SlideShare una empresa de Scribd logo
1 de 17
Descargar para leer sin conexión
• The Ideal Op Amp
• The Inverting and Non-Inverting
Configurations
• The Voltage follower

For aid and reference only
INTRODUCTION
• This discussion focuses on Amplifiers, Operational
Amplifiers in particular.
• Signal Amplification- A fundamental signal
processing task is employed in some form in
almost every electronic system.
• Need for amplification arises because transducers
provide signals that are said to be “weak,” that is,
in the microvolt (µV) or millivolt (mV) range and
possessing little energy.
INTRODUCTION
• Such signals are too small for normal processing.
Processing can be made easier if signal
magnitude is increased. The functional block that
accomplishes this task is the amplifier.
• It is equally important to understand the need for
linearity in amplifiers. While amplifying, one must
keep in mind that the information contained in
the signal is not changed.
• Thus when feeding the signal/waveform to an
amplifier, we want the output waveform to be an
exact replica of that of the input except having
larger magnitude.
THE IDEAL OP AMP
The Op-Amp terminals
• The Op-Amp has three terminals: Terminal 1 and 2 are
input terminals and terminal 3 is the output terminal.
1
3
2

• Two terminals 4 and 5 are brought out of the op-amp and
connected to a positive voltage VCC and a negative voltage
–VEE ,respectively. We assume that these two terminals are
implicitly present in the op-amp device.
THE IDEAL OP AMP
Function of the Op-Amp
• The Op-Amp senses the difference between the
voltage signals applied at its two input terminals 1 & 2,
multiplies this by a value A , and causes the resulting
voltage A(v2 – v1) to appear at output terminal 3.
Key features of an ideal op-amp
1. The input impedance of an ideal op amp is supposed
to be infinite. The ideal op amp is not supposed to
draw any current through its input terminals.
2. The output impedance of an ideal op amp is supposed
to be zero. Voltage between terminal 3 and ground is
independent of the current drawn from terminal 3.
THE IDEAL OP AMP
3. From the expression of the
output, note that the output is in
phase with v2 and is out of phase
with v1.Hence,terminal 1 is called
inverting input terminal and
terminal 2 is called non-inverting
input terminal .
4. Common-mode rejection if
v1=v2,the output will ideally be
zero. From this, we conclude that
an ideal op amp has zero
common-mode gain or infinite
common-mode rejection.

-

+
THE IDEAL OP AMP
5.Ideal op amps will amplify signals of any
frequency with equal gain A, and thus are said
to have infinite bandwidth.
6.The ideal op amp should have a gain A whose
value is very large and ideally infinite. Why so?
This will be justified in the later sections.
Characteristics of the Ideal Op Amp (in short)
Infinite input impedance
Zero output impedance
Zero common-mode gain or infinite common-mode rejection
Infinite open-loop gain A
Infinite bandwidth
THE INVERTING CONFIRUGATION
• Op amps are not used alone, rather, the op
amp is connected to passive components
(resistors) in a feedback circuit. There are two
such op amp circuit configurations employing
2 resistorsinverting
& non-inverting .
THE INVERTING CONFIRUGATION
• Figure below depicts the inverting configuration.
It consists of two resistorsResistor R2 is connected from the output
terminal 3,back to the inverting or negative input
terminal, terminal 1.R2 is seen as applying
negative feedback because it is connected to the
negative terminal.
Terminal 2 is grounded and R1 is connected
between terminal 1 and input voltage source v1.
THE INVERTING CONFIGURATION
• Closed loop gain G, is defined asG= vo /vi
Assuming the op amp to be ideal and gain A very
large(infinite), then by definition,
v2 - v1 = vo /A = 0
vo being the output voltage.
• From the result we may conclude that because A
is very large, voltage v1 approaches and ideally
equals v2 .Hence a virtual short circuit appears
between the terminals 1 & 2.
• Since terminal 2 is grounded thus, v1 =0 & v2 =0.
THE INVERTING CONFIGURATION
• On applying ohm’s law across R1 ,we geti1 = (vi -v1)/R1 = (vi -0)/R1 =vi /R1
• This current cannot flow through the op amp
because an ideal op amp draws zero current. It
follows that i1 will have to flow through R2 to
low-impedance terminal 3. Thus,
vo =v1 - i1R2 = 0-(vi /R1)R2
vo /vi = - R2 / R1
which is the closed loop gain of the inverting
configuration.(Refer to the figure in the next slide).
THE INVERTING CONFIGURATION
THE NON-INVERTING CONFIGURATION

