Conjunto numerico, lorenny colmenares

Definición de Conjuntos. Operaciones con conjuntos. Números Reales Desigualdades. Definición de Valor Absoluto Desigualdades con Valor Absoluto

CONJUNTO NUMÈRICO
República Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación Universitaria
Universidad Politécnica Territorial “Andrés Eloy Blanco”
Barquisimeto, Estado Lara
Autora:
Lorenny Colmenares.
Prof. Consuelo Pérez.
CI: V-27.666.482
Matemática Inicial
Grupo C
BARQUISIMETO, FEBRERO 2021
Definición de conjunto
En matemáticas, un conjunto es una colección de elementos con características
similares considerada en sí misma como un objeto. Los elementos de un conjunto,
pueden ser las siguientes: personas, números, colores, letras, figuras, etc.
Operaciones con conjuntos.
Las operaciones básicas del álgebra de conjuntos son:
 Unión. La unión de dos conjuntos A y B es el conjunto A ∪ B que contiene todos los
elementos de A y de B.
 Intersección. La intersección de dos conjuntos A y B es el conjunto A ∩ B que
contiene todos los elementos comunes de A y B.
 Diferencia. La diferencia entre dos conjuntos A y B es el conjunto A  B que
contiene todos los elementos de A que no pertenecen a B.
 Diferencia simétrica. La diferencia simétrica entre dos conjuntos A y B es el
conjunto que contiene los elementos de A y B que no son comunes.
 Complemento. El complemento de un conjunto A es el conjunto A∁ que contiene
todos los elementos que no pertenecen a A.
 Producto cartesiano. El producto cartesiano de dos conjuntos A y B es el
conjunto A × B que contiene todos los pares ordenados (a, b) cuyo primer elemento
pertenece a A y su segundo elemento pertenece a B.
Propiedades
Algunas de estas operaciones poseen propiedades similares a las operaciones con
números naturales. Por ejemplo, la unión y la intersección
son conmutativas y asociativas. El conjunto vacío es el elemento neutro de la unión, y
el elemento absorbente de la intersección y el producto cartesiano. El conjunto
universal es el elemento neutro de la intersección y el elemento absorbente de la unión.
Además, las operaciones de unión, intersección, diferencia y complemento son muy
similares a las operaciones en un álgebra de Boole, así como a los conectores lógicos de
la lógica proposicional.
Números reales.
Los números reales son el conjunto que incluye los números naturales, enteros,
racionales e irracionales. Se representa con la letra ℜ.
La palabra real se usa para distinguir estos números del número imaginario i, que es
igual a la raíz cuadrada de -1, o √-1. Esta expresión se usa para simplificar la
interpretación matemática de efectos como los fenómenos eléctricos.
Características de los números reales
Además de las características particulares de cada conjunto que compone el súper
conjunto de los números reales, mencionamos las siguientes características.
Orden
Todos los números reales tienen un orden.
En el caso de las fracciones y decimales:
Integral
La característica de integridad de los números reales es que no hay espacios vacíos en
este conjunto de números. Esto significa que cada conjunto que tiene un límite superior,
tiene un límite más pequeño.
Infinitud
Los números irracionales y racionales son infinitamente numerosos, es decir, no tienen
final, ya sea del lado positivo como del negativo.
Expansión decimal
Un número real es una cantidad que puede ser expresada como una expansión decimal
infinito. Se usan en mediciones de cantidades continuas, como la longitud y el tiempo.
Cada número real se puede escribir como un decimal. Los números irracionales tienen
cifras decimales interminables e irrepetibles, por el ejemplo, el número pi π es
aproximadamente 3,14159265358979...
Clasificación de los números reales
Conjuntos de los números reales.
Números naturales
De la necesidad de contar objetos surgieron los números naturales. Estos son los
números con los que estamos más cómodos: 1, 2, 3, 4, 5, 6,...hasta el infinito. El
conjunto de los números naturales se designa con la letra mayúscula N.
Todos los números están representados por los diez símbolos: 0, 1, 2, 3, 4, 5, 6. 7, 8, y
