channel
Source Drain
Energy
Distance
In the subthreshold regime, the MOSFET current is a small reverse current
through the source – substrate and drain – substrate p-n junctions;
Only a small number of electrons can pass over the potential barrier
separating the drain and the source.
VG = 0
higher VG
ΦB
( / )B kT
ST Sourcen n e− Φ
≈ ×
7
In the sub-threshold regime, the channel current is very low and increases
exponentially with the gate bias.
DrainSource
VG1
VG2
VG3
VG1<VG2<VG3
Gate-source voltage (V)
1.81.41.00.60.2-0.2
0
-10
-8
-6
10 2
-4
-2 0.05 V
V ds = 3.0 V
I t10
10
10
10
10
10
Sub-threshold mode of MOSFET operation
( / )B kT
ST Sourcen n e− Φ
≈ ×
8
At certain gate bias called the threshold voltage, the conductivity type under
the gate inverts and the barrier between the Source and the Drain
disappears.
Electrons can enter the region under the gate to form a
conducting n-channel.
At the gate voltages above the threshold, the gate and the channel form a
Metal-Insulator-Semiconductor (MIS) capacitor.
DrainSource
VG1
VG2
VG3
VG1<VG2<VG3
Gate-source voltage (V)
1.81.41.00.60.2-0.2
0
-10
-8
-6
10 2
-4
-2 0.05 V
V ds = 3.0 V
I t10
10
10
10
10
10
MOSFET threshold voltage
VT
9
The free electron charge in the MOSFET channel (per unit area):
Q1 = CGATE × (VG – VT)
(assuming that at VG = VT the free electron concentration is zero)
MOSFET above the threshold voltage
qns = ci VGS − VT( )= ciVGT
0/ /i i i ir ic d dε ε ε= =
The sheet electron concentration above the threshold, nS is given by:
In MOSFETs, the gate and channel form a MIS-capacitor,
hence the capacitance per unit gate area
εi = εir ε0 is the total dielectric permittivity of the gate dielectric
(usually, SiO2), εir is the relative dielectric permittivity of the gate dielectric.
Total gate capacitance CG = ci ×A, where A is the gate area
10
Above the threshold, the sheet electron concentration and hence
the channel current increase linearly with the gate bias VG.
Gate-source voltage (V)
1.81.41.00.60.2-0.2
0
-10
-8
-6
10 2
-4
-2 0.05 V
V ds = 3.0 V
I t10
10
10
10
10
10
MOSFET above the threshold voltage
qns = ci VGS − VT( )= ciVGT
11
MOSFET Threshold Voltage
semiconductor
metal oxide
p+
n n
S G D
DrainSource
12
Band Diagram at the MOS interfaces
metal
oxide
p+
n
n
Before Contact
EC
EV
EFs
Ei
Vacuum level
OXIDEMETAL SEMICONDUCTOR
EFm
EC
EV
qφm
Eg
q χox
q χsq χs qφs
13
p+
n
n
After Contact
OXIDEMETAL SEMICONDUCTOR
EC
EV
EFs
Ei
EFm
EC
EV
EC
EV
EFs
Ei
EFm
EC
EV
Metal and semiconductor Fermi levels align by
electron transfer. Bending is the result of the
presence of transferred electron
14
VG>0
p
+
n
n
VG
EC
EV
EFs
Ei
EFm
EC
EV
VG
VG<VFB
EC
EV
EFs
Ei
EFm
EC
EV
VG
VG=VFB
EC
EV
EFs
Ei
EFm
EC
EV
VG
Flat band Voltage
Gate voltage making the band flat
VFB= φm-φs
15
Conductivity conversion in MOSFET
EC
EV
EFs
Ei
VG=0
p
+
VG
n
n
EC
EV
EFs
Ei
VG ↑
p
+
VG
n
n
Less holes at the
interface, more
bending
p typeLess p type
More depletion
16
EC
EV
EFs
Ei
VG ↑ ↑
p
+
VG
n
n
p typeLess p type
n type Inversion
EC
EV
EFs
Ei
VG ↑ ↑ ↑
p
+
VG
n
n
p typeLess p type
n type Strong Inversion
Onset of
Channel
creation
Channel
created
17
Inversion condition in MOSFET
EC
EV
EFs
Ei
qφb
qVs
Surface potential Vs
is controlled by the gate voltage
Accumulation
Vs<0
Depletion
Vs<φb
Onset of inversion
Vs=φb
Inversion
Vs>φb
Strong Inversion
Vs>2φb
bq
kT
ip n e
φ
=
Equilibrium hole concentration in the bulk of semiconductor
qφb is the Fermi level offset from
the mid-gap in the bulk material
When Vs = 2φb, n-concentration at the surface
is the same as p-concentration in the bulk
18
Surface potential required to reach
the MOSFET threshold
When Vs = 2φb, n-concentration at the surface
is the same as p-concentration in the bulk
bq
kT
ip n e
φ
=
EC
EV
EFs
Ei
VsT=2φb
φb
φb
bq
kT
in n e
φ
=
19
Surface potential and gate voltage
EC
EV
EFs
Ei
EFm
EC
EV
VG
Vi
Vs
• VG is the gate voltage, as source is grounded,
VG=VGS
• Vi is the voltage drop across the oxide/insulator
• Vs is the surface potential
GS FB s iV V V V= + +
20
Voltage drop across the oxide layer
EC
EV
EFs
Ei
EFm
EC
EV
VG
Vi
Vs
Vi is the voltage drop across the oxide/insulator
GS FB s iV V V V= + +
d
i
i
Q
V
C
=
where Qd is the capacitor charge and Ci is the capacitance.
Since the charges on the metal and semiconductor plates are the same,
Qd can be calculated as the charge in semiconductor.
The semiconductor charge is formed by the charge of the depletion region
Gate electrode and semiconductor form the
plates of the MOS capacitor.
Voltage drop across the capacitor:
21
Voltage drop across the oxide layer
EC
EV
EFs
Ei
EFm
EC
EV
VG
Vi
Vs
The relation between the depletion region width W and
the applied voltage Vs:
2d s a sQ qN Vε→ =
2
2
a
s
s
q N W
V
ε
=
2 s
a
V
W
qN
ε
=Form this,
2 s
d a a
a
V
Q qN W qN
qN
ε
= =
The depletion region charge (per unit area):
22
Voltage drop across the oxide layer
EC
EV
EFs
Ei
EFm
EC
EV
VG
Vi
Vs
d
i
i
Q
V
c
=
is the depletion region charge per unit area,
ci is the MOS-capacitor capacitance per unit area:
sasd VqN2Q,where ε=
di is the thickness of the oxide film under the gate
i
i
i
c
d
ε
=
23
MOSFET threshold voltage (cont.)
2 s a s
GS FB s
i
qN V
V V V
c
ε
= + +
At the onset of strong inversion:
( )
( )2 2
2 s a b
T FB b
i
qN
V V
c
ε φ
φ= + +
2 2
NT FB b bV V ϕ γ ϕ= + +
Finally, the threshold voltage,
2
N s a iqN c/γ ε=where the body effect constant,
The MOSFET threshold voltage is defined as the Gate
voltage leading to the strong inversion, i.e. Vs = 2φb
24
Effect of Body Bias
p+
n n
VS
VG VD
VBS ≠0
( )BSbNbFBT V22VV −ϕγ+ϕ+=
the Threshold voltage,
25
Effect of Surface States
p+
n n
VS
VG VD
VBS ≠0
( )BSbNb
i
ss
FBT V22
C
Q
VV −ϕγ+ϕ++=
the Threshold voltage,
During the oxide growth on Si, dangling
bonds are created that contributes to
wanted trapped charges at the interface
+ + + + + + + + + +
Qss : surface state charges per unit area

