SlideShare a Scribd company logo
1 of 45
Tuning PID Controller
Institute of Industrial Control,
Zhejiang University, Hangzhou, P. R. China
2013/03/27
Single-loop PID Control System
ysp u(t)
+
_
ym(t)
+
+ y(t)
MV
DVs
Disturbance
Path
Sensor &
Transmitter
Final Control
Element
Control
Path
PID
Controller
Extended
Controlled Process
(广义对象)
Problem: For an unknown extended controlled process,
how to design and tune our PID controller ?
Proportional-Integral-Derivative
(PID) Controller
0
0
1 ( )
( ) ( ( ) ( ) ) ,
t
c d
i
de t
u t K e t e d T u
T dt
 
   

1
( ) (1 )
c c d
i
G s K T s
T s
   Td is the derivative time.
 Ideal PID Controller
 Industrial PID Controller (design and realization ?)
1 1
( ) 1
1
d
c c
d i
d
T s
G s K
T T s
s
A
 
 
 

 
 
 
 

 
 
The derivative
gain Ad = 10.
Problem Discussion
 Explain the function of PID controller for a
stable controlled process.
 Analyze the effect of PID parameter
changes on control performances
 How can we realize the industrial PID
controller in Simulink ?
 PID tuning example (See ../PIDControl
/PIDLoop.mdl )
Contents
 Selection of PID Controller Types (PID控制
器类型选择)
 Tuning of PID Controller Parameters (控制
器参数整定)
 Flow Control (流量控制)
 Level Control (液位控制)
 Reset Windup and Its Prevention (积分饱和
与防止)
 Summary
Type Selection of PID Controllers
*1: For some slow
processes with long time
constants, the derivative
action is suggested to use.
However, if there exists
strong measurement noises,
a first-order or average filter
should be added.
Please analyze the rule
of type selection ?
Controlled
Variable
Controller
Type
Temperature /
Composition
PID*1
Flow /
Pressure
/Liquid-Level
PI
Liquid-Level P
PID Tuning Concept
Process
Characteristics
Controller
Kc or PB,
Ti ,
Td
Offline Tuning Based on
Process Parameters: K, T,τ
 Step 1: switch the controller to manual mode,
change the output of controller in step form,
and record input/output data of controller.
 Step 2: obtain process characteristics: K, T,τ,
from the step response data.
 Step 3: set the PID parameters Kc, Ti , Td, and
switch the controller to automatic mode.
 Step 4: increase or decrease the gain Kc until
obtaining the satisfactory response.
0 10 20 30 40 50 60 70 80 90 100
54
56
58
60
62
%
Controller Output
0 10 20 30 40 50 60 70 80 90 100
66
68
70
72
74
76
78
80
%
Transmitter Output
Simulation of Offline Tuning
step 1: Step Testing
See ../PIDControl/PIDLoop.mdl
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
0 10 20 30 40 50 60 70 80 90 100
66
68
70
72
74
76
78
80
%
min
Transmitter Output
Step 2: Obtain Process Para.
T
t O 
 
632
.
0

 
O
O t
t
T 
 

 283
.
0
632
.
0
5
.
1
,%
,%
final initial
final initial
TO TO
TO
K
CO CO CO


 
 
Step 3: Obtain Initial PID Para.
(Ziegler-Nichols Method)
Controller Kc Ti Td
P
PI
PID
1 T
K 
   

   
   
0.9 T
K 
   

   
   
1.2 T
K 
   

   
   
3.33
2.0 0.5
Note: the above method was developed for 0 T

 
Initial Value
Step 3: Obtain Initial PID Para.
(Lambda Tuning Method)
Controller Kc Ti Td
P
PI T
PID T τ/2
1 T
K  
   

   

   
Note: the above method is not limited by the value of /T

1 T
K  
   

   

   
1 T
K  
   

   

   
0
 
 