9, que reciben el nombre de dígitos.
Ejemplo
Los números naturales nos sirven para decir cuántos compañeros tenemos en clases, la
cantidad de flores que hay en un ramo y el número de libros que hay en una biblioteca.
Números enteros
El conjunto de los números enteros comprende los números naturales y sus números
simétricos. Esto incluye los enteros positivos, el cero y los enteros negativos. Los
números negativos se denotan con un signo "menos" (-). Se designa por la letra
mayúscula Z y se representa como:
Un número simétrico es aquel que sumado con su correspondiente número natural da
cero. Es decir, el simétrico de n es -n, ya que: Los enteros positivos son números
mayores que cero, mientras que los números menores que cero son los enteros
negativos.
Los números enteros nos sirven para:
 Representar números positivos: ganancias, grados sobre cero, distancias a la
derecha;
 Representar números negativos: deudas, pérdidas, grados bajo cero y distancias
a la izquierda.
Ejemplos
En el polo Norte la temperatura está por debajo de 0ºC durante casi todo el año, entre -
43 ºC y -15ºC en invierno. Una persona compra un vehículo por 10.000 pesos pero solo
tiene 3.000 pesos.
Esto significa que queda debiendo 7.000 pesos.
Desigualdad.
En matemáticas, una desigualdad es una relación de orden que se da entre dos valores
cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad).
Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o
los reales, entonces pueden ser comparados.
 La notación a < b significa a es menor que b;
 La notación a > b significa a es mayor que b
Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser
igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor
que"
 La notación a ≤ b significa a es menor o igual que b;
 La notación a ≥ b significa a es mayor o igual que b;
estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no
estrictas).
 La notación a ≪ b significa a es mucho menor que b;
 La notación a ≫ b significa a es mucho mayor que b; esta relación indica por lo
general una diferencia de varios órdenes de magnitud.
 La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es
mayor que el otro, o siquiera si son comparables.
Generalmente se tienden a confundir los operadores según la posición de los elementos
que se están comparando; didácticamente se enseña que la abertura está del lado del
elemento mayor. Otra forma de recordar el significado, es recordando que el signo
señala/apunta al elemento menor.
Valor absoluto de un número entero.
El valor absoluto de un número entero es el número natural que resulta al suprimir su
signo.
El valor absoluto lo escribiremos entre barras verticales.
|−5| = 5
|5| = 5
Valor absoluto de un número real.
Valor absoluto de un número real a, se escribe |a|, es el mismo número a cuando
es positivo o cero, y opuesto de a, si a es negativo.
|5| = 5 |-5 |= 5 |0| = 0
|x| = 2 x = −2 x = 2
|x|< 2 − 2< x < 2 x (−2, 2)
|x|> 2 x< −2 ó x>2 (−∞, −2) ∪ (2, +∞)
|x −2 |< 5 − 5 < x − 2 < 5
− 5 + 2 < x < 5 + 2 − 3 < x < 7
Propiedades del valor absoluto
1. Los números opuestos tienen igual valor absoluto.
|a| = |−a|
|5| = |−5| = 5
2. El valor absoluto de un producto es igual al producto de los valores
absolutos de los factores.
|a · b| = |a| ·|b|
|5 · (−2)| = |5| · |(−2)| |− 10| = |5| · |2| 10 = 10
3. El valor absoluto de una suma es menor o igual que la suma de los
valores absolutos de los sumandos.
|a + b| ≤ |a| + |b|
|5 + (−2)| ≤ |5| + |(−2)| |3| ≤ |5| + |2| 3 ≤ 7
Desigualdades de valor absoluto.
Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor
absoluto con una variable dentro.
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4.
El conjunto solución es:
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a
considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera números reales a y b , si | a | < b ,
entonces a < b Y a > - b .
Ejemplo 1:
Resuelva y grafique.
| x – 7| < 3
Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad
compuesta.
x – 7 < 3 Y x – 7 > –3
–3 < x – 7 < 3
Sume 7 en cada expresión.
-3 + 7 < x - 7 + 7 < 3 + 7
4 < x <10
La gráfica se vería así:

Recomendados

Conjunto numérico, unidad II por
Conjunto numérico, unidad IIConjunto numérico, unidad II
Conjunto numérico, unidad IILorennyColmenares
74 vistas10 diapositivas
Números reales por
Números realesNúmeros reales
Números realesMayerliCaizalez
74 vistas7 diapositivas
Números Reales por
Números RealesNúmeros Reales
Números RealesOsgleeManbel
72 vistas6 diapositivas
Mirleannys Gimenez por
Mirleannys GimenezMirleannys Gimenez
Mirleannys GimenezMirleannysAlexandraG
11 vistas13 diapositivas
Números Reales por
Números RealesNúmeros Reales
Números RealesSaraithCoronado
39 vistas8 diapositivas
Numeros reales por
Numeros realesNumeros reales
Numeros realesyariannyescobar
11 vistas10 diapositivas

Más contenido relacionado

La actualidad más candente

Números reales-Griselis Mendoza por
Números reales-Griselis MendozaNúmeros reales-Griselis Mendoza
Números reales-Griselis MendozaGriselisMendoza
24 vistas9 diapositivas
El conjunto jose miguel medina por
El conjunto jose miguel medinaEl conjunto jose miguel medina
El conjunto jose miguel medinajosemiguelmedinaquin
77 vistas9 diapositivas
Matemática por
MatemáticaMatemática
MatemáticaJosuSnchez26
55 vistas5 diapositivas
Conjuntos numericos por
Conjuntos numericosConjuntos numericos
Conjuntos numericosYunior Parra
24 vistas7 diapositivas
Conjuntos de numeros por
Conjuntos de numerosConjuntos de numeros
Conjuntos de numerospaolagomez229
20 vistas7 diapositivas
Numeros reales y plano numerico por
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numericoReirisFernandez
56 vistas15 diapositivas

La actualidad más candente(20)

Números reales por PaolaRoque4
Números reales   Números reales
Números reales
PaolaRoque4121 vistas
presentación de matemáticas Nr 2 por BrayanVAsquez27
presentación de matemáticas Nr 2presentación de matemáticas Nr 2
presentación de matemáticas Nr 2
BrayanVAsquez2711 vistas
Conjuntos numéricos por MarisabelAcua
Conjuntos numéricos Conjuntos numéricos
Conjuntos numéricos
MarisabelAcua152 vistas
Números reales y plano númerico por EstherEscalona1
Números reales y plano númerico Números reales y plano númerico
Números reales y plano númerico
EstherEscalona114 vistas

Similar a Conjunto numerico, lorenny colmenares

Números reales y plano numérico.pptx por
Números reales y plano numérico.pptxNúmeros reales y plano numérico.pptx
Números reales y plano numérico.pptxFabiolaPerez100
5 vistas18 diapositivas
Matematica por
MatematicaMatematica
MatematicaAleidys4
7 vistas10 diapositivas
numeros reales alfredo.pptx por
numeros reales alfredo.pptxnumeros reales alfredo.pptx
numeros reales alfredo.pptxtareasuptaeb
7 vistas9 diapositivas
presentacion-Matematica.pdf por
presentacion-Matematica.pdfpresentacion-Matematica.pdf
presentacion-Matematica.pdfElianaMora11
3 vistas11 diapositivas
numeros reales.docx por
numeros reales.docxnumeros reales.docx
numeros reales.docxfritz venezuela
3 vistas7 diapositivas
Operaciones matemáticas por
Operaciones matemáticas Operaciones matemáticas
Operaciones matemáticas OrianaCoronel1
7 vistas19 diapositivas

Similar a Conjunto numerico, lorenny colmenares(20)

