SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
TEMA II: Ejercicios de Límites

1. Calcular los siguientes límites (directos):




e) Funciones racionales con polinomios: descomponemos en factores y simplificamos.




2. Calcular los siguientes límites (con indeterminaciones para analizar):
 a)                   b)                  c)                 d)




e)                      f)                       g)                         h)




a)



b)



c)



d)



e)




                                                  1
f)




g)




h)




3. Analizar la continuidad y calcular las asíntotas de las siguientes funciones:
Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos
una de las variables (x o y) tienden al infinito. Son límites de las funciones.
Asíntotas Verticales: Nos indican a que tiende la función cuando la x no está definida, son rectas
paralelas al eje OY. Se escriben x = valor de la asíntota horizontal. El número máximo de asíntotas
verticales que puede tener una función es dos.


Asíntotas Horizontales: Nos indican a que tiende la función cuando la x es muy grande o muy pequeña,
son rectas paralelas al eje OX. Se escriben y = valor de la asíntota horizontal. Las funciones racionales
tienen asíntota horizontal cuando el numerador y el denominador son del mismo grado y cuando el grado
del denominador es mayor que el grado del numerado.



                                                    2
a)                   b)                    c)                           d)



a)


Para saber si la función tiende a uno por arriba o por abajo damos valores "grande y pequeño" a x,




b)



Hay asíntota horizontal en y=0 que es la ecuación del eje OX.

c) Asíntotas oblicuas: una función racional tiene asíntotas oblicuas cuando el grado del
numerador es una unidad mayor que el grado del denominador. Las asíntotas horizontales y
oblicuas son incompatibles. Si hay unas no puede haber de las otras.

Como el grado del numerador es una unidad mayor que el grado del denominador tiene asíntota oblicua.


                             Hay una asíntota oblicua. Calculamos su ecuación




Ecuación: y = x - 1 (para representarla damos valores)

d)


                                                   La ecuación de la asíntota es: y = x - 1




                                                    3
4. Estudiar la continuidad de la función en los puntos x =2 y x = 5.



Continuidad de la función en el punto x = 2




Vemos que se cumplen las 3 condiciones luego la función es continua en el punto x=2

Continuidad de la función en el punto x = 5




La función en x = 5 tiene una discontinuidad de salto infinito. Las funciones racionales tendrán una
discontinuidad de salto infinito en aquellos valores de x donde no estén definidas.




5. Estudiar la continuidad de la función f(x) en x=1




                                                      4
6. Estudiar la continuidad de las siguientes funciones:
a)                                 b)                                       c)




a)




6b). Estudiar la continuidad de la función




El valor de la función no coincide con el valor del límite. En el punto x = 1 la imagen f(x) toma valor f(1)=3 y
el límite vale 1. Discontinuidad evitable.

c) Continuidad en x=-2




Se cumplen las 3 condiciones y por lo tanto la función es continua en x = -2
                                                       5
Continuidad en x = 1




Como los límites laterales son distintos la función tiene una discontinuidad de salto finito en x = 1

7. Calcular el valor de a para que la siguiente función sea continua:




8. Calcula los siguientes límites:




Soluciones


9. Calcular:




                                                  6
10. De la siguiente función se pide:




11. Calcular los siguientes límites:




12. Estudiar si existe algún valor de k que haga continua a las siguientes funciones:




13. Estudiar la continuidad de las siguientes funciones:




                                                 7
14. Representar la siguiente función y razonar si es continua en los puntos que se indican:




                                                8

Más contenido relacionado

La actualidad más candente

Ecuacion de la recta pendiente
Ecuacion de la recta pendienteEcuacion de la recta pendiente
Ecuacion de la recta pendienteJulian Andres
 
Resolucion problemas de optica
Resolucion problemas de opticaResolucion problemas de optica
Resolucion problemas de opticaJosé Miranda
 
CÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIES
CÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIESCÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIES
CÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIESPablo García y Colomé
 
Axiomas y teoremas de los números reales
Axiomas y teoremas de los números realesAxiomas y teoremas de los números reales
Axiomas y teoremas de los números realesoscartl
 
