Analytics in IOT

Mitesh Gupta
Mitesh GuptaData Scientist at MachinePulse
ANALYTICS IN IOT SPACE
By :-
• Mitesh Gupta
AGENDA
 What is IoT?
 What is IIoT
 What is AoT
 How IoT Analytics is Different?
 Case Studies
 Data Science (necessity and importance)
 Analytics Way Forward
 Technology Stack for Analytics
 Questions & Answers
WHAT IS…
BASIC DEFINITION
• Forbes : This term refers to devices that collect & transmit data via the
internet.
• SAP : More than 50 billions objects will connect to internet and this
connection is called as IoT. This “things” talk to each other,
collect streaming data and insights.
• Cisco : The IoT links smart objects to the Internet. It can enable an
exchange of data never available before, and bring users
information in a more secure way.
• Wiki : The Internet of Things (IoT) is the network of physical
objects/devices that enables these objects to collect and
exchange data.
THINGS IN INTERNET OF THINGS
• Objects
• Machines
• Appliances
• Building
• Vehicle
• People and many more…
WHAT IS INTERNET OF THINGS!
6
Application
Server
Things
Web
Service
s
IOT ECOSYSTEM
Remot
e
Internet
Network
Data Storage
Analytics
IoT Devices
Analysis
Command
Gateway
M2M
• Machine to machine refers to direct communication between
devices using any communication channel, including wired and
wireless.
• Machine to machine communication can include industrial
instrumentation, enabling a sensor or meter to communicate
the data it records.
M2M VS IOT
IMPORTANCE
• Connect with things
• Monitoring of things
• Search for things
• Manage things
• Control things
GARTNER: EMERGING TECHNOLOGY HYPE CYCLE
MARKET DRIVERS & BARRIERS
Four Market Drivers
•Expanded internet connectivity
•High mobile adoption
•Low-cost sensors
•Large IoT investments
Four Barriers
•Security concerns
•Privacy concerns
•Implementation problems
•Technological fragmentation
SIZE IN MARKET
$6
TRILLION
INVESTED
$6 trillion will be invested
on IoT solutions over the next five years 24 BILLION
There will be 24 billion IoT devices
installed by 2020
$13
TRILLION ROI
Total investments over the next five years
will generate $13 trillion by 2025
ENTITIES USING IOT ECOSYSTEM
Consumers
5B Devices Installed By
2020
Governments
7.7B Devices Installed By
2020
Businesses
11.2B Devices Installed
By 2020
$3B Spent (2015-2020)
$2.1B Spent (2015-2020)
$900M Spent (2015-2020)
$7.6B ROI (2015-2025)
$1.4B ROI (2015-2025)
$4.7B ROI (2015-2025)
VERTICALS UTILIZE IOT ECOSYSTEM
Transportation
Manufacturing
Connected Homes
Agriculture
Oil & Gas, Mining
Utilities
Infrastructure
Health Care
Many more….
INDUSTRIAL INTERNET OF THINGS (IIOT)
• A universe of intelligent industrial products, processes and services that
communicate with each other and with people over a global network -
Accenture
• The Industrial Internet of Things (IIoT) is the next wave of innovation
impacting the way the world connects and optimizes machines. The IIoT,
through the use of sensors, advanced analytics and intelligent decision
making, will profoundly transform the way field assets connect and
communicate with the enterprise – EDN Networks
• The Industrial Internet of Things is an evolution of existing technologies that
enables end users to improve processes, drive productivity, and maintain an
edge in our increasingly competitive global economy - Kepware
IOT & IIOT
Source – Control
Engineering
IIOT FRAMEWORK
Source - EDN Networks
KEY CHALLENGES IN IIOT
• Settling on device capabilities
• Security
• Bridging the gaps that divide us (people)
IIOT & ITS IMPACT
20
Workforce
Advanced
Analytics
Intelligent
Machine
INTRODUCTION OF AOT
Connected
Devices
Embedded Analytics Smart Devices
Analytics enables to make predictions and send alerts/notifications from
streaming data(real time sensor data) using automated analytics platform
Analytics decode and transform the continuous flow of M2M data into
value-added information
WHAT MAKES IOT ANALYTICS DIFFERENT
CASE STUDY
• Preventive Maintenance
• Freezer Failure (Proactive Failure Detection)
• Solar PV Plant (Real Time Analytics)
1. PREVENTIVE MAINTENANCE
1. PREVENTIVE MAINTENANCE (CONT.)
1. PROACTIVE FAILURE DETECTION
1. PROACTIVE FAILURE DETECTION (CONT.)
1. PROACTIVE FAILURE DETECTION (CONT.)
1. PROACTIVE FAILURE DETECTION (CONT.)
1. PROACTIVE FAILURE DETECTION (CONT.)
SOLAR UTILITY EPC COMPANY
31
Increasing Challenges
How do you create a Competitive Advantage ?
Tariff rates
O&M
expenses
Remote
locations
32
LETS TRACK A 20 MW SOLAR PLANT
3
2
4
1
5
6
7
9
8
Remote Monitoring & Control, Diagnostics and Analytics are very CRITICAL for
Solar plants!
QUANTUM OF DATA : 20MW SOLAR PV
PLANT
CONFIDENTIAL & PROPRIETARY DOCUMENT
Sr. No. Device Type Total Devices Frequency Daily (B) Monthly (B)
1 Combiner Box 208 1 Hz 61,10,20,800 18,33,06,24,000
2 INVERTER 26 1 Hz 58,81,07,520 17,64,32,25,600
3 TRAFO 13 1 Hz 17,59,680 5,27,90,400
4 MFM 17 1 Hz 1,91,43,360 57,43,00,800
5 VCB 15 1 Hz 2,16,000 64,80,000
6 PLANT 1 1 Hz 12,24,000 3,67,20,000
7 ZONE 8 1 Hz 11,75,040 3,52,51,200
8 WS 1 1 Hz 5,63,040 1,68,91,200
9 FAN 26 1 Hz 37,440 11,23,200
10 UPS 8 1 Hz 45,04,320 13,51,29,600
11 LDB 8 1 Hz 46,080 13,82,400
12 ACDB 8 1 Hz 11,520 3,45,600
13 SURGEARRESTOR 208 1 Hz 2,99,520 89,85,600
14 TEMPSENSOR 6 1 Hz 1,46,880 44,06,400
Total (Bytes) 36,84,76,56,000
Total (GigaBytes) 34.3171
HOW TO DIGEST THIS HUMONGOUS DATA
FOR DATA INSIGHTS
CONFIDENTIAL & PROPRIETARY DOCUMENT
• Performance Analytics
• Real Time Benchmarking
• Trend Analysis
• Adaptive Machine Learning Algorithms
Performance
Analytics
Trend
Analysis
Machine
Learning
Real Time
Benchmarking
PERFORMANCE ANALYTICS
CONFIDENTIAL & PROPRIETARY DOCUMENT
CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10
CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20
CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30
CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40
CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50
CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60
CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70
CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80
CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90
CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100
CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10
CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20
CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30
CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40
CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50
CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60
CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70
CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80
CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90
CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100
CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10
CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20
CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30
CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40
CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50
CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60
CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70
CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80
CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90
CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100
CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10
CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20
CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30
CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40
CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50
CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60
CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70
CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80
CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90
CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100
REAL TIME BENCHMARKING
CONFIDENTIAL & PROPRIETARY DOCUMENT
TREND ANALYSIS
CONFIDENTIAL & PROPRIETARY DOCUMENT
TREND ANALYSIS
CONFIDENTIAL & PROPRIETARY DOCUMENT
ADAPTIVE MACHINE LEARNING
ALGORITHMS
CONFIDENTIAL & PROPRIETARY DOCUMENT
CHALLENGES WITH ANALYTICS IN IOT
• Data is growing bigger
• Data in motion
• Geographically distribution of data
• New functionality and tools (capability perspective)
TOP 10 MARKET PLAYERS IN IOT
We are Engineer’s and we can really connect
better to machines rather than human beings…!!
IoT
It will change our lives
DATA
SCIENCE
WHY THE WORLD IS LOOKING AT
IT?
SOME STATS ON DATA SCIENCE:
• 25% of organizations now have a data scientist on staff.
• By increasing the usability of data by just 10%, the average Fortune 100
company could expect an increase of $2 billion dollars (source: Fathom)
• 1,40,000 to 1,90,000 people with deep analytic skills as well as 1.5 million
managers and analysts will be needed by 2018 to fill jobs in Big Data in US
(source: McKinsey)
• 86% of people are willing to pay more for a great customer experience with
a brand (source: Lunch Pail)
• By 2020 the IoT Will Include 26 Billion Units, Creating New Challenges for All
Aspects of the Data Center (source : Gartner)
UNDERSTANDING DATA SCIENCE
WHAT IS ANALYTICS?
Maturity of Analytics Capabilities
CompetitiveAdvantage
Raw
Data
Cleaned
Data
Standard
Reports
Ad Hoc Reports
& OLAP
Predictive Modelling
Optimisation
What Happened? – Descriptive Analytics
Why did it happen? – Diagnostic Analytics
What will happen? – Predictive Analytics
What is the best that could happen? Prescriptive Analytics
Sense & Respond Predict & Act
Generic Predictive
Analytics
Source: SAP
MACHINE LEARNING
• Machine learning is a subfield of computer science that evolved from
the study of pattern recognition and computational learning theory in
artificial intelligence.
- Wikipedia
• Machine learning is a type of artificial intelligence (AI) that provides
computers with the ability to learn without being explicitly
programmed. Machine learning focuses on the development of
computer programs that can teach themselves to grow and change
when exposed to new data.
- whatis.techtarget.com
TYPE OF PROBLEM CATEGORIES
Supervised
Learning
Unsupervised
Learning
COMMON PREDICTIVE ANALYTICS
METHOD
• Regression:
Predicting output variable using its cause-effect relationship with input variables. OLS
Regression, GLM, Random forests, ANN etc.
• Classification:
Predicting the item class. Decision Tree, Logistic Regression, ANN, SVM, Naïve Bayes classifier
etc.
• Time Series Forecasting:
Predicting future time events given past history. AR, MA, ARIMA, Triple Exponential
Smoothing, Holt- Winters etc.
COMMON PREDICTIVE ANALYTICS
METHOD (CONTD.)
• Association rule mining:
Mining items occurring together Apriori Algorithm.
• Clustering:
Finding natural groups or clusters in the data. K-means, Hierarchical, Spectral, Density
based EM algorithm Clustering etc.
• Text mining:
Model and structure the information content of textual sources. Sentiment Analysis,
NLP
BUSINESS APPLICATIONS OF PREDICTIVE
ANALYTICS
Factory Failures
FinanceSmarter Healthcare
Multi-channel
sales
Telecom
Manufacturing
Traffic Control
Trading Analytics Fraud and Risk
Renewable
Energy
Spam Filters
Retail: Churn
PREDICTIVE ANALYTICS TOOLS IN
MARKET
LEARNING LINKS
• https://www.coursera.org/browse/data-science
• http://www.kdnuggets.com/2015/09/15-math-mooc-data-science.html
• http://www.datasciencecentral.com/profiles/blogs/how-to-become-a-
data-scientist-for-free
• http://www.r-bloggers.com/in-depth-introduction-to-machine-learning-
in-15-hours-of-expert-videos/
• http://online.stanford.edu/course/machine-learning-3
• http://online.stanford.edu/course/mining-massive-datasets
• Kaggle : The leading platform for predictive analytics competitions
• https://www.analyticsvidhya.com/
QUESTIONS AND DISCUSSION
THANK YOU SO MUCH FOR YOUR VALUABLE TIME
Mitesh Gupta
Email: mitesh.gupta19@gmail.com
LinkedIn: https://in.linkedin.com/in/mitesh-
gupta-28014633
1 de 54

Recomendados

Internet of things (IOT) | Future Trends por
Internet of things (IOT) | Future TrendsInternet of things (IOT) | Future Trends
Internet of things (IOT) | Future TrendsDevanand Hariperumal
9.4K vistas27 diapositivas
Challenges and application of Internet of Things por
Challenges and application of Internet of ThingsChallenges and application of Internet of Things
Challenges and application of Internet of ThingsAshutosh Bhardwaj
7.2K vistas9 diapositivas
Internet of Things (IoT) Based Smart Security & Home Automation System. por
Internet of Things (IoT) Based Smart Security & Home Automation System.Internet of Things (IoT) Based Smart Security & Home Automation System.
Internet of Things (IoT) Based Smart Security & Home Automation System.sayed78
7.1K vistas22 diapositivas
Data Analytics for IoT por
Data Analytics for IoT Data Analytics for IoT
Data Analytics for IoT Muralidhar Somisetty
12.8K vistas45 diapositivas
Iot ppt por
Iot pptIot ppt
Iot pptpiyuu7
26.4K vistas20 diapositivas
Applications of IOT (internet of things) por
Applications of IOT (internet of things)Applications of IOT (internet of things)
Applications of IOT (internet of things)Vinesh Gowda
31K vistas16 diapositivas

Más contenido relacionado

La actualidad más candente

IOT and Characteristics of IOT por
IOT and  Characteristics of IOTIOT and  Characteristics of IOT
IOT and Characteristics of IOTAmberSinghal1
19.6K vistas12 diapositivas
IoT for Healthcare por
IoT for HealthcareIoT for Healthcare
IoT for HealthcareSenZations Summer School
13K vistas20 diapositivas
Internet of things por
Internet of thingsInternet of things
Internet of thingsShahneel Siddiqui
8.7K vistas19 diapositivas
Internet of Things por
Internet of ThingsInternet of Things
Internet of ThingsPantech ProLabs India Pvt Ltd
6K vistas28 diapositivas
IoT ecosystem por
IoT ecosystemIoT ecosystem
IoT ecosystemMd. Shamsul Haque
2K vistas31 diapositivas
Sources of IoT (JNTUK - UNIT 1) por
Sources of IoT (JNTUK - UNIT 1)Sources of IoT (JNTUK - UNIT 1)
Sources of IoT (JNTUK - UNIT 1)FabMinds
3.4K vistas9 diapositivas

La actualidad más candente(20)

IOT and Characteristics of IOT por AmberSinghal1
IOT and  Characteristics of IOTIOT and  Characteristics of IOT
IOT and Characteristics of IOT
AmberSinghal119.6K vistas
Sources of IoT (JNTUK - UNIT 1) por FabMinds
Sources of IoT (JNTUK - UNIT 1)Sources of IoT (JNTUK - UNIT 1)
Sources of IoT (JNTUK - UNIT 1)
FabMinds3.4K vistas
Introduction to IOT & Smart City por Dr. Mazlan Abbas
Introduction to IOT & Smart CityIntroduction to IOT & Smart City
Introduction to IOT & Smart City
Dr. Mazlan Abbas255.5K vistas
What is the Internet of Things? por Felix Grovit
What is the Internet of Things?What is the Internet of Things?
What is the Internet of Things?
Felix Grovit67.1K vistas
Internet of Things (IoT) and its applications por Sarwan Singh
Internet of Things (IoT) and its applicationsInternet of Things (IoT) and its applications
Internet of Things (IoT) and its applications
Sarwan Singh8.7K vistas
Introduction to IoT Architectures and Protocols por Abdullah Alfadhly
Introduction to IoT Architectures and ProtocolsIntroduction to IoT Architectures and Protocols
Introduction to IoT Architectures and Protocols
Abdullah Alfadhly9.5K vistas
IoT por Mphasis
IoTIoT
IoT
Mphasis3.9K vistas
Internet of Things and its applications por Pasquale Puzio
Internet of Things and its applicationsInternet of Things and its applications
Internet of Things and its applications
Pasquale Puzio299.5K vistas
IoT and Big Data por sabnees
IoT and Big DataIoT and Big Data
IoT and Big Data
sabnees3.5K vistas
Internet of Things (IOT) por Kunal Adhikari
Internet of Things (IOT)Internet of Things (IOT)
Internet of Things (IOT)
Kunal Adhikari7.6K vistas

Similar a Analytics in IOT

Разработка и тестирование интернета вещей. Тренды индустрии por
Разработка и тестирование интернета вещей. Тренды индустрииРазработка и тестирование интернета вещей. Тренды индустрии
Разработка и тестирование интернета вещей. Тренды индустрииcorehard_by
659 vistas75 diapositivas
SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в... por
SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в...SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в...
SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в...SECON
543 vistas75 diapositivas
Internet of Things Workshop por
Internet of Things WorkshopInternet of Things Workshop
Internet of Things WorkshopDr. Mazlan Abbas
22 vistas59 diapositivas
IoT: Understanding its potential and what makes it tick! by Mark Torr por
IoT: Understanding its potential and what makes it tick! by Mark TorrIoT: Understanding its potential and what makes it tick! by Mark Torr
IoT: Understanding its potential and what makes it tick! by Mark TorrBosnia Agile
662 vistas50 diapositivas
The Evolution of Data Architecture por
The Evolution of Data ArchitectureThe Evolution of Data Architecture
The Evolution of Data ArchitectureWei-Chiu Chuang
1.9K vistas52 diapositivas
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStream por
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStreamIoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStream
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStreamgogo6
5K vistas42 diapositivas

Similar a Analytics in IOT(20)

Разработка и тестирование интернета вещей. Тренды индустрии por corehard_by
Разработка и тестирование интернета вещей. Тренды индустрииРазработка и тестирование интернета вещей. Тренды индустрии
Разработка и тестирование интернета вещей. Тренды индустрии
corehard_by659 vistas
SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в... por SECON
SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в...SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в...
SECON'2016. Семенченко Антон, Как тренды в Мобильной разработке и Интернете в...
SECON543 vistas
IoT: Understanding its potential and what makes it tick! by Mark Torr por Bosnia Agile
IoT: Understanding its potential and what makes it tick! by Mark TorrIoT: Understanding its potential and what makes it tick! by Mark Torr
IoT: Understanding its potential and what makes it tick! by Mark Torr
Bosnia Agile662 vistas
The Evolution of Data Architecture por Wei-Chiu Chuang
The Evolution of Data ArchitectureThe Evolution of Data Architecture
The Evolution of Data Architecture
Wei-Chiu Chuang1.9K vistas
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStream por gogo6
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStreamIoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStream
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStream
gogo65K vistas
The-Internet-Of-Things-4th-Industrial-Revolution.pptx por HadHic
The-Internet-Of-Things-4th-Industrial-Revolution.pptxThe-Internet-Of-Things-4th-Industrial-Revolution.pptx
The-Internet-Of-Things-4th-Industrial-Revolution.pptx
HadHic68 vistas
IoT Overview and Challenges - Sachin Pukale IOT Mumbai por Sachin Pukale
IoT Overview and Challenges - Sachin Pukale IOT MumbaiIoT Overview and Challenges - Sachin Pukale IOT Mumbai
IoT Overview and Challenges - Sachin Pukale IOT Mumbai
Sachin Pukale131 vistas
Les objets connectés : de nombreux cas d'usage por Jedha Bootcamp
Les objets connectés : de nombreux cas d'usage Les objets connectés : de nombreux cas d'usage
Les objets connectés : de nombreux cas d'usage
Jedha Bootcamp96 vistas
Revolutionising Facility Management Services Through Internet of Things - Is ... por Dr. Mazlan Abbas
Revolutionising Facility Management Services Through Internet of Things - Is ...Revolutionising Facility Management Services Through Internet of Things - Is ...
Revolutionising Facility Management Services Through Internet of Things - Is ...
Dr. Mazlan Abbas1.7K vistas
Internet of Things - The Tip of an Iceberg por Dr. Mazlan Abbas
Internet of Things - The Tip of an IcebergInternet of Things - The Tip of an Iceberg
Internet of Things - The Tip of an Iceberg
Dr. Mazlan Abbas50.5K vistas
Powering the Internet of Things with Apache Hadoop por Cloudera, Inc.
Powering the Internet of Things with Apache HadoopPowering the Internet of Things with Apache Hadoop
Powering the Internet of Things with Apache Hadoop
Cloudera, Inc.11.1K vistas
Waukesha County Business Alliance - Key Industries 2019 (121318) por Pendio Group
Waukesha County Business Alliance -  Key Industries 2019  (121318)Waukesha County Business Alliance -  Key Industries 2019  (121318)
Waukesha County Business Alliance - Key Industries 2019 (121318)
Pendio Group66 vistas
OutSystems Next Step 2014 Presentation - BIG DATA Journal ADEC Group por Scott Darrow (LION)
OutSystems Next Step 2014 Presentation - BIG DATA Journal ADEC GroupOutSystems Next Step 2014 Presentation - BIG DATA Journal ADEC Group
OutSystems Next Step 2014 Presentation - BIG DATA Journal ADEC Group
Scott Darrow (LION)1.9K vistas

Último

[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks por
[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks
[DSC Europe 23] Aleksandar Tomcic - Adversarial AttacksDataScienceConferenc1
5 vistas20 diapositivas
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx por
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptxDataScienceConferenc1
5 vistas16 diapositivas
Ukraine Infographic_22NOV2023_v2.pdf por
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdfAnastosiyaGurin
1.4K vistas3 diapositivas
SUPER STORE SQL PROJECT.pptx por
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptxkhan888620
12 vistas16 diapositivas
Data Journeys Hard Talk workshop final.pptx por
Data Journeys Hard Talk workshop final.pptxData Journeys Hard Talk workshop final.pptx
Data Journeys Hard Talk workshop final.pptxinfo828217
10 vistas18 diapositivas
How Leaders See Data? (Level 1) por
How Leaders See Data? (Level 1)How Leaders See Data? (Level 1)
How Leaders See Data? (Level 1)Narendra Narendra
14 vistas76 diapositivas

Último(20)

[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx por DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
Ukraine Infographic_22NOV2023_v2.pdf por AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurin1.4K vistas
SUPER STORE SQL PROJECT.pptx por khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862012 vistas
Data Journeys Hard Talk workshop final.pptx por info828217
Data Journeys Hard Talk workshop final.pptxData Journeys Hard Talk workshop final.pptx
Data Journeys Hard Talk workshop final.pptx
info82821710 vistas
Chapter 3b- Process Communication (1) (1)(1) (1).pptx por ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
ayeshabaig20046 vistas
Organic Shopping in Google Analytics 4.pdf por GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials14 vistas
Short Story Assignment by Kelly Nguyen por kellynguyen01
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyen
kellynguyen0119 vistas
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation por DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
Data about the sector workshop por info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821712 vistas
Survey on Factuality in LLM's.pptx por NeethaSherra1
Survey on Factuality in LLM's.pptxSurvey on Factuality in LLM's.pptx
Survey on Factuality in LLM's.pptx
NeethaSherra16 vistas
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx por DataScienceConferenc1
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx
CRM stick or twist workshop por info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info8282179 vistas
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... por DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx por DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
CRM stick or twist.pptx por info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info82821710 vistas
3196 The Case of The East River por ErickANDRADE90
3196 The Case of The East River3196 The Case of The East River
3196 The Case of The East River
ErickANDRADE9016 vistas

Analytics in IOT

  • 1. ANALYTICS IN IOT SPACE By :- • Mitesh Gupta
  • 2. AGENDA  What is IoT?  What is IIoT  What is AoT  How IoT Analytics is Different?  Case Studies  Data Science (necessity and importance)  Analytics Way Forward  Technology Stack for Analytics  Questions & Answers
  • 4. BASIC DEFINITION • Forbes : This term refers to devices that collect & transmit data via the internet. • SAP : More than 50 billions objects will connect to internet and this connection is called as IoT. This “things” talk to each other, collect streaming data and insights. • Cisco : The IoT links smart objects to the Internet. It can enable an exchange of data never available before, and bring users information in a more secure way. • Wiki : The Internet of Things (IoT) is the network of physical objects/devices that enables these objects to collect and exchange data.
  • 5. THINGS IN INTERNET OF THINGS • Objects • Machines • Appliances • Building • Vehicle • People and many more…
  • 6. WHAT IS INTERNET OF THINGS! 6 Application Server Things Web Service s
  • 8. M2M • Machine to machine refers to direct communication between devices using any communication channel, including wired and wireless. • Machine to machine communication can include industrial instrumentation, enabling a sensor or meter to communicate the data it records.
  • 10. IMPORTANCE • Connect with things • Monitoring of things • Search for things • Manage things • Control things
  • 12. MARKET DRIVERS & BARRIERS Four Market Drivers •Expanded internet connectivity •High mobile adoption •Low-cost sensors •Large IoT investments Four Barriers •Security concerns •Privacy concerns •Implementation problems •Technological fragmentation
  • 13. SIZE IN MARKET $6 TRILLION INVESTED $6 trillion will be invested on IoT solutions over the next five years 24 BILLION There will be 24 billion IoT devices installed by 2020 $13 TRILLION ROI Total investments over the next five years will generate $13 trillion by 2025
  • 14. ENTITIES USING IOT ECOSYSTEM Consumers 5B Devices Installed By 2020 Governments 7.7B Devices Installed By 2020 Businesses 11.2B Devices Installed By 2020 $3B Spent (2015-2020) $2.1B Spent (2015-2020) $900M Spent (2015-2020) $7.6B ROI (2015-2025) $1.4B ROI (2015-2025) $4.7B ROI (2015-2025)
  • 15. VERTICALS UTILIZE IOT ECOSYSTEM Transportation Manufacturing Connected Homes Agriculture Oil & Gas, Mining Utilities Infrastructure Health Care Many more….
  • 16. INDUSTRIAL INTERNET OF THINGS (IIOT) • A universe of intelligent industrial products, processes and services that communicate with each other and with people over a global network - Accenture • The Industrial Internet of Things (IIoT) is the next wave of innovation impacting the way the world connects and optimizes machines. The IIoT, through the use of sensors, advanced analytics and intelligent decision making, will profoundly transform the way field assets connect and communicate with the enterprise – EDN Networks • The Industrial Internet of Things is an evolution of existing technologies that enables end users to improve processes, drive productivity, and maintain an edge in our increasingly competitive global economy - Kepware
  • 17. IOT & IIOT Source – Control Engineering
  • 18. IIOT FRAMEWORK Source - EDN Networks
  • 19. KEY CHALLENGES IN IIOT • Settling on device capabilities • Security • Bridging the gaps that divide us (people)
  • 20. IIOT & ITS IMPACT 20 Workforce Advanced Analytics Intelligent Machine
  • 21. INTRODUCTION OF AOT Connected Devices Embedded Analytics Smart Devices Analytics enables to make predictions and send alerts/notifications from streaming data(real time sensor data) using automated analytics platform Analytics decode and transform the continuous flow of M2M data into value-added information
  • 22. WHAT MAKES IOT ANALYTICS DIFFERENT
  • 23. CASE STUDY • Preventive Maintenance • Freezer Failure (Proactive Failure Detection) • Solar PV Plant (Real Time Analytics)
  • 26. 1. PROACTIVE FAILURE DETECTION
  • 27. 1. PROACTIVE FAILURE DETECTION (CONT.)
  • 28. 1. PROACTIVE FAILURE DETECTION (CONT.)
  • 29. 1. PROACTIVE FAILURE DETECTION (CONT.)
  • 30. 1. PROACTIVE FAILURE DETECTION (CONT.)
  • 31. SOLAR UTILITY EPC COMPANY 31 Increasing Challenges How do you create a Competitive Advantage ? Tariff rates O&M expenses Remote locations
  • 32. 32 LETS TRACK A 20 MW SOLAR PLANT 3 2 4 1 5 6 7 9 8 Remote Monitoring & Control, Diagnostics and Analytics are very CRITICAL for Solar plants!
  • 33. QUANTUM OF DATA : 20MW SOLAR PV PLANT CONFIDENTIAL & PROPRIETARY DOCUMENT Sr. No. Device Type Total Devices Frequency Daily (B) Monthly (B) 1 Combiner Box 208 1 Hz 61,10,20,800 18,33,06,24,000 2 INVERTER 26 1 Hz 58,81,07,520 17,64,32,25,600 3 TRAFO 13 1 Hz 17,59,680 5,27,90,400 4 MFM 17 1 Hz 1,91,43,360 57,43,00,800 5 VCB 15 1 Hz 2,16,000 64,80,000 6 PLANT 1 1 Hz 12,24,000 3,67,20,000 7 ZONE 8 1 Hz 11,75,040 3,52,51,200 8 WS 1 1 Hz 5,63,040 1,68,91,200 9 FAN 26 1 Hz 37,440 11,23,200 10 UPS 8 1 Hz 45,04,320 13,51,29,600 11 LDB 8 1 Hz 46,080 13,82,400 12 ACDB 8 1 Hz 11,520 3,45,600 13 SURGEARRESTOR 208 1 Hz 2,99,520 89,85,600 14 TEMPSENSOR 6 1 Hz 1,46,880 44,06,400 Total (Bytes) 36,84,76,56,000 Total (GigaBytes) 34.3171
  • 34. HOW TO DIGEST THIS HUMONGOUS DATA FOR DATA INSIGHTS CONFIDENTIAL & PROPRIETARY DOCUMENT • Performance Analytics • Real Time Benchmarking • Trend Analysis • Adaptive Machine Learning Algorithms Performance Analytics Trend Analysis Machine Learning Real Time Benchmarking
  • 35. PERFORMANCE ANALYTICS CONFIDENTIAL & PROPRIETARY DOCUMENT CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10 CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20 CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30 CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40 CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50 CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60 CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70 CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80 CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90 CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100 CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10 CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20 CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30 CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40 CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50 CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60 CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70 CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80 CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90 CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100 CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10 CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20 CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30 CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40 CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50 CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60 CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70 CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80 CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90 CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100 CB-01 CB-02 CB-03 CB-04 CB-05 CB-06 CB-07 CB-08 CB-09 CB-10 CB-11 CB-12 CB-13 CB-14 CB-15 CB-16 CB-17 CB-18 CB-19 CB-20 CB-21 CB-22 CB-23 CB-24 CB-25 CB-26 CB-27 CB-28 CB-29 CB-30 CB-31 CB-32 CB-33 CB-34 CB-35 CB-36 CB-37 CB-38 CB-39 CB-40 CB-41 CB-42 CB-43 CB-44 CB-45 CB-46 CB-47 CB-48 CB-49 CB-50 CB-51 CB-52 CB-53 CB-54 CB-55 CB-56 CB-57 CB-58 CB-59 CB-60 CB-61 CB-62 CB-63 CB-64 CB-65 CB-66 CB-67 CB-68 CB-69 CB-70 CB-71 CB-72 CB-73 CB-74 CB-75 CB-76 CB-77 CB-78 CB-79 CB-80 CB-81 CB-82 CB-83 CB-84 CB-85 CB-86 CB-87 CB-88 CB-89 CB-90 CB-91 CB-92 CB-93 CB-94 CB-95 CB-96 CB-97 CB-98 CB-99 CB-100
  • 36. REAL TIME BENCHMARKING CONFIDENTIAL & PROPRIETARY DOCUMENT
  • 37. TREND ANALYSIS CONFIDENTIAL & PROPRIETARY DOCUMENT
  • 38. TREND ANALYSIS CONFIDENTIAL & PROPRIETARY DOCUMENT
  • 40. CHALLENGES WITH ANALYTICS IN IOT • Data is growing bigger • Data in motion • Geographically distribution of data • New functionality and tools (capability perspective)
  • 41. TOP 10 MARKET PLAYERS IN IOT
  • 42. We are Engineer’s and we can really connect better to machines rather than human beings…!! IoT It will change our lives
  • 43. DATA SCIENCE WHY THE WORLD IS LOOKING AT IT?
  • 44. SOME STATS ON DATA SCIENCE: • 25% of organizations now have a data scientist on staff. • By increasing the usability of data by just 10%, the average Fortune 100 company could expect an increase of $2 billion dollars (source: Fathom) • 1,40,000 to 1,90,000 people with deep analytic skills as well as 1.5 million managers and analysts will be needed by 2018 to fill jobs in Big Data in US (source: McKinsey) • 86% of people are willing to pay more for a great customer experience with a brand (source: Lunch Pail) • By 2020 the IoT Will Include 26 Billion Units, Creating New Challenges for All Aspects of the Data Center (source : Gartner)
  • 46. WHAT IS ANALYTICS? Maturity of Analytics Capabilities CompetitiveAdvantage Raw Data Cleaned Data Standard Reports Ad Hoc Reports & OLAP Predictive Modelling Optimisation What Happened? – Descriptive Analytics Why did it happen? – Diagnostic Analytics What will happen? – Predictive Analytics What is the best that could happen? Prescriptive Analytics Sense & Respond Predict & Act Generic Predictive Analytics Source: SAP
  • 47. MACHINE LEARNING • Machine learning is a subfield of computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. - Wikipedia • Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. Machine learning focuses on the development of computer programs that can teach themselves to grow and change when exposed to new data. - whatis.techtarget.com
  • 48. TYPE OF PROBLEM CATEGORIES Supervised Learning Unsupervised Learning
  • 49. COMMON PREDICTIVE ANALYTICS METHOD • Regression: Predicting output variable using its cause-effect relationship with input variables. OLS Regression, GLM, Random forests, ANN etc. • Classification: Predicting the item class. Decision Tree, Logistic Regression, ANN, SVM, Naïve Bayes classifier etc. • Time Series Forecasting: Predicting future time events given past history. AR, MA, ARIMA, Triple Exponential Smoothing, Holt- Winters etc.
  • 50. COMMON PREDICTIVE ANALYTICS METHOD (CONTD.) • Association rule mining: Mining items occurring together Apriori Algorithm. • Clustering: Finding natural groups or clusters in the data. K-means, Hierarchical, Spectral, Density based EM algorithm Clustering etc. • Text mining: Model and structure the information content of textual sources. Sentiment Analysis, NLP
  • 51. BUSINESS APPLICATIONS OF PREDICTIVE ANALYTICS Factory Failures FinanceSmarter Healthcare Multi-channel sales Telecom Manufacturing Traffic Control Trading Analytics Fraud and Risk Renewable Energy Spam Filters Retail: Churn
  • 53. LEARNING LINKS • https://www.coursera.org/browse/data-science • http://www.kdnuggets.com/2015/09/15-math-mooc-data-science.html • http://www.datasciencecentral.com/profiles/blogs/how-to-become-a- data-scientist-for-free • http://www.r-bloggers.com/in-depth-introduction-to-machine-learning- in-15-hours-of-expert-videos/ • http://online.stanford.edu/course/machine-learning-3 • http://online.stanford.edu/course/mining-massive-datasets • Kaggle : The leading platform for predictive analytics competitions • https://www.analyticsvidhya.com/
  • 54. QUESTIONS AND DISCUSSION THANK YOU SO MUCH FOR YOUR VALUABLE TIME Mitesh Gupta Email: mitesh.gupta19@gmail.com LinkedIn: https://in.linkedin.com/in/mitesh- gupta-28014633