0.2
 

0 50 100 150
59
59.5
60
60.5
61
61.5
62
62.5
63
Time, min
%
Output of Transmitter
Ziegler-Nichols method
Lambda tuning method
set point
Simulation Example #1
K = 1.75
T = 6.5,τ= 3.3 min
For PI Controller,
Z-N tuning: Kc = 1.0,
Ti = 11 min
Lambda tuning: Kc =
0.56, Ti = 6.5 min
0 50 100 150 200
59
59.5
60
60.5
61
61.5
62
62.5
63
Time, min
%
Output of Transmitter
Z-N tuning
Lambda tuning
set point
Simulation Example #2
K = 1.75
T = 6.5,τ= 6.3 min
For PI Controller,
Z-N tuning: Kc =
0.53, Ti = 20.8 min
Lambda tuning: Kc =
0.30, Ti = 6.5 min
Procedure of Online Tuning:
Ziegler-Nichols Technique
 Step 1: with the controller online (in
automatic mode), remove all the reset (Ti =
maximum) and derivative (Td = 0) modes.
Start with a small Kc value.
 Step 2: make a small set point or load
change and observe the response of CV.
 Step 3: if the response is not continuously
oscillatory, increase Kc, or decrease PB,
repeat step 2.
 Step 4: Repeat step 3 until a continuous
oscillatory response is obtained.
0 10 20 30 40 50
58
59
60
61
62
63
64
65
66
Time, min
%
Output of Transmitter
set point
Kc = 0.5
Kc = 1
Kc = 2
Kc = 4
Kc = 3.5
Tu
Ti = 6000 min, Td = 0 min
Example of Online Tuning
See ../PIDControl/PIDLoop.mdl
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
Online Tuning:
Ziegler-Nichols Technique
Controller Kc Ti Td
P 0.5Kcu
PI 0.45Kcu Tu /1.2
PID 0.65Kcu Tu /2 Tu /8
The gain that gives these continuous oscillations is the ultimate
gain (临界增益), Kcu. The period of the oscillations is called
the ultimate period (临界周期), Tu. the ultimate gain and the
ultimate period are the characteristics of the process being
tuned. The following formulas are then applied:
0 20 40 60 80 100
59
60
61
62
63
%
Output of Transmitter
0 20 40 60 80 100
40
60
80
100
Time, min
% Output of Controller
set point
Inlet temp. drops 5 Cent.
Kcu = 3.4, Tu = 11 min
PID: Kc = 2.2, Ti = 5.5 min, Td = 1.4 min
Online Tuning Result
See ../PIDControl/PIDLoop.mdl
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
0 10 20 30 40 50
58
59
60
61
62
63
64
65
66
Time, min
%
Output of Transmitter
set point
Kc = 0.5
Kc = 1
Kc = 2
Kc = 4
Kc = 3.5
Tu
Ti = 6000 min, Td = 0 min
Limitation of Online Tuning
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
Auto-tuning Based on Relay
Feedback (基于继电反馈的参数自整定)
PID
Auto
Tune
u
ysp
Controlled
Process
+ _
ym
e(t)
Relay
(+)
Here we suppose the process gain > 0
Relay Feedback Example
)
1
2
)(
1
5
(
)
2
exp(
0
.
2
)
(
)
(




s
s
s
s
U
s
Ym
The controlled process can
be described as
The amplitude of relay
controller is d = ±2.0
PID
Auto
Tune
u
ysp
Controlled
Process
+ _
ym
e(t)
Relay
(+)
Response of Relay Feedback
Oscillation period
TU & amplitude AY
(振荡周期与幅
度)?
0 5 10 15 20 25 30 35 40 45 50
58.5
59
59.5
60
60.5
61
61.5
Ym
0 5 10 15 20 25 30 35 40 45 50
47
48
49
50
51
52
53
U
min
See the detailed results:
../ PIDLoopAutoTuning.mdl
The Ultimate Gain (临界增益)
Kcu Calculation

/
4d
a 
Y
CU A
d
K

4

0 5 10 15 20 25 30 35 40 45 50
47
48
49
50
51
52
53
U
min
经FT变换可知,控制输出的一次谐波幅度为
而对应的控制器临界增益为