Vectores en plano y el espacio
Vectores en plano y el espacioVectores en plano y el espacio
Vectores en plano y el espaciojamc95
 
1.1 medición aproximada de figuras amorfas
1.1 medición aproximada de figuras amorfas1.1 medición aproximada de figuras amorfas
1.1 medición aproximada de figuras amorfasmoises1014
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Andrea Alarcon
 
Solucionario guía 1 unidad i algebra lineal
Solucionario guía 1 unidad  i  algebra linealSolucionario guía 1 unidad  i  algebra lineal
Solucionario guía 1 unidad i algebra linealRafael Beas Rivera
 
Problemas de aplicación de ecuaciones lineales - ejercicios
Problemas de aplicación de ecuaciones lineales - ejerciciosProblemas de aplicación de ecuaciones lineales - ejercicios
Problemas de aplicación de ecuaciones lineales - ejerciciosYandri Alcívar
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Luis Ajanel
 

La actualidad más candente (20)

Ecuacion de la recta pendiente
Ecuacion de la recta pendienteEcuacion de la recta pendiente
Ecuacion de la recta pendiente
 
Problemas resueltos de limites
Problemas resueltos de limitesProblemas resueltos de limites
Problemas resueltos de limites
 
espacios vectoriales
espacios vectorialesespacios vectoriales
espacios vectoriales
 
Función inyectiva, biyectiva y sobreyectiva
Función inyectiva, biyectiva y sobreyectivaFunción inyectiva, biyectiva y sobreyectiva
Función inyectiva, biyectiva y sobreyectiva
 
Resolucion problemas de optica
Resolucion problemas de opticaResolucion problemas de optica
Resolucion problemas de optica
 
La integral definida
La integral definidaLa integral definida
La integral definida
 
Analisis gráfico de las funciones
Analisis gráfico de las funcionesAnalisis gráfico de las funciones
Analisis gráfico de las funciones
 
CÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIES
CÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIESCÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIES
CÁLCULO INTEGRAL. CAPÍTULO 1. SUCESIONES Y SERIES
 
Conjunto ejercicios-y-teoria
Conjunto ejercicios-y-teoriaConjunto ejercicios-y-teoria
Conjunto ejercicios-y-teoria
 
Axiomas y teoremas de los números reales
Axiomas y teoremas de los números realesAxiomas y teoremas de los números reales
Axiomas y teoremas de los números reales
 
Vectores en plano y el espacio
Vectores en plano y el espacioVectores en plano y el espacio
Vectores en plano y el espacio
 
Limites
LimitesLimites
Limites
 
1.1 medición aproximada de figuras amorfas
1.1 medición aproximada de figuras amorfas1.1 medición aproximada de figuras amorfas
1.1 medición aproximada de figuras amorfas
 
7 Operaciones Con Funciones
7  Operaciones Con Funciones7  Operaciones Con Funciones
7 Operaciones Con Funciones
 
Cifras significativas
Cifras significativasCifras significativas
Cifras significativas
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2
 
Solucionario guía 1 unidad i algebra lineal
Solucionario guía 1 unidad  i  algebra linealSolucionario guía 1 unidad  i  algebra lineal
Solucionario guía 1 unidad i algebra lineal
 
Problemas de aplicación de ecuaciones lineales - ejercicios
Problemas de aplicación de ecuaciones lineales - ejerciciosProblemas de aplicación de ecuaciones lineales - ejercicios
Problemas de aplicación de ecuaciones lineales - ejercicios
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2
 
Limites
LimitesLimites
Limites
 

Destacado

Ejercicios sobre limites
Ejercicios sobre limitesEjercicios sobre limites
Ejercicios sobre limites19671966
 
Ejercicios limites ii
Ejercicios  limites  iiEjercicios  limites  ii
Ejercicios limites ii19671966
 
Matemáticas I, II, III y IV; Leyes y más.
Matemáticas I, II, III y IV; Leyes y más.Matemáticas I, II, III y IV; Leyes y más.
Matemáticas I, II, III y IV; Leyes y más.Joel Amparán
 