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

MOSFET Discription Presentation
MOSFET Discription PresentationMOSFET Discription Presentation
MOSFET Discription Presentation
 
Mosfet
MosfetMosfet
Mosfet
 
MOSFET....complete PPT
MOSFET....complete PPTMOSFET....complete PPT
MOSFET....complete PPT
 
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGNSHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
 
Lightly Doped Drain
Lightly Doped DrainLightly Doped Drain
Lightly Doped Drain
 
3673 mosfet
3673 mosfet3673 mosfet
3673 mosfet
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
Mosfet
MosfetMosfet
Mosfet
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Leakage effects in mos-fets
Leakage effects in mos-fetsLeakage effects in mos-fets
Leakage effects in mos-fets
 
Double gate mosfet
Double gate mosfetDouble gate mosfet
Double gate mosfet
 
Mosfet
MosfetMosfet
Mosfet
 
Trapatt diode
Trapatt diodeTrapatt diode
Trapatt diode
 
BiCMOS Technology
BiCMOS TechnologyBiCMOS Technology
BiCMOS Technology
 
Mosfet
MosfetMosfet
Mosfet
 
MOSFET fabrication 12
MOSFET fabrication 12MOSFET fabrication 12
MOSFET fabrication 12
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 
Finfet Technology
Finfet TechnologyFinfet Technology
Finfet Technology
 