Números reales y plano numérico.pptx por FabiolaPerez100
Números reales y plano numérico.pptxNúmeros reales y plano numérico.pptx
Números reales y plano numérico.pptx
FabiolaPerez1005 vistas
Matematica por Aleidys4
MatematicaMatematica
Matematica
Aleidys47 vistas
numeros reales alfredo.pptx por tareasuptaeb
numeros reales alfredo.pptxnumeros reales alfredo.pptx
numeros reales alfredo.pptx
tareasuptaeb7 vistas
presentacion-Matematica.pdf por ElianaMora11
presentacion-Matematica.pdfpresentacion-Matematica.pdf
presentacion-Matematica.pdf
ElianaMora113 vistas
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf por yaniratorcates1
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdfOPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
yaniratorcates19 vistas
TRABAJO NUMEROS REALES Y PLANO NUMERICO por juanpepe46
TRABAJO NUMEROS REALES Y PLANO NUMERICOTRABAJO NUMEROS REALES Y PLANO NUMERICO
TRABAJO NUMEROS REALES Y PLANO NUMERICO
juanpepe464 vistas
Conjuntos y Numeros Reales.docx por HervinValles
Conjuntos y Numeros Reales.docxConjuntos y Numeros Reales.docx
Conjuntos y Numeros Reales.docx
HervinValles9 vistas
Numeros reales y_plano_numerico por Yoselin Sivira
Numeros reales y_plano_numericoNumeros reales y_plano_numerico
Numeros reales y_plano_numerico
Yoselin Sivira12 vistas
Presentación de Matemáticas Nr 2 por DELEChan
Presentación de Matemáticas Nr 2Presentación de Matemáticas Nr 2
Presentación de Matemáticas Nr 2
DELEChan31 vistas

Más de LorennyColmenares

Lorenny colmenares-27666482 por
Lorenny colmenares-27666482Lorenny colmenares-27666482
Lorenny colmenares-27666482LorennyColmenares
81 vistas4 diapositivas
Lorenny colmenares-27666482 por
Lorenny colmenares-27666482Lorenny colmenares-27666482
Lorenny colmenares-27666482LorennyColmenares
102 vistas4 diapositivas
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas por
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas
lorenny colmenares, argelimar alejos, frankjhelis catarí, cristhalmy vargas LorennyColmenares
84 vistas7 diapositivas
Mapa conceptual de proyecto por
Mapa conceptual de proyectoMapa conceptual de proyecto
Mapa conceptual de proyectoLorennyColmenares
119 vistas4 diapositivas
V27666482 por
V27666482V27666482
V27666482LorennyColmenares
38 vistas4 diapositivas
Expresiones algebraicas, unidad I por
Expresiones algebraicas, unidad IExpresiones algebraicas, unidad I
Expresiones algebraicas, unidad ILorennyColmenares
80 vistas8 diapositivas

Más de LorennyColmenares(7)

Último

Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf por
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdfDemetrio Ccesa Rayme
221 vistas26 diapositivas
140 años de presencia eudista en Suramérica por
140 años de presencia eudista en Suramérica140 años de presencia eudista en Suramérica
140 años de presencia eudista en SuraméricaUnidad de Espiritualidad Eudista
38 vistas8 diapositivas
Fase 4- Estudio de la geometría analítica.pptx por
Fase 4- Estudio de la geometría analítica.pptxFase 4- Estudio de la geometría analítica.pptx
Fase 4- Estudio de la geometría analítica.pptxblogdealgebraunad
33 vistas15 diapositivas
Imagen de exito.pptx por
Imagen de exito.pptxImagen de exito.pptx
Imagen de exito.pptxLorenaCovarrubias12
46 vistas1 diapositiva
Aprendiendo a leer :Ma me mi mo mu..pdf por
Aprendiendo a leer :Ma me mi mo mu..pdfAprendiendo a leer :Ma me mi mo mu..pdf
Aprendiendo a leer :Ma me mi mo mu..pdfcamiloandres593920
51 vistas14 diapositivas
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx por
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptxPPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptxCarlaFuentesMuoz
34 vistas7 diapositivas

Último(20)

Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf por Demetrio Ccesa Rayme
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf
Fase 4- Estudio de la geometría analítica.pptx por blogdealgebraunad
Fase 4- Estudio de la geometría analítica.pptxFase 4- Estudio de la geometría analítica.pptx
Fase 4- Estudio de la geometría analítica.pptx
blogdealgebraunad33 vistas
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx por CarlaFuentesMuoz
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptxPPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx
CarlaFuentesMuoz34 vistas
1ER TRABAJO DEL ESEQUIBO.docx por palaciosodis
1ER TRABAJO DEL ESEQUIBO.docx1ER TRABAJO DEL ESEQUIBO.docx
1ER TRABAJO DEL ESEQUIBO.docx
palaciosodis26 vistas
Mujeres privadas de libertad en Bolivia 2022 por LuisFernando672460
Mujeres privadas de libertad en Bolivia 2022Mujeres privadas de libertad en Bolivia 2022
Mujeres privadas de libertad en Bolivia 2022
LuisFernando672460119 vistas
S1_CPL.pdf por Conecta13
S1_CPL.pdfS1_CPL.pdf
S1_CPL.pdf
Conecta1355 vistas
Intranet y extranet cuadro comparativo.pdf por UPTVT
Intranet y extranet cuadro comparativo.pdfIntranet y extranet cuadro comparativo.pdf
Intranet y extranet cuadro comparativo.pdf
UPTVT30 vistas