/
4d
Online Z-N Tuning Parameters
Controller Kc Ti Td
P 0.5Kcu
PI 0.45Kcu Tu /1.2
PID 0.65Kcu Tu /2 Tu /8
If we use a PID controller, then we select the
following parameters ……
Closed-loop Response of PID
Feedback System
0 20 40 60 80 100 120 140
60
65
70
75
Ym
0 20 40 60 80 100 120 140
40
60
80
100
U
min
Above auto-
tuning method
can be applied
to other
controlled
processes ?
Characteristics of Flow Loops
 Fast dynamic response
 Zero dead time, which results in an infinite
controller gain in every tuning equation
 Large measurement noise
 To decrease the change of control valve, a PI
controller is common used with very small
proportional action and a large integral action
to approximate an integral controller. (Why?)
0 20 40 60 80 100
45
50
55
60
65
%
Output of Transmitter
0 20 40 60 80 100
0
20
40
60
Time, min
%
Output of Controller
Kc = 4, Ti =2 min
Kc = 1, Ti = 0.5 min
Tuning Example of Flow Loops
u(t)
y(t)
% CO
% TO
ysp(t)
F(t)
FC
See ../PIDControl/FlowLoop.mdl
Please compare the proportional
gain with the integral gain
C201
FIC 102
C301
Product
LT
201
LC
201
LT
301
LC
301
FC 201 FC 302
Examples of Level Loops
Characteristics of Level Loops
 Very often levels are integrating
processes
 There are two types of possible control
objectives when the input flow varies:
(1) Tight Level Control;
(2) Average Level Control
(“液位均匀控制”)
Tight Level Control
 The objective is to control the level tightly at
set point, and the output flow can be allowed
to vary without limitation
 If a level process happens to be self-regulated,
and it is possible to obtain K, T andτ, the
above tuning techniques can be used directly
 If a level process is integrating, a PI controller
is common used with large proportional action
and a very small integral action
Average Level Control
 The objective is to smooth the output flow
from the tank, which feeds the downstream
unit, the level in the tank must be allowed to
“float” between a high and a low level
 A P controller is common used in Average Level
Control with a small proportional gain
 Tuning: the gain should be set to be as small
as possible, as long as the level changes
between a high and a low level for the
expected flow deviation from the average flow.
Example of Level Control
See ../PIDControl/
LevelLoop.mdl
u(t) % CO
% TO
h(t)
Fi(t)
Fo(t)
A
ysp
y(t)
LC
41
LT
41
Analysis of Average Level
Control Systems
Dynamic equation of the controlled
process:
where A is the area of the tank.
Suppose
LC
u(t)
y(t)
% CO
% TO
ysp(t)
h(t)
Fi(t)
Fo(t)
A
)
(
)
(
)
(
0 t
F
t
F
dt
t
dh
A i 

)
(
)
(
0 t
u
K
t
F V

,
)
(
)
(
max
h
t
h
t
y 
Analysis of Average Level
Control Systems (cont.)
For a proportional
controller, Gc = -Kc,
+
-
+
Gc
Fi (s)
-
Fo (s) h(s)
ysp
KV
u(s)
s
A
1
max
1
h
y(s)
1
1
1
)
(
)
(
max
max
max




s
K
K
Ah
s
Ah
K
K
s
Ah
K
K
s
F
s
F
V
C
V
C
V
C
i
o
1
1
1
1
1
)
(
)
(
max
max
max





s
K
K
Ah
K
K
s
Ah
K
K
s
Ah
s
F
s
y
V
C
V
C
V
C
i
Please analyze the
above models.
Ysp
Ym
Y
Uman
SW1
e u
PID Man/Auto
0.2
Kv
10
KT
1
10s
Gp
Fo
Fi
DU
Examples of Average Level
Control Systems
Please see ../PIDControl/ AverageLevelLoop.mdl
Simulation Results of
P-type Average Level Control
0 10 20 30 40 50 60 70 80 90 100
9
9.5
10
10.5
11
m3/hr
Fin, Fout
0 10 20 30 40 50 60 70 80 90 100
46
48
50
52
54
time, min
%
Ysp, Ym Kc = -0.5
Fin
Kc = -2.0
Reset Windup Problem
Please see the following simulation example
…/PIDControl/PidLoopwithLimit.mdl
+
-
+
+
d(t)
Controlled
Process ym(t)
ysp(t) e(t) uc
1
1
C
I
K
T s
 

 
 
up
Simulation Result with Reset
Windup in a Single-Loop System
Discussion:
Which difference
exists between
reset windup and
the open or
closed status of
the control valve
completely ?
The Principle of Preventing
Reset Windup
Principle: remove the reset or
integral action if the control
output is beyond the normal
operation range.
+
-
+
+
d(t)
A Controlled
Process ym(t)
ysp(t)
KC
+
+
1
1

s
TI
e(t) uc up










max
max
max
min
min
min
)
(
,
)
(
),
(
)
(
,
)
(
u
t
u
if
u
u
t
u
u
if
t
u
u
t
u
if
u
t
u
c
c
c
c
p
0 20 40 60 80 100 120 140 160 180 200
55
60
65
70
75
%
Ysp, Ym
0 20 40 60 80 100 120 140 160 180 200
0
50
100
150
%
time, min
Uc, Up
Anti-reset Windup Example
Industrial PID Controller
+
-
+
+
d(t)
A Controlled
Process ym(t)
ysp(t)
+
+
1
1