MOS as Diode, Switch and Active Resistor
MOS as Diode, Switch and Active ResistorMOS as Diode, Switch and Active Resistor
MOS as Diode, Switch and Active Resistor
 
GAA nano wire FET
GAA nano wire FETGAA nano wire FET
GAA nano wire FET
 

Destacado

Destacado (20)

Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfet
 
Chapter 3 cmos(class2)
Chapter 3 cmos(class2)Chapter 3 cmos(class2)
Chapter 3 cmos(class2)
 
Operation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vdsOperation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vds
 
veeranagoud
veeranagoudveeranagoud
veeranagoud
 
1 mosfet 1 basics
1 mosfet 1 basics1 mosfet 1 basics
1 mosfet 1 basics
 
Types of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working OperationTypes of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working Operation
 
Finfets
FinfetsFinfets
Finfets
 
MOSFET AND JFET
MOSFET AND JFETMOSFET AND JFET
MOSFET AND JFET
 
Cmos design
Cmos designCmos design
Cmos design
 
mos transistor
mos transistormos transistor
mos transistor
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
Mos
MosMos
Mos
 
C language basics
C language basicsC language basics
C language basics
 
14827 mosfet
14827 mosfet14827 mosfet
14827 mosfet
 
Ese570 mos theory_p206
Ese570 mos theory_p206Ese570 mos theory_p206
Ese570 mos theory_p206
 
EE20-Chapter 5
EE20-Chapter 5 EE20-Chapter 5
EE20-Chapter 5
 
CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4
 
oral defense_07212012
oral defense_07212012oral defense_07212012
oral defense_07212012
 
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect TransistorPerformance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
 
Aicd cmos layouts
Aicd cmos layoutsAicd cmos layouts
Aicd cmos layouts
 

Similar a MOSFET Operation and Structure

MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage Murali Rai
 
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistorsutpal sarkar
 
Lect2 up050 (100430)
Lect2 up050 (100430)Lect2 up050 (100430)
Lect2 up050 (100430)aicdesign
 
15CS32 Ade module 1
15CS32 Ade module 115CS32 Ade module 1
15CS32 Ade module 1RLJIT
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.pptssuserb4d806
 
Lect2 up060 (100324)
Lect2 up060 (100324)Lect2 up060 (100324)
Lect2 up060 (100324)aicdesign
 
mosfet ppt.pptx
mosfet ppt.pptxmosfet ppt.pptx
mosfet ppt.pptx8885684828
 
vlsi.pdf important qzn answer for ece department
vlsi.pdf important qzn answer for ece departmentvlsi.pdf important qzn answer for ece department
vlsi.pdf important qzn answer for ece departmentnitcse
 
Field Effect Transistor (FET)
Field Effect Transistor (FET)Field Effect Transistor (FET)
Field Effect Transistor (FET)Jess Rangcasajo
 
Field_Effect_Transistors_15659617028382_10698.ppt
Field_Effect_Transistors_15659617028382_10698.pptField_Effect_Transistors_15659617028382_10698.ppt
Field_Effect_Transistors_15659617028382_10698.pptVadivelMuniyappan2
 
nature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curvenature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curveGayathriPriya34
 
MOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTOR
MOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTORMOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTOR
MOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTORManmohan Dash
 
Seminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOSSeminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOSJay Baxi
 

Similar a MOSFET Operation and Structure (20)

MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage
 
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistors
 
Lect2 up050 (100430)
Lect2 up050 (100430)Lect2 up050 (100430)
Lect2 up050 (100430)
 
nmos .pdf
nmos .pdfnmos .pdf
nmos .pdf
 
15CS32 Ade module 1
15CS32 Ade module 115CS32 Ade module 1
15CS32 Ade module 1
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
FET
FETFET
FET
 
MOSFET.pptx
MOSFET.pptxMOSFET.pptx
MOSFET.pptx
 
Lect2 up060 (100324)
Lect2 up060 (100324)Lect2 up060 (100324)
Lect2 up060 (100324)
 
mosfet ppt.pptx
mosfet ppt.pptxmosfet ppt.pptx
mosfet ppt.pptx
 
Vlsi design notes
Vlsi design notesVlsi design notes
Vlsi design notes
 
vlsi.pdf important qzn answer for ece department
vlsi.pdf important qzn answer for ece departmentvlsi.pdf important qzn answer for ece department
vlsi.pdf important qzn answer for ece department
 
