SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
POTENCIAS H.L.M. ¿Qué es una Potencia? 1. Potencia de Exponente 0 2. Potencia de Exponente 1 3. Multiplicación de Potencias de Igual Base y Distinto Exponente 4. Multiplicación de Potencias de Distinta Base e Igual Exponente 5. División de Potencias de Igual Base y Distintos Exponentes 6. División de Potencias de Distinta Base e Igual Exponente 7. Potencia de una Potencia 8. Potencia de Exponente Negativo Potencias de Bases 2 y 3. Harold Leiva Miranda Profesor de Matemática
¿Qué es una Potencia? Potencia es una expresión que consta de una BASE y un EXPONENTE. ¿Qué es una Base y un Exponente? 2 4 BASE EXPONENTE (-5,3) 8 4 a b
¿Qué significa una Potencia? Potencia es una forma abreviada de escribir una multiplicación recurrente. 2 4 (-5,3) 5 2 = 2 2 2 2    El 2 se multiplica por si mismo las veces que indica el exponente 4. = (-5,3) (-5,3) (-5,3) (-5,3) (-5,3)     =  Ojo: El Exponente 1 no se escribe. Si la base no tiene exponente se asume que es 1. n m = n n … n    n  se multiplica por si mismo las veces que indica el exponente  m . m veces
Algo importante: ,[object Object],[object Object],[object Object],[object Object],Paréntesis en una Potencia. No es lo mismo y
1 - Propiedad :  Potencia de Exponente Cero. 2 0 = 1 2 - Propiedad :  Potencia de Exponente Uno. 2 1 = 2 Excepción  0 0 No Existe  m 0 = 1 n 1 = n
3 - Propiedad :  Multiplicación de Potencias de  Igual  Base y  Distinto  Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 3 4  3 2   3 3 3  3 = 3  4 veces 2 veces En Total son  3   3 3  3  3 3 3  = 3 6 = 3 4+2 6 veces n a  n b = n a+b En General Escribe o di un enunciado que describa la Propiedad
2 5  2 3 Resuelve usando la Propiedad de Potencia:  2 7 a) =  3  7 b) = 3  5  -6 c) = 2 5  7 3  2 2 d) =  7 2 Ordene     7 5 = = Resultado Final 3 - Propiedad :  Multiplicación de Potencias de  Igual  Base y  Distinto  Exponente. 2 8
4 - Propiedad :  Multiplicación de Potencias de  Distinta  Base e  Igual  Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 5 2  3 2 5 5  = 3  2 veces 2 veces En Total son  3  (5 (5  3) 3)  = 3) 2 = 15 2 2 veces (5   m a  n a = (n  • m) a En General Escribe o di un enunciado que describa la Propiedad
6 6  2 6 Resuelve usando la Propiedad de Potencia:  56 4 a) =  4  4 b) = 3  3  3 c) = 8 4  5 3  7 4 d) =  6 3 Ordene     30 3 = = Resultado Final 4 - Propiedad :  Multiplicación de Potencias de  Distinta  Base e  Igual  Exponente. 4 4 6
5 - Propiedad :  División de Potencias de  Igual  Base y  Distinto  Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 3 4 : 3 2 4 veces ─ = 3 4 3 2 = ______________   3 3 3  3 3  3 2 veces y 3 3 _ = 3 3 _  3 3   = 1 1 3 3    = 3 2 Lo anterior se puede separar así ─ 3 4 - 2 3 2 Más Rápido = 3 = 2 3 4 n a : n b = n a-b En General