s
TI
1
1


s
A
T
s
T
K
D
D
D
C
PID Controller
e(t) uc up
KC
+
-
ysp(t)
+
+
1
1

s
TI
Derivative Action First
PID Controller
1
1


s
A
T
s
T
D
D
D
e(t) uc up +
+
d(t)
A Controlled
Process ym(t)
PID1
PID2
Summary
 Selection of PID Controller Types
 Tuning of PID Controller Parameters
 Tuning of PID Controller for Flow Loops
 Tight / Average Level Control
 Reset Windup and Its Prevention
Problem Discussion
 For an unknown stable temperature control system,
can you determine PID parameters in Offline and
Online tuning methods ?
 Please realize the industrial PID controller in
Simulink ?
 For the fast flow control loop, show me your tuning
principle and explain why.
 For the AVERAGE level control loop, show me your
tuning principle and explain why.
 Explain the existing reason of reset windup and
show me your prevention schemes
Exercise 3.1
A controlled process is shown in the Problem 2-1 (p.34) in
Automated Continuous Process Control.
(1) calculate its characteristics parameters K, T and τ;
(2) decide on the action of the valve and the controller;
(3) tune your PID controller.
Exercise 3.2

/
4d
a 
0 5 10 15 20 25 30 35 40 45 50
47
48
49
50
51
52
53
U
min
假设Relay(继电器法)镇定PID参数时,控制器输出如上图所
示,信号周期为Tu, 振幅为d=2。证明经傅立叶变换,控制输
出的一次谐波幅度为 
/
4d

More Related Content

What's hot

Ch8 pid controller
Ch8 pid controllerCh8 pid controller
Ch8 pid controllerElaf A.Saeed
 
Turbine cycle heat rate calculation
Turbine  cycle heat rate calculationTurbine  cycle heat rate calculation
Turbine cycle heat rate calculationSHIVAJI CHOUDHURY
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Amr E. Mohamed
 
210 mw turbine cycle heat rate
210 mw turbine cycle heat rate210 mw turbine cycle heat rate
210 mw turbine cycle heat rateManohar Tatwawadi
 
Super-Critical Boiler.ppt
Super-Critical Boiler.pptSuper-Critical Boiler.ppt
Super-Critical Boiler.pptMarcWorld
 
Override control system
Override control systemOverride control system
Override control systemAshvani Shukla
 
Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5Manohar Tatwawadi
 
Furnace pressure control
Furnace pressure controlFurnace pressure control
Furnace pressure controlAshvani Shukla
 
Basic controls for boilers
Basic controls for boilersBasic controls for boilers
Basic controls for boilersAasheesh Tandon
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller TuningAhmad Taan
 
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~iNtpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~ihaxxo24
 
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Amr E. Mohamed
 

What's hot (20)

Bode Plot Notes Step by Step
Bode Plot Notes Step by StepBode Plot Notes Step by Step
Bode Plot Notes Step by Step
 
Ch8 pid controller
Ch8 pid controllerCh8 pid controller
Ch8 pid controller
 
Turbine cycle heat rate calculation
Turbine  cycle heat rate calculationTurbine  cycle heat rate calculation
Turbine cycle heat rate calculation
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
 
Pid controller
Pid controllerPid controller
Pid controller
 
210 mw turbine cycle heat rate
210 mw turbine cycle heat rate210 mw turbine cycle heat rate
210 mw turbine cycle heat rate
 
Super-Critical Boiler.ppt
Super-Critical Boiler.pptSuper-Critical Boiler.ppt
Super-Critical Boiler.ppt
 
Override control system
Override control systemOverride control system
Override control system
 
Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5
 
Pid controller
Pid controllerPid controller
Pid controller
 
Class 19 pi & pd control modes
Class 19   pi & pd control modesClass 19   pi & pd control modes
Class 19 pi & pd control modes
 
Furnace pressure control
Furnace pressure controlFurnace pressure control
Furnace pressure control
 
Basic controls for boilers
Basic controls for boilersBasic controls for boilers
Basic controls for boilers
 
Power Plant Boiler feed pump
Power Plant Boiler feed pump Power Plant Boiler feed pump
Power Plant Boiler feed pump
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller Tuning
 
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~iNtpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~i
 
Plc programing
Plc programingPlc programing
Plc programing
 
C&i systems
C&i systemsC&i systems
C&i systems
 
Pid controller bp ganthia
Pid controller bp ganthiaPid controller bp ganthia
Pid controller bp ganthia
 