Mosfet
MosfetMosfet
Mosfet
 
Field Effect Transistor (FET)
Field Effect Transistor (FET)Field Effect Transistor (FET)
Field Effect Transistor (FET)
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Field_Effect_Transistors_15659617028382_10698.ppt
Field_Effect_Transistors_15659617028382_10698.pptField_Effect_Transistors_15659617028382_10698.ppt
Field_Effect_Transistors_15659617028382_10698.ppt
 
MOSFET.ppt
MOSFET.pptMOSFET.ppt
MOSFET.ppt
 
nature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curvenature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curve
 
MOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTOR
MOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTORMOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTOR
MOSFET: METAL–OXIDE–SEMICONDUCTOR FIELD-EFFECT TRANSISTOR
 
Seminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOSSeminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOS
 

MOSFET Operation and Structure

  • 1. 1 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Structure: metal oxide semiconductor p+ n n S G D
  • 2. 2 MOSFET operation p+ n n S G D If VG=0 n Assuming VD=high, VS=0 No current
  • 3. 3 p+ n n S G D If VG=high n + + + + An n type channel is formed Now if VD=high, there is a current flow between D and S Gate voltage attracts electrons and pushes holes away MOSFET operation
  • 4. 4 MOSFET structures and circuit symbols p- type substr ate Sour ce Dr ai n Gate Substr ate Si O2 Dr ai n Sour ce Sour ce Dr ai n Gate Sour ce Dr ai n Bul k Channel Depl eti on r egi on n + n+ (a) (b) (d)(c) (a) Schematic structure of n-channel MOSFET (NMOS) and circuit symbols for (b) MOSFET, (c) n-channel MOSFET, and (d) n-channel MOSFET when the bulk (substrate) potential has to be specified in a circuit.
  • 5. 5 Complementary MOSFET pairs Schematic structure of Complementary MOSFET (CMOS) and circuit symbols for p-channel MOSFET (PMOS). Minuses and pluses show the depletion regions. p- type substr at e n + Sour ce Dr ai n Gate Subst r ate Si O2 Sour ce Dr ai n Gate Sour ce Dr ai n Bul k p + n- channel p- channel n- type wel l Si O2
  • 6. 6 Sub-threshold mode of MOSFET operation • VG = 0; the MOSFET conducting channel is not formed Ec EF ²E F1 ²E F2 Channel Source Drain Energy Distance In the subthreshold regime, the MOSFET current is a small reverse current through the source – substrate and drain – substrate p-n junctions; Only a small number of electrons can pass over the potential barrier separating the drain and the source. VG = 0 higher VG ΦB ( / )B kT ST Sourcen n e− Φ ≈ ×
  • 7. 7 In the sub-threshold regime, the channel current is very low and increases exponentially with the gate bias. DrainSource VG1 VG2 VG3 VG1<VG2<VG3 Gate-source voltage (V) 1.81.41.00.60.2-0.2 0 -10 -8 -6 10 2 -4 -2 0.05 V V ds = 3.0 V I t10 10 10 10 10 10 Sub-threshold mode of MOSFET operation ( / )B kT ST Sourcen n e− Φ ≈ ×
  • 8. 8 At certain gate bias called the threshold voltage, the conductivity type under the gate inverts and the barrier between the Source and the Drain disappears. Electrons can enter the region under the gate to form a conducting n-channel. At the gate voltages above the threshold, the gate and the channel form a Metal-Insulator-Semiconductor (MIS) capacitor. DrainSource VG1 VG2 VG3 VG1<VG2<VG3 Gate-source voltage (V) 1.81.41.00.60.2-0.2 0 -10 -8 -6 10 2 -4 -2 0.05 V V ds = 3.0 V I t10 10 10 10 10 10 MOSFET threshold voltage VT
  • 9. 9 The free electron charge in the MOSFET channel (per unit area): Q1 = CGATE × (VG – VT) (assuming that at VG = VT the free electron concentration is zero) MOSFET above the threshold voltage qns = ci VGS − VT( )= ciVGT 0/ /i i i ir ic d dε ε ε= = The sheet electron concentration above the threshold, nS is given by: In MOSFETs, the gate and channel form a MIS-capacitor, hence the capacitance per unit gate area εi = εir ε0 is the total dielectric permittivity of the gate dielectric (usually, SiO2), εir is the relative dielectric permittivity of the gate dielectric. Total gate capacitance CG = ci ×A, where A is the gate area