2 5 : 2 3 Resuelve usando la Propiedad de Potencia: a) = b) c) = e) 5 - Propiedad :  División de Potencias de  Igual  Base y  Distinto  Exponente. 2 8 : d) f)
6 - Propiedad :  División de Potencias de  Distintas  Bases e  Igual  Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 9 4 : 3 4 4 veces ─ = 9 4 3 4 = ______________   9 9 9  9 3  3 4 veces y 9 3 _ = 9 3 _  9 9   = 3 3 3 3    = 3 4 Lo anterior se puede separar así ─ 9 3 4 Más Rápido = 4 3 4 3 3   _ _ 3 3 m a : n a = (m : n) a En General
5 3 : 10 3 Resuelve usando la Propiedad de Potencia: a) = b) c) = e) 6 - Propiedad :  División de Potencias de  Distintas  Bases e  Igual  Exponente. 2 3 : d) f)
7 - Propiedad :  Potencia de una Potencia. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 5 2 ) 6 = 2 •6 = 15 12 5 ( 5 2 5 2 5 2 5 2 5 2 5 2      6 veces 5 5  12 veces 5  5  5  5  5  5  5 5  5  5   = 5 12 (m  ) a b = m a  • b En General
7 - Propiedad :  Potencia de una Potencia. Resuelve usando Propiedad de Potencia 3 2 ) 3 ( a) 3 ) 1 ( b) 3 ) 2 ( c) 4 9 ) 0 ( d) 2 2 ) 4 ( e) 7 3 ) 4 ( f) 5 ) 2 ( g) -4 ) -3 ( h) = = = = = = = =
2 - 4 Ejemplos 0,6 - 3 (-7) - 10 - 2 8 - Propiedad :  Potencia con Exponente Negativo.
¿Qué hace la propiedad? 2 - 4 0,6 - 3 = __ 1 2 4 = __ 1 0,6 3 (-5) 4 = ___ 1 - (-5) - 4 7 = 7 __ 3 2 - 2 3 __ 8 - Propiedad :  Potencia con Exponente Negativo. En General ó
Así podemos aplicar la propiedad varias veces sobre un mismo número. 7 2 = __ 1 7 -2 7 2 = __ 1 7 -2 = 7 -2 = __ 1 7 2 7 -2 = __ 1 7 2 = 8 - Propiedad :  Potencia con Exponente Negativo.
Ejercicios: Cambiar el signo del exponente 8 - Propiedad :  Potencia con Exponente Negativo.
Observa lo siguiente 1024 512 256 128 64 32 16 8 4 2 1 4 16 5 32 6 64
Observa lo siguiente 59049 19683 6561 2187 729 243 81 27 9 3 1 4 81 5 243 6 729
Curiosidades 1) De los números naturales, excluidos el 1, son el 8 y el 27 los únicos cuyo cubo da exactamente dígitos que suman 8 y 27, respectivamente. 2) El número de días del año (365) es igual a la suma de los cuadrados de tres números naturales consecutivos. Y de dos números consecutivos 3)
LINKS http://www.vitanet.cl/busqueda/buscar.php?materia=MATEMATICAS+-+PROBLEMAS,+EJERCICIOS,+ETC http://www.elprisma.com/apuntes/curso.asp?id=7169 http://webpages.ull.es/users/imarrero/sctm04/modulo2/3/mdeleon.pdf http://www.comenius.usach.cl/webmat2/conceptos/desarrolloconcepto/potencias_desarrollo.htm http://w3.cnice.mec.es/eos/MaterialesEducativos/primaria/matematicas/conmates/unid-5/potencias.htm http://descartes.cnice.mecd.es/1y2_eso/potencia/index.htm http://platea.pntic.mec.es/anunezca/Potencias/POTENCIAS.htm http://lubrin.org/mat/spip.php?rubrique52
POTENCIAS H.L.M. Harold   Leiva Miranda [email_address] Colegio Sek – Pacífico Con - Con