Examen mate 01 2013 unificado
Examen mate 01 2013 unificadoExamen mate 01 2013 unificado
Examen mate 01 2013 unificadoMCMurray
 
EXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALESEXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALESiesrioaguas
 
Limites matematica
Limites matematicaLimites matematica
Limites matematicaClaudia
 
MatemáTicas Diapositivas
MatemáTicas DiapositivasMatemáTicas Diapositivas
MatemáTicas Diapositivasmatediscretas
 
Ejercicios resueltos identidades
Ejercicios resueltos identidadesEjercicios resueltos identidades
Ejercicios resueltos identidadesMarcela Tejada Gil
 
Ejercicios resueltos de radicales
Ejercicios resueltos de radicalesEjercicios resueltos de radicales
Ejercicios resueltos de radicalesTwitter
 
129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometrica129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometricarjaimeramos
 
Diapositivas limites
Diapositivas limitesDiapositivas limites
Diapositivas limitesrosayariher
 

Destacado (18)

Ejercicios sobre limites
Ejercicios sobre limitesEjercicios sobre limites
Ejercicios sobre limites
 
2 eso matematicas - ud01
2 eso matematicas - ud012 eso matematicas - ud01
2 eso matematicas - ud01
 
Ejercicios limites ii
Ejercicios  limites  iiEjercicios  limites  ii
Ejercicios limites ii
 
Matemáticas I, II, III y IV; Leyes y más.
Matemáticas I, II, III y IV; Leyes y más.Matemáticas I, II, III y IV; Leyes y más.
Matemáticas I, II, III y IV; Leyes y más.
 
problemas resueltos de Inecuaciones de libro venero
problemas resueltos de Inecuaciones de libro veneroproblemas resueltos de Inecuaciones de libro venero
problemas resueltos de Inecuaciones de libro venero
 
Examen mate 01 2013 unificado
Examen mate 01 2013 unificadoExamen mate 01 2013 unificado
Examen mate 01 2013 unificado
 
Examen real matematicas uno prepa abierta
Examen real matematicas uno prepa abiertaExamen real matematicas uno prepa abierta
Examen real matematicas uno prepa abierta
 
EXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALESEXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALES
 
Funciones Racionales
Funciones RacionalesFunciones Racionales
Funciones Racionales
 
Limites matematica
Limites matematicaLimites matematica
Limites matematica
 
MatemáTicas Diapositivas
MatemáTicas DiapositivasMatemáTicas Diapositivas
MatemáTicas Diapositivas
 
Ejercicios resueltos identidades
Ejercicios resueltos identidadesEjercicios resueltos identidades
Ejercicios resueltos identidades
 
El concepto del limite (Cálculo I)
El concepto del limite (Cálculo I)El concepto del limite (Cálculo I)
El concepto del limite (Cálculo I)
 
Guía Docente Matemática 10
Guía Docente Matemática 10Guía Docente Matemática 10
Guía Docente Matemática 10
 
Calculo I Limites y sus propiedades
Calculo I Limites y sus propiedadesCalculo I Limites y sus propiedades
Calculo I Limites y sus propiedades
 
Ejercicios resueltos de radicales
Ejercicios resueltos de radicalesEjercicios resueltos de radicales
Ejercicios resueltos de radicales
 
129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometrica129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometrica
 
Diapositivas limites
Diapositivas limitesDiapositivas limites
Diapositivas limites
 

Similar a Ejercicios limites 3 2º bach. con soluciones

Similar a Ejercicios limites 3 2º bach. con soluciones (20)

Funciones trancendentes
Funciones trancendentesFunciones trancendentes
Funciones trancendentes
 
Preparación global 3ª evaluación
Preparación global 3ª evaluaciónPreparación global 3ª evaluación
Preparación global 3ª evaluación
 
Funcion exponencial 4to c
Funcion exponencial 4to cFuncion exponencial 4to c
Funcion exponencial 4to c
 