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
 

Similar to 1577320.ppt

Control tutorials for matlab and simulink introduction pid controller desig...
Control tutorials for matlab and simulink   introduction pid controller desig...Control tutorials for matlab and simulink   introduction pid controller desig...
Control tutorials for matlab and simulink introduction pid controller desig...ssuser27c61e
 
Design of PID CONTROLLER FOR ENGINEERING
Design of PID CONTROLLER FOR ENGINEERINGDesign of PID CONTROLLER FOR ENGINEERING
Design of PID CONTROLLER FOR ENGINEERINGShyamal25
 
PID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarPID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarJim Cahill
 
PID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan DeminarPID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan DeminarJim Cahill
 
Closed loop control systems block diagrams
Closed loop control systems block diagramsClosed loop control systems block diagrams
Closed loop control systems block diagramsArunPremAnandNataraj
 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllersMahmoud Hussein
 
PID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.pptPID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.pptmohamed abd elrazek
 
Pid control by Adarsh singh
Pid control  by Adarsh singhPid control  by Adarsh singh
Pid control by Adarsh singhAdarsh Singh
 
Tuning of pid
Tuning of pidTuning of pid
Tuning of pidAnkuseth
 
Pid controllers
Pid controllersPid controllers
Pid controllersmilind1076
 

Similar to 1577320.ppt (20)

PID Control
PID ControlPID Control
PID Control
 
Control tutorials for matlab and simulink introduction pid controller desig...
Control tutorials for matlab and simulink   introduction pid controller desig...Control tutorials for matlab and simulink   introduction pid controller desig...
Control tutorials for matlab and simulink introduction pid controller desig...
 
PID Controllers
PID ControllersPID Controllers
PID Controllers
 
Design of PID CONTROLLER FOR ENGINEERING
Design of PID CONTROLLER FOR ENGINEERINGDesign of PID CONTROLLER FOR ENGINEERING
Design of PID CONTROLLER FOR ENGINEERING
 
PID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarPID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan Deminar
 
PID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan DeminarPID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan Deminar
 
Closed loop control systems block diagrams
Closed loop control systems block diagramsClosed loop control systems block diagrams
Closed loop control systems block diagrams
 
Control
ControlControl
Control
 
Chapter_8.ppt
Chapter_8.pptChapter_8.ppt
Chapter_8.ppt
 
pid1.ppt
pid1.pptpid1.ppt
pid1.ppt
 
ppt.ppt
ppt.pptppt.ppt
ppt.ppt
 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllers
 
M0537683
M0537683M0537683
M0537683
 
DC servo motor
DC servo motorDC servo motor
DC servo motor
 
PID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.pptPID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.ppt
 
PID Tuning Rules
PID Tuning RulesPID Tuning Rules
PID Tuning Rules
 
Pid control by Adarsh singh
Pid control  by Adarsh singhPid control  by Adarsh singh
Pid control by Adarsh singh
 
Tuning of pid
Tuning of pidTuning of pid
Tuning of pid
 
Pid controllers
Pid controllersPid controllers
Pid controllers
 
Control system
Control systemControl system
Control system
 

More from MuhammadMubeen58 (12)

3603939.ppt
3603939.ppt3603939.ppt
3603939.ppt
 
3330716.ppt
3330716.ppt3330716.ppt
3330716.ppt
 
2760114.ppt
2760114.ppt2760114.ppt
2760114.ppt
 
2706264.ppt
2706264.ppt2706264.ppt
2706264.ppt
 
1619494.ppt
1619494.ppt1619494.ppt
1619494.ppt
 
1578385.ppt
1578385.ppt1578385.ppt
1578385.ppt
 
1496818.ppt
1496818.ppt1496818.ppt
1496818.ppt
 
1474058.ppt
1474058.ppt1474058.ppt
1474058.ppt
 
1413570.ppt
1413570.ppt1413570.ppt
1413570.ppt
 
223296.ppt
223296.ppt223296.ppt
223296.ppt
 
14446351.ppt
14446351.ppt14446351.ppt
14446351.ppt
 
4470838.ppt
4470838.ppt4470838.ppt
4470838.ppt
 

Recently uploaded

Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
lifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxlifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxsomshekarkn64
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 

Recently uploaded (20)

Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
lifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxlifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 

1577320.ppt

  • 1. Tuning PID Controller Institute of Industrial Control, Zhejiang University, Hangzhou, P. R. China 2013/03/27
  • 2. Single-loop PID Control System ysp u(t) + _ ym(t) + + y(t) MV DVs Disturbance Path Sensor & Transmitter Final Control Element Control Path PID Controller Extended Controlled Process (广义对象) Problem: For an unknown extended controlled process, how to design and tune our PID controller ?
  • 3. Proportional-Integral-Derivative (PID) Controller 0 0 1 ( ) ( ) ( ( ) ( ) ) , t c d i de t u t K e t e d T u T dt        1 ( ) (1 ) c c d i G s K T s T s    Td is the derivative time.  Ideal PID Controller  Industrial PID Controller (design and realization ?) 1 1 ( ) 1 1 d c c d i d T s G s K T T s s A                     The derivative gain Ad = 10.
  • 4. Problem Discussion  Explain the function of PID controller for a stable controlled process.  Analyze the effect of PID parameter changes on control performances  How can we realize the industrial PID controller in Simulink ?  PID tuning example (See ../PIDControl /PIDLoop.mdl )
  • 5. Contents  Selection of PID Controller Types (PID控制 器类型选择)  Tuning of PID Controller Parameters (控制 器参数整定)  Flow Control (流量控制)  Level Control (液位控制)  Reset Windup and Its Prevention (积分饱和 与防止)  Summary
  • 6. Type Selection of PID Controllers *1: For some slow processes with long time constants, the derivative action is suggested to use. However, if there exists strong measurement noises, a first-order or average filter should be added. Please analyze the rule of type selection ? Controlled Variable Controller Type Temperature / Composition PID*1 Flow / Pressure /Liquid-Level PI Liquid-Level P
  • 8. Offline Tuning Based on Process Parameters: K, T,τ  Step 1: switch the controller to manual mode, change the output of controller in step form, and record input/output data of controller.  Step 2: obtain process characteristics: K, T,τ, from the step response data.  Step 3: set the PID parameters Kc, Ti , Td, and switch the controller to automatic mode.  Step 4: increase or decrease the gain Kc until obtaining the satisfactory response.
  • 9. 0 10 20 30 40 50 60 70 80 90 100 54 56 58 60 62 % Controller Output 0 10 20 30 40 50 60 70 80 90 100 66 68 70 72 74 76 78 80 % Transmitter Output Simulation of Offline Tuning step 1: Step Testing See ../PIDControl/PIDLoop.mdl Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 10. 0 10 20 30 40 50 60 70 80 90 100 66 68 70 72 74 76 78 80 % min Transmitter Output Step 2: Obtain Process Para. T t O    632 . 0    O O t t T      283 . 0 632 . 0 5 . 1 ,% ,% final initial final initial TO TO TO K CO CO CO      
  • 11. Step 3: Obtain Initial PID Para. (Ziegler-Nichols Method) Controller Kc Ti Td P PI PID 1 T K               0.9 T K               1.2 T K               3.33 2.0 0.5 Note: the above method was developed for 0 T   
  • 12. Initial Value Step 3: Obtain Initial PID Para. (Lambda Tuning Method) Controller Kc Ti Td P PI T PID T τ/2 1 T K                 Note: the above method is not limited by the value of /T  1 T K                 1 T K                 0      0.2   
  • 13. 0 50 100 150 59 59.5 60 60.5 61 61.5 62 62.5 63 Time, min % Output of Transmitter Ziegler-Nichols method Lambda tuning method set point Simulation Example #1 K = 1.75 T = 6.5,τ= 3.3 min For PI Controller, Z-N tuning: Kc = 1.0, Ti = 11 min Lambda tuning: Kc = 0.56, Ti = 6.5 min
  • 14. 0 50 100 150 200 59 59.5 60 60.5 61 61.5 62 62.5 63 Time, min % Output of Transmitter Z-N tuning Lambda tuning set point Simulation Example #2 K = 1.75 T = 6.5,τ= 6.3 min For PI Controller, Z-N tuning: Kc = 0.53, Ti = 20.8 min Lambda tuning: Kc = 0.30, Ti = 6.5 min
  • 15. Procedure of Online Tuning: Ziegler-Nichols Technique  Step 1: with the controller online (in automatic mode), remove all the reset (Ti = maximum) and derivative (Td = 0) modes. Start with a small Kc value.  Step 2: make a small set point or load change and observe the response of CV.  Step 3: if the response is not continuously oscillatory, increase Kc, or decrease PB, repeat step 2.  Step 4: Repeat step 3 until a continuous oscillatory response is obtained.
  • 16. 0 10 20 30 40 50 58 59 60 61 62 63 64 65 66 Time, min % Output of Transmitter set point Kc = 0.5 Kc = 1 Kc = 2 Kc = 4 Kc = 3.5 Tu Ti = 6000 min, Td = 0 min Example of Online Tuning See ../PIDControl/PIDLoop.mdl Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 17. Online Tuning: Ziegler-Nichols Technique Controller Kc Ti Td P 0.5Kcu PI 0.45Kcu Tu /1.2 PID 0.65Kcu Tu /2 Tu /8 The gain that gives these continuous oscillations is the ultimate gain (临界增益), Kcu. The period of the oscillations is called the ultimate period (临界周期), Tu. the ultimate gain and the ultimate period are the characteristics of the process being tuned. The following formulas are then applied:
  • 18. 0 20 40 60 80 100 59 60 61 62 63 % Output of Transmitter 0 20 40 60 80 100 40 60 80 100 Time, min % Output of Controller set point Inlet temp. drops 5 Cent. Kcu = 3.4, Tu = 11 min PID: Kc = 2.2, Ti = 5.5 min, Td = 1.4 min Online Tuning Result See ../PIDControl/PIDLoop.mdl Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 19. 0 10 20 30 40 50 58 59 60 61 62 63 64 65 66 Time, min % Output of Transmitter set point Kc = 0.5 Kc = 1 Kc = 2 Kc = 4 Kc = 3.5 Tu Ti = 6000 min, Td = 0 min Limitation of Online Tuning Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 20. Auto-tuning Based on Relay Feedback (基于继电反馈的参数自整定) PID Auto Tune u ysp Controlled Process + _ ym e(t) Relay (+) Here we suppose the process gain > 0
  • 21. Relay Feedback Example ) 1 2 )( 1 5 ( ) 2 exp( 0 . 2 ) ( ) (     s s s s U s Ym The controlled process can be described as The amplitude of relay controller is d = ±2.0 PID Auto Tune u ysp Controlled Process + _ ym e(t) Relay (+)
  • 22. Response of Relay Feedback Oscillation period TU & amplitude AY (振荡周期与幅 度)? 0 5 10 15 20 25 30 35 40 45 50 58.5 59 59.5 60 60.5 61 61.5 Ym 0 5 10 15 20 25 30 35 40 45 50 47 48 49 50 51 52 53 U min See the detailed results: ../ PIDLoopAutoTuning.mdl
  • 23. The Ultimate Gain (临界增益) Kcu Calculation  / 4d a  Y CU A d K  4  0 5 10 15 20 25 30 35 40 45 50 47 48 49 50 51 52 53 U min 经FT变换可知,控制输出的一次谐波幅度为 而对应的控制器临界增益为  / 4d
  • 24. Online Z-N Tuning Parameters Controller Kc Ti Td P 0.5Kcu PI 0.45Kcu Tu /1.2 PID 0.65Kcu Tu /2 Tu /8 If we use a PID controller, then we select the following parameters ……
  • 25. Closed-loop Response of PID Feedback System 0 20 40 60 80 100 120 140 60 65 70 75 Ym 0 20 40 60 80 100 120 140 40 60 80 100 U min Above auto- tuning method can be applied to other controlled processes ?
  • 26. Characteristics of Flow Loops  Fast dynamic response  Zero dead time, which results in an infinite controller gain in every tuning equation  Large measurement noise  To decrease the change of control valve, a PI controller is common used with very small proportional action and a large integral action to approximate an integral controller. (Why?)
  • 27. 0 20 40 60 80 100 45 50 55 60 65 % Output of Transmitter 0 20 40 60 80 100 0 20 40 60 Time, min % Output of Controller Kc = 4, Ti =2 min Kc = 1, Ti = 0.5 min Tuning Example of Flow Loops u(t) y(t) % CO % TO ysp(t) F(t) FC See ../PIDControl/FlowLoop.mdl Please compare the proportional gain with the integral gain
  • 29. Characteristics of Level Loops  Very often levels are integrating processes  There are two types of possible control objectives when the input flow varies: (1) Tight Level Control; (2) Average Level Control (“液位均匀控制”)
  • 30. Tight Level Control  The objective is to control the level tightly at set point, and the output flow can be allowed to vary without limitation  If a level process happens to be self-regulated, and it is possible to obtain K, T andτ, the above tuning techniques can be used directly  If a level process is integrating, a PI controller is common used with large proportional action and a very small integral action
  • 31. Average Level Control  The objective is to smooth the output flow from the tank, which feeds the downstream unit, the level in the tank must be allowed to “float” between a high and a low level  A P controller is common used in Average Level Control with a small proportional gain  Tuning: the gain should be set to be as small as possible, as long as the level changes between a high and a low level for the expected flow deviation from the average flow.
  • 32. Example of Level Control See ../PIDControl/ LevelLoop.mdl u(t) % CO % TO h(t) Fi(t) Fo(t) A ysp y(t) LC 41 LT 41
  • 33. Analysis of Average Level Control Systems Dynamic equation of the controlled process: where A is the area of the tank. Suppose LC u(t) y(t) % CO % TO ysp(t) h(t) Fi(t) Fo(t) A ) ( ) ( ) ( 0 t F t F dt t dh A i   ) ( ) ( 0 t u K t F V  , ) ( ) ( max h t h t y 
  • 34. Analysis of Average Level Control Systems (cont.) For a proportional controller, Gc = -Kc, + - + Gc Fi (s) - Fo (s) h(s) ysp KV u(s) s A 1 max 1 h y(s) 1 1 1 ) ( ) ( max max max     s K K Ah s Ah K K s Ah K K s F s F V C V C V C i o 1 1 1 1 1 ) ( ) ( max max max      s K K Ah K K s Ah K K s Ah s F s y V C V C V C i Please analyze the above models.
  • 35. Ysp Ym Y Uman SW1 e u PID Man/Auto 0.2 Kv 10 KT 1 10s Gp Fo Fi DU Examples of Average Level Control Systems Please see ../PIDControl/ AverageLevelLoop.mdl
  • 36. Simulation Results of P-type Average Level Control 0 10 20 30 40 50 60 70 80 90 100 9 9.5 10 10.5 11 m3/hr Fin, Fout 0 10 20 30 40 50 60 70 80 90 100 46 48 50 52 54 time, min % Ysp, Ym Kc = -0.5 Fin Kc = -2.0
  • 37. Reset Windup Problem Please see the following simulation example …/PIDControl/PidLoopwithLimit.mdl + - + + d(t) Controlled Process ym(t) ysp(t) e(t) uc 1 1 C I K T s        up
  • 38. Simulation Result with Reset Windup in a Single-Loop System Discussion: Which difference exists between reset windup and the open or closed status of the control valve completely ?
  • 39. The Principle of Preventing Reset Windup Principle: remove the reset or integral action if the control output is beyond the normal operation range. + - + + d(t) A Controlled Process ym(t) ysp(t) KC + + 1 1  s TI e(t) uc up           max max max min min min ) ( , ) ( ), ( ) ( , ) ( u t u if u u t u u if t u u t u if u t u c c c c p
  • 40. 0 20 40 60 80 100 120 140 160 180 200 55 60 65 70 75 % Ysp, Ym 0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 % time, min Uc, Up Anti-reset Windup Example
  • 41. Industrial PID Controller + - + + d(t) A Controlled Process ym(t) ysp(t) + + 1 1  s TI 1 1   s A T s T K D D D C PID Controller e(t) uc up KC + - ysp(t) + + 1 1  s TI Derivative Action First PID Controller 1 1   s A T s T D D D e(t) uc up + + d(t) A Controlled Process ym(t) PID1 PID2
  • 42. Summary  Selection of PID Controller Types  Tuning of PID Controller Parameters  Tuning of PID Controller for Flow Loops  Tight / Average Level Control  Reset Windup and Its Prevention
  • 43. Problem Discussion  For an unknown stable temperature control system, can you determine PID parameters in Offline and Online tuning methods ?  Please realize the industrial PID controller in Simulink ?  For the fast flow control loop, show me your tuning principle and explain why.  For the AVERAGE level control loop, show me your tuning principle and explain why.  Explain the existing reason of reset windup and show me your prevention schemes
  • 44. Exercise 3.1 A controlled process is shown in the Problem 2-1 (p.34) in Automated Continuous Process Control. (1) calculate its characteristics parameters K, T and τ; (2) decide on the action of the valve and the controller; (3) tune your PID controller.
  • 45. Exercise 3.2  / 4d a  0 5 10 15 20 25 30 35 40 45 50 47 48 49 50 51 52 53 U min 假设Relay(继电器法)镇定PID参数时,控制器输出如上图所 示,信号周期为Tu, 振幅为d=2。证明经傅立叶变换,控制输 出的一次谐波幅度为  / 4d