Más contenido relacionado

La actualidad más candente

Simplificar Radicales
Simplificar RadicalesSimplificar Radicales
Simplificar RadicalesPomales CeL
 
Ecuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt markEcuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt markjmedinah666
 
Practica 1 numeros naturales y enteros
Practica 1 numeros naturales y enterosPractica 1 numeros naturales y enteros
Practica 1 numeros naturales y enterosrjmartinezcalderon
 
Guía nº 3 potencias de numeros enteros
Guía nº 3 potencias de numeros enterosGuía nº 3 potencias de numeros enteros
Guía nº 3 potencias de numeros enterosMario Covarrubias
 
Ejercicios Teorema de Tales
Ejercicios Teorema de TalesEjercicios Teorema de Tales
Ejercicios Teorema de Talesmatematico5027
 
Funcion lineal y función afín
Funcion lineal y función afínFuncion lineal y función afín
Funcion lineal y función afínMaría Pizarro
 
Diapositivas factorización
Diapositivas factorizaciónDiapositivas factorización
Diapositivas factorizaciónleiner1031
 
Mcd y mcm de polinomios
Mcd y mcm de polinomiosMcd y mcm de polinomios
Mcd y mcm de polinomiosManuel Marcelo
 
Combinación de casos de factoreo
Combinación de casos de factoreoCombinación de casos de factoreo
Combinación de casos de factoreoEmiSparaino
 
Hallar el centro y el radio a partir de la eg. de la circunferencia
Hallar el centro y el radio a partir de  la eg. de la circunferenciaHallar el centro y el radio a partir de  la eg. de la circunferencia
Hallar el centro y el radio a partir de la eg. de la circunferenciaDRJAIMEBRAVO
 
Fórmulas de área y volumen de cuerpos geométricos
Fórmulas de área y volumen de cuerpos geométricosFórmulas de área y volumen de cuerpos geométricos
Fórmulas de área y volumen de cuerpos geométricosluis fajardo urbiña
 
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓAPRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓCesar Suarez Carranza
 

La actualidad más candente (20)

Funcion lineal
Funcion linealFuncion lineal
Funcion lineal
 
Simplificar Radicales
Simplificar RadicalesSimplificar Radicales
Simplificar Radicales
 
Razones trigonométricas de cualquier magnitud
Razones trigonométricas de cualquier magnitudRazones trigonométricas de cualquier magnitud
Razones trigonométricas de cualquier magnitud
 
Ejercicios combinados
Ejercicios combinadosEjercicios combinados
Ejercicios combinados
 
Ecuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt markEcuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt mark
 
Practica 1 numeros naturales y enteros
Practica 1 numeros naturales y enterosPractica 1 numeros naturales y enteros
Practica 1 numeros naturales y enteros
 
Triangulos propiedades ejercicios
Triangulos propiedades ejerciciosTriangulos propiedades ejercicios
Triangulos propiedades ejercicios
 
Guía nº 3 potencias de numeros enteros
Guía nº 3 potencias de numeros enterosGuía nº 3 potencias de numeros enteros
Guía nº 3 potencias de numeros enteros
 
Ejercicios Teorema de Tales
Ejercicios Teorema de TalesEjercicios Teorema de Tales
Ejercicios Teorema de Tales
 
Funcion lineal y función afín
Funcion lineal y función afínFuncion lineal y función afín
Funcion lineal y función afín
 
Diapositivas factorización
Diapositivas factorizaciónDiapositivas factorización
Diapositivas factorización
 
Mcd y mcm de polinomios
Mcd y mcm de polinomiosMcd y mcm de polinomios
Mcd y mcm de polinomios
 
Combinación de casos de factoreo
Combinación de casos de factoreoCombinación de casos de factoreo
Combinación de casos de factoreo
 
Hallar el centro y el radio a partir de la eg. de la circunferencia
Hallar el centro y el radio a partir de  la eg. de la circunferenciaHallar el centro y el radio a partir de  la eg. de la circunferencia
Hallar el centro y el radio a partir de la eg. de la circunferencia
 
Fórmulas de área y volumen de cuerpos geométricos
Fórmulas de área y volumen de cuerpos geométricosFórmulas de área y volumen de cuerpos geométricos
Fórmulas de área y volumen de cuerpos geométricos
 