Funcion exponencial 4to c
Funcion exponencial 4to cFuncion exponencial 4to c
Funcion exponencial 4to c
 
2da evaluacion de matematica, presentacion
2da evaluacion de matematica, presentacion2da evaluacion de matematica, presentacion
2da evaluacion de matematica, presentacion
 
Calculo 2
Calculo 2Calculo 2
Calculo 2
 
funciones calculo diferencial.pptx
funciones calculo diferencial.pptxfunciones calculo diferencial.pptx
funciones calculo diferencial.pptx
 
PPT FUNCIONES.pdf
PPT FUNCIONES.pdfPPT FUNCIONES.pdf
PPT FUNCIONES.pdf
 
Clase 1_Funciones.pdf
Clase 1_Funciones.pdfClase 1_Funciones.pdf
Clase 1_Funciones.pdf
 
Análisis de funciones
Análisis de funcionesAnálisis de funciones
Análisis de funciones
 
Funciones especiales
Funciones especialesFunciones especiales
Funciones especiales
 
Funcion
FuncionFuncion
Funcion
 
3 ESO-Tema12-Funciones
3 ESO-Tema12-Funciones3 ESO-Tema12-Funciones
3 ESO-Tema12-Funciones
 
Asintotas
AsintotasAsintotas
Asintotas
 
Funciones
FuncionesFunciones
Funciones
 
Funciones lineales y cuadráticas.
Funciones lineales y cuadráticas. Funciones lineales y cuadráticas.
Funciones lineales y cuadráticas.
 
5 funciones teoría
5 funciones teoría5 funciones teoría
5 funciones teoría
 
Funciones
FuncionesFunciones
Funciones
 
Taller de graphmatica
Taller de graphmaticaTaller de graphmatica
Taller de graphmatica
 
Mateburros
MateburrosMateburros
Mateburros
 

Más de Matemolivares1

Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013Matemolivares1
 
Examen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticasExamen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticasMatemolivares1
 
13 matemáticas ccss soljun
13 matemáticas ccss soljun13 matemáticas ccss soljun
13 matemáticas ccss soljunMatemolivares1
 
2013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.20132013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.2013Matemolivares1
 
Exposicion vicente escudero
Exposicion vicente escuderoExposicion vicente escudero
Exposicion vicente escuderoMatemolivares1
 
Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011Matemolivares1
 
Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Matemolivares1
 
Ejercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividadEjercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividadMatemolivares1
 
La distribución normal
La distribución normalLa distribución normal
La distribución normalMatemolivares1
 
Ejercicios selectividad muestras
Ejercicios selectividad muestrasEjercicios selectividad muestras
Ejercicios selectividad muestrasMatemolivares1
 
El rostro humano de las matemáticas
El rostro humano de las matemáticasEl rostro humano de las matemáticas
El rostro humano de las matemáticasMatemolivares1
 
Ejercicios de selectividad probabilidad
Ejercicios de selectividad probabilidadEjercicios de selectividad probabilidad
Ejercicios de selectividad probabilidadMatemolivares1
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoMatemolivares1
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoMatemolivares1
 
Sistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de esoSistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de esoMatemolivares1
 
Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011Matemolivares1
 

Más de Matemolivares1 (20)

Arquímedes
ArquímedesArquímedes
Arquímedes
 
Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013
 
Examen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticasExamen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticas
 
Superluna junio 2013
Superluna  junio 2013Superluna  junio 2013
Superluna junio 2013
 
13 matemáticas ccss soljun
13 matemáticas ccss soljun13 matemáticas ccss soljun
13 matemáticas ccss soljun
 
13 mat ccss-exjun
13 mat ccss-exjun13 mat ccss-exjun
13 mat ccss-exjun
 
13 soljun (2)
13 soljun (2)13 soljun (2)
13 soljun (2)
 
2013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.20132013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.2013
 
Exposicion vicente escudero
Exposicion vicente escuderoExposicion vicente escudero
Exposicion vicente escudero
 
Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011
 
Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)
 
Ejercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividadEjercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividad
 
La distribución normal
La distribución normalLa distribución normal
La distribución normal
 
Ejercicios selectividad muestras
Ejercicios selectividad muestrasEjercicios selectividad muestras
Ejercicios selectividad muestras
 
El rostro humano de las matemáticas
El rostro humano de las matemáticasEl rostro humano de las matemáticas
El rostro humano de las matemáticas
 
Ejercicios de selectividad probabilidad
Ejercicios de selectividad probabilidadEjercicios de selectividad probabilidad
Ejercicios de selectividad probabilidad
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer grado
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer grado
 
Sistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de esoSistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de eso
 
Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011
 

Ejercicios limites 3 2º bach. con soluciones

  • 1. TEMA II: Ejercicios de Límites 1. Calcular los siguientes límites (directos): e) Funciones racionales con polinomios: descomponemos en factores y simplificamos. 2. Calcular los siguientes límites (con indeterminaciones para analizar): a) b) c) d) e) f) g) h) a) b) c) d) e) 1
  • 2. f) g) h) 3. Analizar la continuidad y calcular las asíntotas de las siguientes funciones: Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x o y) tienden al infinito. Son límites de las funciones. Asíntotas Verticales: Nos indican a que tiende la función cuando la x no está definida, son rectas paralelas al eje OY. Se escriben x = valor de la asíntota horizontal. El número máximo de asíntotas verticales que puede tener una función es dos. Asíntotas Horizontales: Nos indican a que tiende la función cuando la x es muy grande o muy pequeña, son rectas paralelas al eje OX. Se escriben y = valor de la asíntota horizontal. Las funciones racionales tienen asíntota horizontal cuando el numerador y el denominador son del mismo grado y cuando el grado del denominador es mayor que el grado del numerado. 2
  • 3. a) b) c) d) a) Para saber si la función tiende a uno por arriba o por abajo damos valores "grande y pequeño" a x, b) Hay asíntota horizontal en y=0 que es la ecuación del eje OX. c) Asíntotas oblicuas: una función racional tiene asíntotas oblicuas cuando el grado del numerador es una unidad mayor que el grado del denominador. Las asíntotas horizontales y oblicuas son incompatibles. Si hay unas no puede haber de las otras. Como el grado del numerador es una unidad mayor que el grado del denominador tiene asíntota oblicua. Hay una asíntota oblicua. Calculamos su ecuación Ecuación: y = x - 1 (para representarla damos valores) d) La ecuación de la asíntota es: y = x - 1 3
  • 4. 4. Estudiar la continuidad de la función en los puntos x =2 y x = 5. Continuidad de la función en el punto x = 2 Vemos que se cumplen las 3 condiciones luego la función es continua en el punto x=2 Continuidad de la función en el punto x = 5 La función en x = 5 tiene una discontinuidad de salto infinito. Las funciones racionales tendrán una discontinuidad de salto infinito en aquellos valores de x donde no estén definidas. 5. Estudiar la continuidad de la función f(x) en x=1 4
  • 5. 6. Estudiar la continuidad de las siguientes funciones: a) b) c) a) 6b). Estudiar la continuidad de la función El valor de la función no coincide con el valor del límite. En el punto x = 1 la imagen f(x) toma valor f(1)=3 y el límite vale 1. Discontinuidad evitable. c) Continuidad en x=-2 Se cumplen las 3 condiciones y por lo tanto la función es continua en x = -2 5
  • 6. Continuidad en x = 1 Como los límites laterales son distintos la función tiene una discontinuidad de salto finito en x = 1 7. Calcular el valor de a para que la siguiente función sea continua: 8. Calcula los siguientes límites: Soluciones 9. Calcular: 6
  • 7. 10. De la siguiente función se pide: 11. Calcular los siguientes límites: 12. Estudiar si existe algún valor de k que haga continua a las siguientes funciones: 13. Estudiar la continuidad de las siguientes funciones: 7
  • 8. 14. Representar la siguiente función y razonar si es continua en los puntos que se indican: 8