  • 10. 10 Above the threshold, the sheet electron concentration and hence the channel current increase linearly with the gate bias VG. Gate-source voltage (V) 1.81.41.00.60.2-0.2 0 -10 -8 -6 10 2 -4 -2 0.05 V V ds = 3.0 V I t10 10 10 10 10 10 MOSFET above the threshold voltage qns = ci VGS − VT( )= ciVGT
  • 11. 11 MOSFET Threshold Voltage semiconductor metal oxide p+ n n S G D DrainSource
  • 12. 12 Band Diagram at the MOS interfaces metal oxide p+ n n Before Contact EC EV EFs Ei Vacuum level OXIDEMETAL SEMICONDUCTOR EFm EC EV qφm Eg q χox q χsq χs qφs
  • 13. 13 p+ n n After Contact OXIDEMETAL SEMICONDUCTOR EC EV EFs Ei EFm EC EV EC EV EFs Ei EFm EC EV Metal and semiconductor Fermi levels align by electron transfer. Bending is the result of the presence of transferred electron
  • 15. 15 Conductivity conversion in MOSFET EC EV EFs Ei VG=0 p + VG n n EC EV EFs Ei VG ↑ p + VG n n Less holes at the interface, more bending p typeLess p type More depletion
  • 16. 16 EC EV EFs Ei VG ↑ ↑ p + VG n n p typeLess p type n type Inversion EC EV EFs Ei VG ↑ ↑ ↑ p + VG n n p typeLess p type n type Strong Inversion Onset of Channel creation Channel created
  • 17. 17 Inversion condition in MOSFET EC EV EFs Ei qφb qVs Surface potential Vs is controlled by the gate voltage Accumulation Vs<0 Depletion Vs<φb Onset of inversion Vs=φb Inversion Vs>φb Strong Inversion Vs>2φb bq kT ip n e φ = Equilibrium hole concentration in the bulk of semiconductor qφb is the Fermi level offset from the mid-gap in the bulk material When Vs = 2φb, n-concentration at the surface is the same as p-concentration in the bulk
  • 18. 18 Surface potential required to reach the MOSFET threshold When Vs = 2φb, n-concentration at the surface is the same as p-concentration in the bulk bq kT ip n e φ = EC EV EFs Ei VsT=2φb φb φb bq kT in n e φ =
  • 19. 19 Surface potential and gate voltage EC EV EFs Ei EFm EC EV VG Vi Vs • VG is the gate voltage, as source is grounded, VG=VGS • Vi is the voltage drop across the oxide/insulator • Vs is the surface potential GS FB s iV V V V= + +
  • 20. 20 Voltage drop across the oxide layer EC EV EFs Ei EFm EC EV VG Vi Vs Vi is the voltage drop across the oxide/insulator GS FB s iV V V V= + + d i i Q V C = where Qd is the capacitor charge and Ci is the capacitance. Since the charges on the metal and semiconductor plates are the same, Qd can be calculated as the charge in semiconductor. The semiconductor charge is formed by the charge of the depletion region Gate electrode and semiconductor form the plates of the MOS capacitor. Voltage drop across the capacitor:
  • 21. 21 Voltage drop across the oxide layer EC EV EFs Ei EFm EC EV VG Vi Vs The relation between the depletion region width W and the applied voltage Vs: 2d s a sQ qN Vε→ = 2 2 a s s q N W V ε = 2 s a V W qN ε =Form this, 2 s d a a a V Q qN W qN qN ε = = The depletion region charge (per unit area):
  • 22. 22 Voltage drop across the oxide layer EC EV EFs Ei EFm EC EV VG Vi Vs d i i Q V c = is the depletion region charge per unit area, ci is the MOS-capacitor capacitance per unit area: sasd VqN2Q,where ε= di is the thickness of the oxide film under the gate i i i c d ε =
  • 23. 23 MOSFET threshold voltage (cont.) 2 s a s GS FB s i qN V V V V c ε = + + At the onset of strong inversion: ( ) ( )2 2 2 s a b T FB b i qN V V c ε φ φ= + + 2 2 NT FB b bV V ϕ γ ϕ= + + Finally, the threshold voltage, 2 N s a iqN c/γ ε=where the body effect constant, The MOSFET threshold voltage is defined as the Gate voltage leading to the strong inversion, i.e. Vs = 2φb
  • 24. 24 Effect of Body Bias p+ n n VS VG VD VBS ≠0 ( )BSbNbFBT V22VV −ϕγ+ϕ+= the Threshold voltage,
  • 25. 25 Effect of Surface States p+ n n VS VG VD VBS ≠0 ( )BSbNb i ss FBT V22 C Q VV −ϕγ+ϕ++= the Threshold voltage, During the oxide growth on Si, dangling bonds are created that contributes to wanted trapped charges at the interface + + + + + + + + + + Qss : surface state charges per unit area