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓAPRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
 
Magnitudes directa e inversa
Magnitudes directa e inversaMagnitudes directa e inversa
Magnitudes directa e inversa
 
Fracciones 4 potenciacion y radicacion
Fracciones 4 potenciacion y radicacionFracciones 4 potenciacion y radicacion
Fracciones 4 potenciacion y radicacion
 
Guia de homotecias
Guia de homoteciasGuia de homotecias
Guia de homotecias
 
Prueba inecuaciones hoja 1 (autoguardado)
Prueba inecuaciones hoja 1 (autoguardado)Prueba inecuaciones hoja 1 (autoguardado)
Prueba inecuaciones hoja 1 (autoguardado)
 

Destacado

Los Tipos De Potencias
Los Tipos De PotenciasLos Tipos De Potencias
Los Tipos De PotenciasDiana Baez
 
Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013Matemolivares1
 
Examen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticasExamen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticasMatemolivares1
 
13 matemáticas ccss soljun
13 matemáticas ccss soljun13 matemáticas ccss soljun
13 matemáticas ccss soljunMatemolivares1
 

Destacado (9)

Los Tipos De Potencias
Los Tipos De PotenciasLos Tipos De Potencias
Los Tipos De Potencias
 
Superluna junio 2013
Superluna  junio 2013Superluna  junio 2013
Superluna junio 2013
 
13 soljun (2)
13 soljun (2)13 soljun (2)
13 soljun (2)
 
13 mat ccss-exjun
13 mat ccss-exjun13 mat ccss-exjun
13 mat ccss-exjun
 
Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013Eclipse híbrido de sol 2013
Eclipse híbrido de sol 2013
 
Arquímedes
ArquímedesArquímedes
Arquímedes
 
Examen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticasExamen selectividad septiembre 2013-andalucía-matemáticas
Examen selectividad septiembre 2013-andalucía-matemáticas
 
13 matemáticas ccss soljun
13 matemáticas ccss soljun13 matemáticas ccss soljun
13 matemáticas ccss soljun
 
Leyes de los exponentes
Leyes de los exponentesLeyes de los exponentes
Leyes de los exponentes
 

Similar a Potencias (20)

Potencias 1
Potencias 1Potencias 1
Potencias 1
 
taller potencias mío.ppt
taller potencias mío.ppttaller potencias mío.ppt
taller potencias mío.ppt
 
Potencias
PotenciasPotencias
Potencias
 
Presentación2
Presentación2Presentación2
Presentación2
 
Potencias 090923093852-phpapp02
Potencias 090923093852-phpapp02Potencias 090923093852-phpapp02
Potencias 090923093852-phpapp02
 
Potencias
PotenciasPotencias
Potencias
 
Ptt potencias 1
Ptt potencias 1Ptt potencias 1
Ptt potencias 1
 
Potenciacion 2
Potenciacion 2Potenciacion 2
Potenciacion 2
 
RAICES CUADRADAS Y CUBICAS
RAICES CUADRADAS Y CUBICASRAICES CUADRADAS Y CUBICAS
RAICES CUADRADAS Y CUBICAS
 
Raices
RaicesRaices
Raices
 
Potenciación
PotenciaciónPotenciación
Potenciación
 
Potenciación en los reales
Potenciación en los realesPotenciación en los reales
Potenciación en los reales
 
9 PotenciacióN (Anexo)
9  PotenciacióN (Anexo)9  PotenciacióN (Anexo)
9 PotenciacióN (Anexo)
 
Modulo matemática 6
Modulo matemática 6Modulo matemática 6
Modulo matemática 6
 
Potencias
PotenciasPotencias
Potencias
 
8-guia-3-numeros-potencias-jp.pdf
8-guia-3-numeros-potencias-jp.pdf8-guia-3-numeros-potencias-jp.pdf
8-guia-3-numeros-potencias-jp.pdf
 