Conjunto numerico, lorenny colmenares

  • 1. CONJUNTO NUMÈRICO República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria Universidad Politécnica Territorial “Andrés Eloy Blanco” Barquisimeto, Estado Lara Autora: Lorenny Colmenares. Prof. Consuelo Pérez. CI: V-27.666.482 Matemática Inicial Grupo C BARQUISIMETO, FEBRERO 2021
  • 2. Definición de conjunto En matemáticas, un conjunto es una colección de elementos con características similares considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Operaciones con conjuntos. Las operaciones básicas del álgebra de conjuntos son:  Unión. La unión de dos conjuntos A y B es el conjunto A ∪ B que contiene todos los elementos de A y de B.  Intersección. La intersección de dos conjuntos A y B es el conjunto A ∩ B que contiene todos los elementos comunes de A y B.  Diferencia. La diferencia entre dos conjuntos A y B es el conjunto A B que contiene todos los elementos de A que no pertenecen a B.  Diferencia simétrica. La diferencia simétrica entre dos conjuntos A y B es el conjunto que contiene los elementos de A y B que no son comunes.
  • 3.  Complemento. El complemento de un conjunto A es el conjunto A∁ que contiene todos los elementos que no pertenecen a A.  Producto cartesiano. El producto cartesiano de dos conjuntos A y B es el conjunto A × B que contiene todos los pares ordenados (a, b) cuyo primer elemento pertenece a A y su segundo elemento pertenece a B. Propiedades Algunas de estas operaciones poseen propiedades similares a las operaciones con números naturales. Por ejemplo, la unión y la intersección son conmutativas y asociativas. El conjunto vacío es el elemento neutro de la unión, y el elemento absorbente de la intersección y el producto cartesiano. El conjunto universal es el elemento neutro de la intersección y el elemento absorbente de la unión. Además, las operaciones de unión, intersección, diferencia y complemento son muy similares a las operaciones en un álgebra de Boole, así como a los conectores lógicos de la lógica proposicional. Números reales. Los números reales son el conjunto que incluye los números naturales, enteros, racionales e irracionales. Se representa con la letra ℜ. La palabra real se usa para distinguir estos números del número imaginario i, que es igual a la raíz cuadrada de -1, o √-1. Esta expresión se usa para simplificar la interpretación matemática de efectos como los fenómenos eléctricos. Características de los números reales Además de las características particulares de cada conjunto que compone el súper conjunto de los números reales, mencionamos las siguientes características.
  • 4. Orden Todos los números reales tienen un orden. En el caso de las fracciones y decimales: Integral La característica de integridad de los números reales es que no hay espacios vacíos en este conjunto de números. Esto significa que cada conjunto que tiene un límite superior, tiene un límite más pequeño. Infinitud Los números irracionales y racionales son infinitamente numerosos, es decir, no tienen final, ya sea del lado positivo como del negativo. Expansión decimal Un número real es una cantidad que puede ser expresada como una expansión decimal infinito. Se usan en mediciones de cantidades continuas, como la longitud y el tiempo. Cada número real se puede escribir como un decimal. Los números irracionales tienen cifras decimales interminables e irrepetibles, por el ejemplo, el número pi π es aproximadamente 3,14159265358979... Clasificación de los números reales
  • 5. Conjuntos de los números reales. Números naturales De la necesidad de contar objetos surgieron los números naturales. Estos son los números con los que estamos más cómodos: 1, 2, 3, 4, 5, 6,...hasta el infinito. El conjunto de los números naturales se designa con la letra mayúscula N. Todos los números están representados por los diez símbolos: 0, 1, 2, 3, 4, 5, 6. 7, 8, y 9, que reciben el nombre de dígitos. Ejemplo Los números naturales nos sirven para decir cuántos compañeros tenemos en clases, la cantidad de flores que hay en un ramo y el número de libros que hay en una biblioteca. Números enteros El conjunto de los números enteros comprende los números naturales y sus números simétricos. Esto incluye los enteros positivos, el cero y los enteros negativos. Los números negativos se denotan con un signo "menos" (-). Se designa por la letra mayúscula Z y se representa como: Un número simétrico es aquel que sumado con su correspondiente número natural da cero. Es decir, el simétrico de n es -n, ya que: Los enteros positivos son números mayores que cero, mientras que los números menores que cero son los enteros negativos. Los números enteros nos sirven para:  Representar números positivos: ganancias, grados sobre cero, distancias a la derecha;  Representar números negativos: deudas, pérdidas, grados bajo cero y distancias a la izquierda.
  • 6. Ejemplos En el polo Norte la temperatura está por debajo de 0ºC durante casi todo el año, entre - 43 ºC y -15ºC en invierno. Una persona compra un vehículo por 10.000 pesos pero solo tiene 3.000 pesos. Esto significa que queda debiendo 7.000 pesos. Desigualdad. En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad). Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados.  La notación a < b significa a es menor que b;  La notación a > b significa a es mayor que b Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que"  La notación a ≤ b significa a es menor o igual que b;  La notación a ≥ b significa a es mayor o igual que b; estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).  La notación a ≪ b significa a es mucho menor que b;  La notación a ≫ b significa a es mucho mayor que b; esta relación indica por lo general una diferencia de varios órdenes de magnitud.  La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables. Generalmente se tienden a confundir los operadores según la posición de los elementos que se están comparando; didácticamente se enseña que la abertura está del lado del
  • 7. elemento mayor. Otra forma de recordar el significado, es recordando que el signo señala/apunta al elemento menor. Valor absoluto de un número entero. El valor absoluto de un número entero es el número natural que resulta al suprimir su signo. El valor absoluto lo escribiremos entre barras verticales. |−5| = 5 |5| = 5 Valor absoluto de un número real. Valor absoluto de un número real a, se escribe |a|, es el mismo número a cuando es positivo o cero, y opuesto de a, si a es negativo. |5| = 5 |-5 |= 5 |0| = 0 |x| = 2 x = −2 x = 2 |x|< 2 − 2< x < 2 x (−2, 2) |x|> 2 x< −2 ó x>2 (−∞, −2) ∪ (2, +∞) |x −2 |< 5 − 5 < x − 2 < 5 − 5 + 2 < x < 5 + 2 − 3 < x < 7 Propiedades del valor absoluto 1. Los números opuestos tienen igual valor absoluto. |a| = |−a| |5| = |−5| = 5 2. El valor absoluto de un producto es igual al producto de los valores absolutos de los factores. |a · b| = |a| ·|b| |5 · (−2)| = |5| · |(−2)| |− 10| = |5| · |2| 10 = 10
  • 8. 3. El valor absoluto de una suma es menor o igual que la suma de los valores absolutos de los sumandos. |a + b| ≤ |a| + |b| |5 + (−2)| ≤ |5| + |(−2)| |3| ≤ |5| + |2| 3 ≤ 7 Desigualdades de valor absoluto. Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es: Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b . Ejemplo 1: Resuelva y grafique. | x – 7| < 3 Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad compuesta. x – 7 < 3 Y x – 7 > –3 –3 < x – 7 < 3
  • 9. Sume 7 en cada expresión. -3 + 7 < x - 7 + 7 < 3 + 7 4 < x <10 La gráfica se vería así: