SlideShare a Scribd company logo
1 of 38
Download to read offline
The Star's Brain




55,500 MꙨ Star exploding at 1055 erg   (Ken Chen 2011)
Astronomical Society of Victoria, Monash University, Australia, Feb. 13, 2013




 Supernovae and the
  First Stars in the
      Universe
The first cosmic explosions and how the Universe
          started to make heavy elements




                                                                              http://CosmicExplosions.org
        Alexander Heger (Monash)
                                                   Ken Chen (UMN)
                                                  Pamela Vo (UMN)
                                           Candace Joggerst (LANL)
                                              Stan Woosley (UCSC)
Motivation:

A Brief History
of the Universe
The Cosmic Dark Age




           `




 (after recombination)
What the
Big Bang
made…



    (The primordial abundance pattern)
            Brian Fields (2002, priv. com.)
What We
Find Today




      (The solar abundance pattern)
                     Lodders (2003)
Cosmic Dark Age



              `


(after recombination)
                      © Alexander Heger                                                                 Hubble Deep Field




                                           time

                     What the                   (Pop III star yields)                         What We
                                            Heger & Woosley (2010)
                     Big Bang                   Frebel et al. (2005)                       Find Today
                      made…


   (The primordial abundance pattern)                                   (The solar abundance pattern)
         Brian Fields (2002, priv. com.)                                Lodders (2003)
Setting the Stage:

 Stellar
Evolution
Once formed, the evolution of a star is governed by gravity:
                   continuing contraction
        to higher central densities and temperatures




                                               Evolution of
                                               central
                                               density and
                                               temperature
                                               of 15 MꙨ
                                               and 25 MꙨ
                                               stars
Ban
           g!
Bo
  om
    !
NGC3982
Core Collapse Supernovae




                    (Janka 2001)
                                        (Woosley & Janka 2006)


                                   Entropy and electron
                                   per baryon (Ye) at
                                   different time snapshots
                                   in a core collapse
                                   supernova
                                   (simulation: equatorial band)
   (Buras et al. 2006)
Core Collapse Supernovae – 3D

                               Cold inflow and hot outflow
                               in 3D simulations  similar to dipolar
                               flow pattern observed in 2D rotationally
                               symmetric simulations




                                                (Janka et al. 2005)
(Scheck, Janka, et al. 2006)
Singing Supernovae?
              Can sound waves from convection heat bubble and
                                                                                              Stan
                                                                                             Woosley

              power a supernova explosion?




                                         (Burrows et al. 2005)

                 (Burrows et al. 2005)                               (Burrows et al. 2005)
radius (km)




                                                       radius (km)
Explosion of Low-Mass SN
                      2D simulation with
                      neutrino transport and
                      core cooling

                      Explosion driven by
                      convection not SASI

                      Explosion starts fast
                      as accretion drops
                      very rapidly




                  Mueller, Janka, Heger (2012)
                                       u8.1
The First
 Stars
 in the Universe
Formation and Mass
             of the First Stars
after recombination
 No metals  no metal cooling  more massive stars
   (Bromm, Coppi, & Larson 1999, 2002; Abel, Bryan, & Norman 2000, 2002;Nakamura & Umemura 2001; O’Shea & Norman 2006,...)

             typical mass scale ~10...300 MꙨ?
• Now simulations indicate binaries may exist




• But ...                                (Turk, Abel, O'Shea 2010)


  We still don't have a really strong constrain on
  Pop III star masses in general
credit: Matt Turk
Were the first stars really big?
     How do we know?



                           ?
&Spitzer=0.00&ChandraXO=0.00&Galex=0.00&IRAS=0.00&WMAP=0.00&Cassini=0.00&slid
The
   proof:
   It is on
   Google
   Sky!


=-87.1875&zoom=2&Spitzer=0.00&ChandraXO=0.00&Galex=0.00&IRAS=0.00&WMAP=0.0
Eta Car – a really big star in our galaxy today
The Most Massive Stars Today
                       R136
                   ●   young massive star
                       cluster

                   ●   Age around 1.5 Myr

                   ●   Star “a1”:
                       maybe 200 MꙨ
                       initial mass

                   (Crother et al. 2010)
Ejected “metals”
How Bigger Stars Die:

Pair-Instability
 Supernovae
approximate



              Fe-poor            Fe-rich




                                           explosion energy / B
                            pl
                        E ex
•Low neutron excess from
 CNO -> 22Ne in helium burning

•No extended stable period of
 carbon and oxygen burning where
 weak interactions might increase the
 neutron excess
Problem
Pair-Instability Supernovae do
       not reproduce the
 abundances as observed in
  very metal poor halo stars!
Mixing in 250 MꙨ Pair-SN




                     (Ken Chen 2011)
Pulsational
Pair-Instablity
 Supernovae
PPSN in 2D




             Ken Chen (2012)
PPSN in 2D




             Ken Chen (2012)
PPSN in 2D




             Ken Chen (2012)
Energy Scales
Log E   Explosion                             Thermonuclear
39      X-ray Bursts                          √
40      Long-Duration He Bursts               √
41
42      X-ray Superbursts                     √
43
44
45      Classical Novae                       √
46
48      Faint SN (visible LC?)
49      SN (visible LC)
50      Bright SN (LC?)
51      SN (kinetic)                          SN Type Ia total
52      Hypernova? GRB?                       Pair-SN total (low-mass end)
53      SN (neutrinos – several 1053erg)      Pair-SN total (upper limit)
54      (a lot of energy - 0.5 MꙨ c2)
55      GR He SN                              GR He SN (upper limit)
56      GR H SN, Z > 0 (Fuller et al. 1986)   √

More Related Content

What's hot

Stars And Galaxies
Stars And GalaxiesStars And Galaxies
Stars And Galaxies
asdf
 
Atoms starlight
Atoms starlightAtoms starlight
Atoms starlight
Syed Shah
 

What's hot (20)

Galaxies nebulae stars notes
Galaxies nebulae stars notesGalaxies nebulae stars notes
Galaxies nebulae stars notes
 
Stellar evolution ppt
Stellar evolution pptStellar evolution ppt
Stellar evolution ppt
 
Naturalists at Large - Nebula
Naturalists at Large - NebulaNaturalists at Large - Nebula
Naturalists at Large - Nebula
 
Star formation
Star formationStar formation
Star formation
 
Stellar Evolution Powerpoint
Stellar Evolution PowerpointStellar Evolution Powerpoint
Stellar Evolution Powerpoint
 
Nebulas
NebulasNebulas
Nebulas
 
Nebulae
NebulaeNebulae
Nebulae
 
The Life Cycle of a Star
The Life Cycle of a StarThe Life Cycle of a Star
The Life Cycle of a Star
 
The Evolution of a Star
The Evolution of a StarThe Evolution of a Star
The Evolution of a Star
 
Nebula
NebulaNebula
Nebula
 
Nebula & Galaxies
Nebula & GalaxiesNebula & Galaxies
Nebula & Galaxies
 
Stars
StarsStars
Stars
 
Stars And Galaxies
Stars And GalaxiesStars And Galaxies
Stars And Galaxies
 
Nucleosynthesis
NucleosynthesisNucleosynthesis
Nucleosynthesis
 
Form 3 PMR Science Chapter 9 Anatomy of the Sun
Form 3 PMR Science Chapter 9 Anatomy of the SunForm 3 PMR Science Chapter 9 Anatomy of the Sun
Form 3 PMR Science Chapter 9 Anatomy of the Sun
 
Stellar Evolution by Raveendra Bagade
Stellar Evolution by Raveendra BagadeStellar Evolution by Raveendra Bagade
Stellar Evolution by Raveendra Bagade
 
The Life Cycle of a Star PowerPoint
The Life Cycle of a Star PowerPointThe Life Cycle of a Star PowerPoint
The Life Cycle of a Star PowerPoint
 
Birth of the star
Birth of the starBirth of the star
Birth of the star
 
Beyond Earth
Beyond EarthBeyond Earth
Beyond Earth
 
Atoms starlight
Atoms starlightAtoms starlight
Atoms starlight
 

Viewers also liked (9)

Nucleosynthesis
NucleosynthesisNucleosynthesis
Nucleosynthesis
 
Nucleosynthesis
NucleosynthesisNucleosynthesis
Nucleosynthesis
 
Stellar Nucleosynthesis by Tarun P. Roshan,
Stellar Nucleosynthesis by Tarun P. Roshan, Stellar Nucleosynthesis by Tarun P. Roshan,
Stellar Nucleosynthesis by Tarun P. Roshan,
 
Chapter16 : Electric Force and Field
Chapter16 : Electric Force and FieldChapter16 : Electric Force and Field
Chapter16 : Electric Force and Field
 
Applications of chemistry in everyday life
Applications of chemistry in everyday lifeApplications of chemistry in everyday life
Applications of chemistry in everyday life
 
The different Biomolecules
The different BiomoleculesThe different Biomolecules
The different Biomolecules
 
Introduction to random variables
Introduction to random variablesIntroduction to random variables
Introduction to random variables
 
Random variables
Random variablesRandom variables
Random variables
 
Formation of Light and Heavy Elements
Formation of Light and Heavy ElementsFormation of Light and Heavy Elements
Formation of Light and Heavy Elements
 

Similar to Supernovae & the First Stars in the Universe

Jack Oughton - Quark Star Journal 01.pdf
Jack Oughton - Quark Star Journal 01.pdfJack Oughton - Quark Star Journal 01.pdf
Jack Oughton - Quark Star Journal 01.pdf
Jack Oughton
 
Chandra observation star_formation_m95
Chandra observation star_formation_m95Chandra observation star_formation_m95
Chandra observation star_formation_m95
Sérgio Sacani
 
Creation of cosmic structure in the complex galaxy cluster merger abell 2744
Creation of cosmic structure in the complex galaxy cluster  merger abell 2744Creation of cosmic structure in the complex galaxy cluster  merger abell 2744
Creation of cosmic structure in the complex galaxy cluster merger abell 2744
Sérgio Sacani
 
Science 2011-kacprzak-1216-7
Science 2011-kacprzak-1216-7Science 2011-kacprzak-1216-7
Science 2011-kacprzak-1216-7
Sérgio Sacani
 
The dark ages_of_the_universe
The dark ages_of_the_universeThe dark ages_of_the_universe
The dark ages_of_the_universe
Sérgio Sacani
 
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Sérgio Sacani
 
Origin of the Universe
Origin of the UniverseOrigin of the Universe
Origin of the Universe
sagoldberry
 
X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...
X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...
X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...
Sérgio Sacani
 

Similar to Supernovae & the First Stars in the Universe (20)

Jack Oughton - Quark Star Journal 01.pdf
Jack Oughton - Quark Star Journal 01.pdfJack Oughton - Quark Star Journal 01.pdf
Jack Oughton - Quark Star Journal 01.pdf
 
Probing Extreme Physics With Compact Objcts
Probing Extreme Physics With Compact ObjctsProbing Extreme Physics With Compact Objcts
Probing Extreme Physics With Compact Objcts
 
Chandra observation star_formation_m95
Chandra observation star_formation_m95Chandra observation star_formation_m95
Chandra observation star_formation_m95
 
Accelerating Universe
Accelerating Universe Accelerating Universe
Accelerating Universe
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Creation of cosmic structure in the complex galaxy cluster merger abell 2744
Creation of cosmic structure in the complex galaxy cluster  merger abell 2744Creation of cosmic structure in the complex galaxy cluster  merger abell 2744
Creation of cosmic structure in the complex galaxy cluster merger abell 2744
 
Science 2011-kacprzak-1216-7
Science 2011-kacprzak-1216-7Science 2011-kacprzak-1216-7
Science 2011-kacprzak-1216-7
 
N.18 chapman puzzling-attributes-of-small-asteroids
N.18 chapman puzzling-attributes-of-small-asteroidsN.18 chapman puzzling-attributes-of-small-asteroids
N.18 chapman puzzling-attributes-of-small-asteroids
 
The dark ages_of_the_universe
The dark ages_of_the_universeThe dark ages_of_the_universe
The dark ages_of_the_universe
 
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
Young remmants of_type_ia_supernovae_and_their_progenitors_a_study_of_snr_g19_03
 
Supernovas
SupernovasSupernovas
Supernovas
 
Dark Matter: Hints and Signals from Astrophysics
Dark Matter: Hints and Signals from AstrophysicsDark Matter: Hints and Signals from Astrophysics
Dark Matter: Hints and Signals from Astrophysics
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption events
 
Disks of Stars in the Galactic Center Triggered by Tidal Disruption Events
Disks of Stars in the Galactic Center Triggered by Tidal Disruption EventsDisks of Stars in the Galactic Center Triggered by Tidal Disruption Events
Disks of Stars in the Galactic Center Triggered by Tidal Disruption Events
 
"Planet Formation in Dense Star Clusters" presented by Dr. Henry Throop (Uni...
"Planet Formation in Dense Star Clusters"  presented by Dr. Henry Throop (Uni..."Planet Formation in Dense Star Clusters"  presented by Dr. Henry Throop (Uni...
"Planet Formation in Dense Star Clusters" presented by Dr. Henry Throop (Uni...
 
Conley cis100 ppt_assignment
Conley cis100 ppt_assignmentConley cis100 ppt_assignment
Conley cis100 ppt_assignment
 
Origin of the Universe
Origin of the UniverseOrigin of the Universe
Origin of the Universe
 
X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...
X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...
X ray emission-from_strongly_asymmetric_circumstellar_material_in_the_remnant...
 
Lesson 6 stars
Lesson 6 stars Lesson 6 stars
Lesson 6 stars
 
KS4 Earth and Beyond.ppt
KS4 Earth and Beyond.pptKS4 Earth and Beyond.ppt
KS4 Earth and Beyond.ppt
 

Supernovae & the First Stars in the Universe

  • 1. The Star's Brain 55,500 MꙨ Star exploding at 1055 erg (Ken Chen 2011)
  • 2. Astronomical Society of Victoria, Monash University, Australia, Feb. 13, 2013 Supernovae and the First Stars in the Universe The first cosmic explosions and how the Universe started to make heavy elements http://CosmicExplosions.org Alexander Heger (Monash) Ken Chen (UMN) Pamela Vo (UMN) Candace Joggerst (LANL) Stan Woosley (UCSC)
  • 4. The Cosmic Dark Age ` (after recombination)
  • 5.
  • 6.
  • 7. What the Big Bang made… (The primordial abundance pattern) Brian Fields (2002, priv. com.)
  • 8. What We Find Today (The solar abundance pattern) Lodders (2003)
  • 9.
  • 10. Cosmic Dark Age ` (after recombination) © Alexander Heger Hubble Deep Field time What the (Pop III star yields) What We Heger & Woosley (2010) Big Bang Frebel et al. (2005) Find Today made… (The primordial abundance pattern) (The solar abundance pattern) Brian Fields (2002, priv. com.) Lodders (2003)
  • 11. Setting the Stage: Stellar Evolution
  • 12.
  • 13. Once formed, the evolution of a star is governed by gravity: continuing contraction to higher central densities and temperatures Evolution of central density and temperature of 15 MꙨ and 25 MꙨ stars
  • 14. Ban g! Bo om !
  • 16. Core Collapse Supernovae (Janka 2001) (Woosley & Janka 2006) Entropy and electron per baryon (Ye) at different time snapshots in a core collapse supernova (simulation: equatorial band) (Buras et al. 2006)
  • 17. Core Collapse Supernovae – 3D Cold inflow and hot outflow in 3D simulations  similar to dipolar flow pattern observed in 2D rotationally symmetric simulations (Janka et al. 2005) (Scheck, Janka, et al. 2006)
  • 18. Singing Supernovae? Can sound waves from convection heat bubble and Stan Woosley power a supernova explosion? (Burrows et al. 2005) (Burrows et al. 2005) (Burrows et al. 2005) radius (km) radius (km)
  • 19. Explosion of Low-Mass SN 2D simulation with neutrino transport and core cooling Explosion driven by convection not SASI Explosion starts fast as accretion drops very rapidly Mueller, Janka, Heger (2012) u8.1
  • 20. The First Stars in the Universe
  • 21. Formation and Mass of the First Stars after recombination No metals  no metal cooling  more massive stars (Bromm, Coppi, & Larson 1999, 2002; Abel, Bryan, & Norman 2000, 2002;Nakamura & Umemura 2001; O’Shea & Norman 2006,...)  typical mass scale ~10...300 MꙨ? • Now simulations indicate binaries may exist • But ... (Turk, Abel, O'Shea 2010) We still don't have a really strong constrain on Pop III star masses in general
  • 23. Were the first stars really big? How do we know? ? &Spitzer=0.00&ChandraXO=0.00&Galex=0.00&IRAS=0.00&WMAP=0.00&Cassini=0.00&slid
  • 24. The proof: It is on Google Sky! =-87.1875&zoom=2&Spitzer=0.00&ChandraXO=0.00&Galex=0.00&IRAS=0.00&WMAP=0.0
  • 25. Eta Car – a really big star in our galaxy today
  • 26. The Most Massive Stars Today R136 ● young massive star cluster ● Age around 1.5 Myr ● Star “a1”: maybe 200 MꙨ initial mass (Crother et al. 2010)
  • 28. How Bigger Stars Die: Pair-Instability Supernovae
  • 29. approximate Fe-poor Fe-rich explosion energy / B pl E ex
  • 30. •Low neutron excess from CNO -> 22Ne in helium burning •No extended stable period of carbon and oxygen burning where weak interactions might increase the neutron excess
  • 31. Problem Pair-Instability Supernovae do not reproduce the abundances as observed in very metal poor halo stars!
  • 32. Mixing in 250 MꙨ Pair-SN (Ken Chen 2011)
  • 33.
  • 35. PPSN in 2D Ken Chen (2012)
  • 36. PPSN in 2D Ken Chen (2012)
  • 37. PPSN in 2D Ken Chen (2012)
  • 38. Energy Scales Log E Explosion Thermonuclear 39 X-ray Bursts √ 40 Long-Duration He Bursts √ 41 42 X-ray Superbursts √ 43 44 45 Classical Novae √ 46 48 Faint SN (visible LC?) 49 SN (visible LC) 50 Bright SN (LC?) 51 SN (kinetic) SN Type Ia total 52 Hypernova? GRB? Pair-SN total (low-mass end) 53 SN (neutrinos – several 1053erg) Pair-SN total (upper limit) 54 (a lot of energy - 0.5 MꙨ c2) 55 GR He SN GR He SN (upper limit) 56 GR H SN, Z > 0 (Fuller et al. 1986) √