Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

Cloud Options for Wearable Data Analysis

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio

Eche un vistazo a continuación

1 de 25 Anuncio

Cloud Options for Wearable Data Analysis

Descargar para leer sin conexión

Look at available options for collecting and analyzing data generated by IOT devices including wearable devices. Number of vendors including Amazon, IBM, and Google starting to offer architectural blueprints for IoT data collection and analysis. We will discuss how to find a solution that will work for you.

Look at available options for collecting and analyzing data generated by IOT devices including wearable devices. Number of vendors including Amazon, IBM, and Google starting to offer architectural blueprints for IoT data collection and analysis. We will discuss how to find a solution that will work for you.

Anuncio
Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

Similares a Cloud Options for Wearable Data Analysis (20)

Anuncio

Más de Gene Leybzon (20)

Más reciente (20)

Anuncio

Cloud Options for Wearable Data Analysis

  1. 1. Cloud Options for Wearable Data Analysis Gene Leybzon, November 2015
  2. 2. Data Collection Mobile Device or Hub Delivery to Cloud Analysis Notifications “Traditional“ Wearable Data Stream
  3. 3. Data Collection Mobile Device or Hub Delivery to Cloud Analysis Notifications Wearable Data Stream with partner API Partner Cloud
  4. 4. Wearable Data Stream with Machine Learning Data Collection R/T Data Analysis based on ML model Local Notification Analysis ML model tweaking Notifications Updated ML params
  5. 5. Why Cloud? • Scale (50 billion connected devices by 2020) • Connectivity options • Make sense of data takes computing power • Reliable customer experience
  6. 6.  Wide range options to connect (both message- based and streaming data)  Fast and global network  Big Data storage and real-time analysis  99.99% (or better) uptime and availability  Security and authentication IoT developers expectations from the Cloud
  7. 7. Viable Cloud Options
  8. 8. AWS
  9. 9. AWA IoT message-basedc ommunicaton
  10. 10. AWS IoT connection-oriented communication
  11. 11. AWS Cloud-based data processing
  12. 12. AWS IoT Landscape
  13. 13. AWS IoT Features Connect devices to AWS Cloud Connect between devices Secure data and interactions Process data in the cloud Message-based (offline) communication
  14. 14. Google Cloud Platform
  15. 15. Google for IoT  Google backbone network  BigQuery (Big data database)  Cloud dataflow (data streaming)  Cloud pub/sub (messaging infrastructure )  Brillo OS and Weave coming soon
  16. 16. Google Brillo OS
  17. 17. Google Weave Easy setup Direct connectivity Interpretability
  18. 18. Google Weave Hub
  19. 19. Google Nest Weave
  20. 20. VMware
  21. 21. VMware  Managing devices: AirWatch  Stream data: vRealize Log  Cloud: vCloud Air or Hybrid Cloud
  22. 22. VMware vCloudAir
  23. 23. Microsoft Azure IoT Suite  Remote monitoring  Predictive mantanace
  24. 24. Microsoft Azure Cloud Services Virtual Machines Mobile Push SQL Database Media Streaming Websites Active Directory Hadoop
  25. 25. Questions?

Notas del editor

  • Data collection and processing path
  • Example: FitBit
  • Data collection and processing path
  • Data collection and processing path
  • Data collection and processing path
  • https://aws.amazon.com/iot/how-it-works/#shadows
  • https://aws.amazon.com/iot/how-it-works/#shadows
  • http://googledevelopers.blogspot.com/2015/10/building-brillo-iant-devices-with-weave_27.html?linkId=18294025
  • http://googledevelopers.blogspot.com/2015/10/building-brillo-iant-devices-with-weave_27.html?linkId=18294025

×