vi

In the non-inverting configuration, the input
signal is applied directly to the positive input
terminal of the op amp while one terminal of R1
is connected to the ground.
THE NON-INVERTING CONFIGURATION
• The closed-loop gain –
Assuming that the op
amp has infinite gain
A, a virtual short
circuit exists between
its two input terminals.
Hence the difference
input signal isvid =v2 - v1 = vo /A = 0
• The current through R1
can be determined as
v1 /R1 .
THE NON-INVERTING CONFIGURATION
• Because of the infinite input impedance of the
op amp, the current vi /R1 will flow through R2
as shown in previous figure. Now the output
voltage can be determined from
vo = vi +(vi /R1)R2
which yields
vo /vi =1+ R2/R1
which is the open loop gain of the noninverting configuration.
THE VOLTAGE FOLLOWER
• The property of high input impedance is a very
desirable feature of the non-inverting configuration.

• We can make R1 =∞ and R2 =0 to obtain the unity gain
amplifier shown in the figure. This circuit is known as
the voltage follower, since the output “follows” the
input. In the ideal case, vo =vi ,Rin =∞,Rout =0. The
equivalent circuit of the follower is also shown above.
Thanks.
For feedback, drop a mail at –
f2011263@hyderabad.bits-pilani.ac.in

Mahesh Naidu
B.E. Electrical & Electronics,
BITS-Pilani Hyderabad Campus

For aid and reference only

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Op amps
Op ampsOp amps
Op amps
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Op amp
Op ampOp amp
Op amp
 
PN JUNCTION
PN JUNCTION PN JUNCTION
PN JUNCTION
 
Basics of op amp
Basics of op ampBasics of op amp
Basics of op amp
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Oscillators
OscillatorsOscillators
Oscillators
 
Operational Amplifire
Operational AmplifireOperational Amplifire
Operational Amplifire
 
OP AMP Applications
OP AMP ApplicationsOP AMP Applications
OP AMP Applications
 
Instrumentation amplifier
Instrumentation amplifierInstrumentation amplifier
Instrumentation amplifier
 
Operational Amplifier
Operational AmplifierOperational Amplifier
Operational Amplifier
 
Op amp-electronics
Op amp-electronicsOp amp-electronics
Op amp-electronics
 
Tuned amplifire
Tuned amplifireTuned amplifire
Tuned amplifire
 
Hybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal AnalysisHybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal Analysis
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
Amplifiers with feedback
Amplifiers with feedbackAmplifiers with feedback
Amplifiers with feedback
 
Op amplifier
Op amplifier Op amplifier
Op amplifier
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
 
Two port networks
Two port networksTwo port networks
Two port networks
 

Destacado

The operational amplifier (part 2)
The operational amplifier (part 2)The operational amplifier (part 2)
The operational amplifier (part 2)Jamil Ahmed
 
Operational Amplifiers
Operational AmplifiersOperational Amplifiers
Operational Amplifierstaruntiru
 
Chapter 5 operational amplifier
Chapter 5 operational amplifierChapter 5 operational amplifier
Chapter 5 operational amplifierHattori Sidek
 
Oscillator multivibrotor
Oscillator multivibrotorOscillator multivibrotor
Oscillator multivibrotorrakesh mandiya
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)Kausik das
 

Destacado (9)

Oscillators
OscillatorsOscillators
Oscillators
 
The operational amplifier (part 2)
The operational amplifier (part 2)The operational amplifier (part 2)
The operational amplifier (part 2)
 
Operational Amplifiers
Operational AmplifiersOperational Amplifiers
Operational Amplifiers
 
Chapter 5 operational amplifier
Chapter 5 operational amplifierChapter 5 operational amplifier
Chapter 5 operational amplifier
 
Operation amplifier
Operation amplifierOperation amplifier
Operation amplifier
 
Oscillators
OscillatorsOscillators
Oscillators
 
Oscillator multivibrotor
Oscillator multivibrotorOscillator multivibrotor
Oscillator multivibrotor
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Oscillators
OscillatorsOscillators
Oscillators
 

Similar a Operational Amplifiers

analog elecronic designLecture 2 (1).pptx
analog elecronic designLecture 2 (1).pptxanalog elecronic designLecture 2 (1).pptx
analog elecronic designLecture 2 (1).pptxYonaCastro1
 
Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)JeremyLauKarHei
 
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...Kramikauniyal
 
Pin Connection of OP-AMP, Paramerters..pptx
Pin Connection of OP-AMP, Paramerters..pptxPin Connection of OP-AMP, Paramerters..pptx
Pin Connection of OP-AMP, Paramerters..pptxProfVilasShamraoPati
 
Electrical signal processing and transmission
Electrical signal processing and transmissionElectrical signal processing and transmission
Electrical signal processing and transmissionBishal Rimal
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finalsjerbor
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finalsjerbor
 
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdf
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdfEC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdf
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdfVanithaR25
 
OPERATIONAL AMPLIFIERS
OPERATIONAL AMPLIFIERSOPERATIONAL AMPLIFIERS
OPERATIONAL AMPLIFIERSTamilarasan N
 

Similar a Operational Amplifiers (20)

analog elecronic designLecture 2 (1).pptx
analog elecronic designLecture 2 (1).pptxanalog elecronic designLecture 2 (1).pptx
analog elecronic designLecture 2 (1).pptx
 
Op-amp.pptx
Op-amp.pptxOp-amp.pptx
Op-amp.pptx
 
Operational%20 amplifier
Operational%20 amplifierOperational%20 amplifier
Operational%20 amplifier
 
Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)Chapter 7: Operational Amplifier (Op-Amp)
Chapter 7: Operational Amplifier (Op-Amp)
 
Op-Amp 1
Op-Amp 1Op-Amp 1
Op-Amp 1
 
chapter 3_bem.pptx
chapter 3_bem.pptxchapter 3_bem.pptx
chapter 3_bem.pptx
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
OPERATIONAL AMPLIFIERS, DIFFERENTIAL, NON-INVERTING AND INSTRUMENTATIONAL AMP...
 
op amp.pptx
op amp.pptxop amp.pptx
op amp.pptx
 
Op amp
Op ampOp amp
Op amp
 
UNIT-3 OPAMP.pptx
UNIT-3 OPAMP.pptxUNIT-3 OPAMP.pptx
UNIT-3 OPAMP.pptx
 
Analog CMOS design
Analog CMOS designAnalog CMOS design
Analog CMOS design
 
OP-AMP.pptx
OP-AMP.pptxOP-AMP.pptx
OP-AMP.pptx
 
Pin Connection of OP-AMP, Paramerters..pptx
Pin Connection of OP-AMP, Paramerters..pptxPin Connection of OP-AMP, Paramerters..pptx
Pin Connection of OP-AMP, Paramerters..pptx
 
Electrical signal processing and transmission
Electrical signal processing and transmissionElectrical signal processing and transmission
Electrical signal processing and transmission
 
Comparator
ComparatorComparator
Comparator
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finals
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finals
 
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdf
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdfEC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdf
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdf
 
OPERATIONAL AMPLIFIERS
OPERATIONAL AMPLIFIERSOPERATIONAL AMPLIFIERS
OPERATIONAL AMPLIFIERS
 

Último

FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 

Último (20)

Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 

Operational Amplifiers

  • 1. • The Ideal Op Amp • The Inverting and Non-Inverting Configurations • The Voltage follower For aid and reference only
  • 2. INTRODUCTION • This discussion focuses on Amplifiers, Operational Amplifiers in particular. • Signal Amplification- A fundamental signal processing task is employed in some form in almost every electronic system. • Need for amplification arises because transducers provide signals that are said to be “weak,” that is, in the microvolt (µV) or millivolt (mV) range and possessing little energy.
  • 3. INTRODUCTION • Such signals are too small for normal processing. Processing can be made easier if signal magnitude is increased. The functional block that accomplishes this task is the amplifier. • It is equally important to understand the need for linearity in amplifiers. While amplifying, one must keep in mind that the information contained in the signal is not changed. • Thus when feeding the signal/waveform to an amplifier, we want the output waveform to be an exact replica of that of the input except having larger magnitude.
  • 4. THE IDEAL OP AMP The Op-Amp terminals • The Op-Amp has three terminals: Terminal 1 and 2 are input terminals and terminal 3 is the output terminal. 1 3 2 • Two terminals 4 and 5 are brought out of the op-amp and connected to a positive voltage VCC and a negative voltage –VEE ,respectively. We assume that these two terminals are implicitly present in the op-amp device.
  • 5. THE IDEAL OP AMP Function of the Op-Amp • The Op-Amp senses the difference between the voltage signals applied at its two input terminals 1 & 2, multiplies this by a value A , and causes the resulting voltage A(v2 – v1) to appear at output terminal 3. Key features of an ideal op-amp 1. The input impedance of an ideal op amp is supposed to be infinite. The ideal op amp is not supposed to draw any current through its input terminals. 2. The output impedance of an ideal op amp is supposed to be zero. Voltage between terminal 3 and ground is independent of the current drawn from terminal 3.
  • 6. THE IDEAL OP AMP 3. From the expression of the output, note that the output is in phase with v2 and is out of phase with v1.Hence,terminal 1 is called inverting input terminal and terminal 2 is called non-inverting input terminal . 4. Common-mode rejection if v1=v2,the output will ideally be zero. From this, we conclude that an ideal op amp has zero common-mode gain or infinite common-mode rejection. - +
  • 7. THE IDEAL OP AMP 5.Ideal op amps will amplify signals of any frequency with equal gain A, and thus are said to have infinite bandwidth. 6.The ideal op amp should have a gain A whose value is very large and ideally infinite. Why so? This will be justified in the later sections. Characteristics of the Ideal Op Amp (in short) Infinite input impedance Zero output impedance Zero common-mode gain or infinite common-mode rejection Infinite open-loop gain A Infinite bandwidth
  • 8. THE INVERTING CONFIRUGATION • Op amps are not used alone, rather, the op amp is connected to passive components (resistors) in a feedback circuit. There are two such op amp circuit configurations employing 2 resistorsinverting & non-inverting .
  • 9. THE INVERTING CONFIRUGATION • Figure below depicts the inverting configuration. It consists of two resistorsResistor R2 is connected from the output terminal 3,back to the inverting or negative input terminal, terminal 1.R2 is seen as applying negative feedback because it is connected to the negative terminal. Terminal 2 is grounded and R1 is connected between terminal 1 and input voltage source v1.
  • 10. THE INVERTING CONFIGURATION • Closed loop gain G, is defined asG= vo /vi Assuming the op amp to be ideal and gain A very large(infinite), then by definition, v2 - v1 = vo /A = 0 vo being the output voltage. • From the result we may conclude that because A is very large, voltage v1 approaches and ideally equals v2 .Hence a virtual short circuit appears between the terminals 1 & 2. • Since terminal 2 is grounded thus, v1 =0 & v2 =0.
  • 11. THE INVERTING CONFIGURATION • On applying ohm’s law across R1 ,we geti1 = (vi -v1)/R1 = (vi -0)/R1 =vi /R1 • This current cannot flow through the op amp because an ideal op amp draws zero current. It follows that i1 will have to flow through R2 to low-impedance terminal 3. Thus, vo =v1 - i1R2 = 0-(vi /R1)R2 vo /vi = - R2 / R1 which is the closed loop gain of the inverting configuration.(Refer to the figure in the next slide).
  • 13. THE NON-INVERTING CONFIGURATION vi In the non-inverting configuration, the input signal is applied directly to the positive input terminal of the op amp while one terminal of R1 is connected to the ground.
  • 14. THE NON-INVERTING CONFIGURATION • The closed-loop gain – Assuming that the op amp has infinite gain A, a virtual short circuit exists between its two input terminals. Hence the difference input signal isvid =v2 - v1 = vo /A = 0 • The current through R1 can be determined as v1 /R1 .
  • 15. THE NON-INVERTING CONFIGURATION • Because of the infinite input impedance of the op amp, the current vi /R1 will flow through R2 as shown in previous figure. Now the output voltage can be determined from vo = vi +(vi /R1)R2 which yields vo /vi =1+ R2/R1 which is the open loop gain of the noninverting configuration.
  • 16. THE VOLTAGE FOLLOWER • The property of high input impedance is a very desirable feature of the non-inverting configuration. • We can make R1 =∞ and R2 =0 to obtain the unity gain amplifier shown in the figure. This circuit is known as the voltage follower, since the output “follows” the input. In the ideal case, vo =vi ,Rin =∞,Rout =0. The equivalent circuit of the follower is also shown above.
  • 17. Thanks. For feedback, drop a mail at – f2011263@hyderabad.bits-pilani.ac.in Mahesh Naidu B.E. Electrical & Electronics, BITS-Pilani Hyderabad Campus For aid and reference only