Concepto de Potencia
Concepto de PotenciaConcepto de Potencia
Concepto de Potencia
 
Potenciación (1)
Potenciación (1)Potenciación (1)
Potenciación (1)
 
Las potencias completo
Las potencias completoLas potencias completo
Las potencias completo
 
Unidad2 mat1
Unidad2 mat1Unidad2 mat1
Unidad2 mat1
 

Más de Matemolivares1

2013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.20132013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.2013Matemolivares1
 
Exposicion vicente escudero
Exposicion vicente escuderoExposicion vicente escudero
Exposicion vicente escuderoMatemolivares1
 
Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011Matemolivares1
 
Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Matemolivares1
 
Ejercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividadEjercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividadMatemolivares1
 
La distribución normal
La distribución normalLa distribución normal
La distribución normalMatemolivares1
 
Ejercicios selectividad muestras
Ejercicios selectividad muestrasEjercicios selectividad muestras
Ejercicios selectividad muestrasMatemolivares1
 
El rostro humano de las matemáticas
El rostro humano de las matemáticasEl rostro humano de las matemáticas
El rostro humano de las matemáticasMatemolivares1
 
Ejercicios de selectividad probabilidad
Ejercicios de selectividad probabilidadEjercicios de selectividad probabilidad
Ejercicios de selectividad probabilidadMatemolivares1
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoMatemolivares1
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoMatemolivares1
 
Sistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de esoSistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de esoMatemolivares1
 
Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011Matemolivares1
 
El triángulo de ibn ahmad al mun'im abdari
El triángulo de ibn ahmad al mun'im abdariEl triángulo de ibn ahmad al mun'im abdari
El triángulo de ibn ahmad al mun'im abdariMatemolivares1
 

Más de Matemolivares1 (20)

2013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.20132013 junio pau matemáticas ii. 19.06.2013
2013 junio pau matemáticas ii. 19.06.2013
 
Exposicion vicente escudero
Exposicion vicente escuderoExposicion vicente escudero
Exposicion vicente escudero
 
Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011Exámenes matemáticas selectividad andalucía 2011
Exámenes matemáticas selectividad andalucía 2011
 
Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)
 
Ejercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividadEjercicios de-contrastesde-hipotesis-selectividad
Ejercicios de-contrastesde-hipotesis-selectividad
 
La distribución normal
La distribución normalLa distribución normal
La distribución normal
 
Ejercicios selectividad muestras
Ejercicios selectividad muestrasEjercicios selectividad muestras
Ejercicios selectividad muestras
 
El rostro humano de las matemáticas
El rostro humano de las matemáticasEl rostro humano de las matemáticas
El rostro humano de las matemáticas
 
Ejercicios de selectividad probabilidad
Ejercicios de selectividad probabilidadEjercicios de selectividad probabilidad
Ejercicios de selectividad probabilidad
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer grado
 
Problemas y ecuaciones de primer grado
Problemas y ecuaciones de primer gradoProblemas y ecuaciones de primer grado
Problemas y ecuaciones de primer grado
 
Sistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de esoSistemas de ecuaciones 2 de eso
Sistemas de ecuaciones 2 de eso
 
Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011Ecuaciones 2ºgrado 2ºeso-2011
Ecuaciones 2ºgrado 2ºeso-2011
 
Ej. ecuaciones
Ej. ecuacionesEj. ecuaciones
Ej. ecuaciones
 
Ejercicios derivadas
Ejercicios derivadasEjercicios derivadas
Ejercicios derivadas
 
El cerdito.....1
El cerdito.....1El cerdito.....1
El cerdito.....1
 
La vaca-1
La vaca-1La vaca-1
La vaca-1
 
El triángulo de ibn ahmad al mun'im abdari
El triángulo de ibn ahmad al mun'im abdariEl triángulo de ibn ahmad al mun'im abdari
El triángulo de ibn ahmad al mun'im abdari
 
El cordero.....1
El cordero.....1El cordero.....1
El cordero.....1
 
La vaca-1
La vaca-1La vaca-1
La vaca-1
 

Potencias

  • 1. POTENCIAS H.L.M. ¿Qué es una Potencia? 1. Potencia de Exponente 0 2. Potencia de Exponente 1 3. Multiplicación de Potencias de Igual Base y Distinto Exponente 4. Multiplicación de Potencias de Distinta Base e Igual Exponente 5. División de Potencias de Igual Base y Distintos Exponentes 6. División de Potencias de Distinta Base e Igual Exponente 7. Potencia de una Potencia 8. Potencia de Exponente Negativo Potencias de Bases 2 y 3. Harold Leiva Miranda Profesor de Matemática
  • 2. ¿Qué es una Potencia? Potencia es una expresión que consta de una BASE y un EXPONENTE. ¿Qué es una Base y un Exponente? 2 4 BASE EXPONENTE (-5,3) 8 4 a b
  • 3. ¿Qué significa una Potencia? Potencia es una forma abreviada de escribir una multiplicación recurrente. 2 4 (-5,3) 5 2 = 2 2 2 2    El 2 se multiplica por si mismo las veces que indica el exponente 4. = (-5,3) (-5,3) (-5,3) (-5,3) (-5,3)     =  Ojo: El Exponente 1 no se escribe. Si la base no tiene exponente se asume que es 1. n m = n n … n    n se multiplica por si mismo las veces que indica el exponente m . m veces
  • 4.
  • 5. 1 - Propiedad : Potencia de Exponente Cero. 2 0 = 1 2 - Propiedad : Potencia de Exponente Uno. 2 1 = 2 Excepción 0 0 No Existe m 0 = 1 n 1 = n
  • 6. 3 - Propiedad : Multiplicación de Potencias de Igual Base y Distinto Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 3 4  3 2   3 3 3  3 = 3  4 veces 2 veces En Total son 3   3 3  3  3 3 3  = 3 6 = 3 4+2 6 veces n a  n b = n a+b En General Escribe o di un enunciado que describa la Propiedad
  • 7. 2 5  2 3 Resuelve usando la Propiedad de Potencia:  2 7 a) =  3  7 b) = 3  5  -6 c) = 2 5  7 3  2 2 d) =  7 2 Ordene     7 5 = = Resultado Final 3 - Propiedad : Multiplicación de Potencias de Igual Base y Distinto Exponente. 2 8
  • 8. 4 - Propiedad : Multiplicación de Potencias de Distinta Base e Igual Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 5 2  3 2 5 5  = 3  2 veces 2 veces En Total son 3  (5 (5  3) 3)  = 3) 2 = 15 2 2 veces (5   m a  n a = (n • m) a En General Escribe o di un enunciado que describa la Propiedad
  • 9. 6 6  2 6 Resuelve usando la Propiedad de Potencia:  56 4 a) =  4  4 b) = 3  3  3 c) = 8 4  5 3  7 4 d) =  6 3 Ordene     30 3 = = Resultado Final 4 - Propiedad : Multiplicación de Potencias de Distinta Base e Igual Exponente. 4 4 6
  • 10. 5 - Propiedad : División de Potencias de Igual Base y Distinto Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 3 4 : 3 2 4 veces ─ = 3 4 3 2 = ______________   3 3 3  3 3  3 2 veces y 3 3 _ = 3 3 _  3 3   = 1 1 3 3    = 3 2 Lo anterior se puede separar así ─ 3 4 - 2 3 2 Más Rápido = 3 = 2 3 4 n a : n b = n a-b En General
  • 11. 2 5 : 2 3 Resuelve usando la Propiedad de Potencia: a) = b) c) = e) 5 - Propiedad : División de Potencias de Igual Base y Distinto Exponente. 2 8 : d) f)
  • 12. 6 - Propiedad : División de Potencias de Distintas Bases e Igual Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 9 4 : 3 4 4 veces ─ = 9 4 3 4 = ______________   9 9 9  9 3  3 4 veces y 9 3 _ = 9 3 _  9 9   = 3 3 3 3    = 3 4 Lo anterior se puede separar así ─ 9 3 4 Más Rápido = 4 3 4 3 3   _ _ 3 3 m a : n a = (m : n) a En General
  • 13. 5 3 : 10 3 Resuelve usando la Propiedad de Potencia: a) = b) c) = e) 6 - Propiedad : División de Potencias de Distintas Bases e Igual Exponente. 2 3 : d) f)
  • 14. 7 - Propiedad : Potencia de una Potencia. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 5 2 ) 6 = 2 •6 = 15 12 5 ( 5 2 5 2 5 2 5 2 5 2 5 2      6 veces 5 5  12 veces 5  5  5  5  5  5  5 5  5  5   = 5 12 (m ) a b = m a • b En General
  • 15. 7 - Propiedad : Potencia de una Potencia. Resuelve usando Propiedad de Potencia 3 2 ) 3 ( a) 3 ) 1 ( b) 3 ) 2 ( c) 4 9 ) 0 ( d) 2 2 ) 4 ( e) 7 3 ) 4 ( f) 5 ) 2 ( g) -4 ) -3 ( h) = = = = = = = =
  • 16. 2 - 4 Ejemplos 0,6 - 3 (-7) - 10 - 2 8 - Propiedad : Potencia con Exponente Negativo.
  • 17. ¿Qué hace la propiedad? 2 - 4 0,6 - 3 = __ 1 2 4 = __ 1 0,6 3 (-5) 4 = ___ 1 - (-5) - 4 7 = 7 __ 3 2 - 2 3 __ 8 - Propiedad : Potencia con Exponente Negativo. En General ó
  • 18. Así podemos aplicar la propiedad varias veces sobre un mismo número. 7 2 = __ 1 7 -2 7 2 = __ 1 7 -2 = 7 -2 = __ 1 7 2 7 -2 = __ 1 7 2 = 8 - Propiedad : Potencia con Exponente Negativo.
  • 19. Ejercicios: Cambiar el signo del exponente 8 - Propiedad : Potencia con Exponente Negativo.
  • 20. Observa lo siguiente 1024 512 256 128 64 32 16 8 4 2 1 4 16 5 32 6 64
  • 21. Observa lo siguiente 59049 19683 6561 2187 729 243 81 27 9 3 1 4 81 5 243 6 729
  • 22. Curiosidades 1) De los números naturales, excluidos el 1, son el 8 y el 27 los únicos cuyo cubo da exactamente dígitos que suman 8 y 27, respectivamente. 2) El número de días del año (365) es igual a la suma de los cuadrados de tres números naturales consecutivos. Y de dos números consecutivos 3)
  • 23. LINKS http://www.vitanet.cl/busqueda/buscar.php?materia=MATEMATICAS+-+PROBLEMAS,+EJERCICIOS,+ETC http://www.elprisma.com/apuntes/curso.asp?id=7169 http://webpages.ull.es/users/imarrero/sctm04/modulo2/3/mdeleon.pdf http://www.comenius.usach.cl/webmat2/conceptos/desarrolloconcepto/potencias_desarrollo.htm http://w3.cnice.mec.es/eos/MaterialesEducativos/primaria/matematicas/conmates/unid-5/potencias.htm http://descartes.cnice.mecd.es/1y2_eso/potencia/index.htm http://platea.pntic.mec.es/anunezca/Potencias/POTENCIAS.htm http://lubrin.org/mat/spip.php?rubrique52
  • 24. POTENCIAS H.L.M. Harold Leiva Miranda [email_address] Colegio Sek – Pacífico Con - Con