SlideShare a Scribd company logo
1 of 4
Effect of Manganese acetate and phosphoric acid/ phosphoric acid ester (TMP)
in PET Synthesis.
Introduction of additives
Generally manganese acetate areused preferably becauseof their superior catalytic activity,itincreasethe
esterification reaction rate.
Major function of phosphoric acid or trimethyl phosphateis heat stabilizer.Itwill reducethe polymer degradation
and formation of –COOH end group in polycondensation stage.
Phosphoric acid or their esters (TMP) must be added at the end of esterification reaction.There are two reasons to
add at the end of esterification
1. Phosphoric acid stabilizers are inactivein presenceof higher –COOH end groups
2. Transesterification catalyst(Mn) will be deactivated if you use phosphoric acid atearly stage
But there are considerablebenefits by the individual addition of manganese acetate and phosphoric acid at
deferent stages.
What is the effect if I can use both manganese acetate and phosphoric acid or their esters at a time?
There is a disadvantageby addingboth manganese acetate and phosphoric acid or their ester in the beginningof
the esterification stage.
Manganese acetate may react with phosphoric acid and forma manganese phosphate. It i s very difficultto
dissolvein ethylene glycol and incorporation in polymer matrix.
Manganese Acetate: Phosphoric Acid Trimethyl phosphate
 CAS: 638-38-0
 Molecular Formula:C4H6MnO4
 Molecular Structure:
Chemical Properties
 Molecular Weight:173.026
 Density:1.589
 Water solubility: soluble
 Boiling Point:117.1°C at 760 mmHg
 MeltingPoint: 180°C
 Flash Point: 40 °C
 Solubility: soluble
 Appearance: light pint crystals
CAS :7664-38-2
Molecular Formula:H3PO4
Synonyms: orthophosphoric acid;
Molecular Structure:
Chemical Properties
Molecular Weight: 97.99
Density: 1.685
Water solubility: MISCIBLE
Boiling Point:158℃
MeltingPoint:21℃
CAS: 512-56-1
Molecular Formula:C3H9O4P
Molecular Structure:
Chemical Properties
Molecular Weight:140.07
Density:1.197
Boiling Point:197℃
MeltingPoint:-46℃
Flash Point:107℃
Refractive index:1.395-1.397
Solubility: good
Appearance: clear liquid
3Mn(CH3COO)2 + 2H3PO4 ---------------------- Mn3O8P2
Manganese acetate Phosphoric Acid Manganese phosphate
The use of manganese compounds suffers from the defect that foreign materials areformed in the reaction
system. These foreign materials adhereto the equipment, such as a reaction vessel or piping,to form scales which
in turn prevent the normal operation of the equipment
The scaleis believed to be insolublemanganeseterephthalate itis formedbythe reactionof manganese
acetate catalystwithterephthalicacid
Manganese has a very high reactivity in both the ester interchangereaction and the polycondensation reac tion.
However, it is generally preferred to sequester manganese at the end of the ester interchangeprocess, otherwise
manganese produces a polymer with bad color,the polymer has a broader molecular weight distribution, which is
undesirable,and when manganese is activeas a catalystin thepolycondensation stage,many by-products such as
oxides,etc., arecreated, which discolor theresultantpolymer.
The excess of manganese acetate will enhancethe beta-elimination (itis a major thermal degradation reaction of
PET)
So it will givehigher –COOH end groups and difficultto get high IV in SSP
it must be kept in mind that manganese yields bad color,undesirableby-products,and broad molecular weight
distribution for the polymer formed
Source: http://144.206.159.178/ft/862/10095/194702.pdf
Manganese phosphate may have magnetic properties and itmay settle at the bottom of reactor.
Source: http://www.chem.tamu.edu/rgroup/dunbar/Publications/2003-172.pdf
Conclusion:
Excess of manganese acetate may create the followingproblems
1) Discoloration
2) Scaleor insolublematter formation
3) Degradation
4) Low molecular weight
5) Broad MW distribution
6) It will reactwith phosphoric acid and forma manganese phosphate itmay not dissolvein EG
References:
1) US20090043022
Relevant Text:
Further, the present invention is intended for lightshielding,and thus stability of the polymer upon exposure to
sunlight,in particular UVlight,is of primary importance.As such,UV stability iscertainly necessary and thereby it
is importantto add a UV stabilizer.As a resultof various tests, the present inventors have found that manganese
phosphate is mosteffective. However, manganese phosphateis insolublein ethylene glycol,thereby making it
difficultto be incorporated into the polymer. Therefore, the present inventors have found that it is most proper
to synthesize manganese phosphate in a reaction system by separately introducing manganese acetate and
phosphoric acid to the reactor, instead of directly introducing manganese phosphate into a reactor. The content
of manganese acetate utilized for synthesis of manganese phosphateis preferably in the range of 0.1 to 500 ppm,
and more preferably 0.2 to 200 ppm, based on manganese atoms in the polymer. If the content of manganese
acetate is below0.1 ppm, it is difficultto obtain the desired UV stability.If the content of manganese acetate
exceeds 500 ppm, problems associated with dispersibility arise,thereby leadingto increased pack pressureupon
spinning.In addition,the content of phosphoric acid ispreferably in the range of 0.1 to 500 ppm, and more
preferably 0.2 to 200 ppm based on the phosphorus atom content relative to the polymer. Although phosphorus
based materials may be added in any amount, so long as the reaction between the phosphorus material and the
manganese saltis notinhibited,concentrations greater than 500 ppm may lead to decreased catalytic activity,
thereby it makingdifficultto prepare the desired flame retardantpolyester.
2) Magnetic Property Studies of Manganese-Phosphate Complexes
Phosphoric acid forms two distinctcoordination compounds with manganese salts in aqueous media ,a two-
dimensional layered structure,[Mn(HPO4)â(H2O)3], 1, under ambient conditions,and a three-dimensional
synthetic mineral,[Mn5(í-OH2)2(HPO4)2(PO4)2(H2O)2],2, under hydrothermal procedures, at120 °C. In
compound 1, the oxygen atom of the doubly deprotonated phosphoric acid interconnects themetal centers to
form a layered structure. The neutral hydrophiliclayersof 1 are separated by 5.5 Å and may potentially intercalate
hydrophilic organic guest molecules.The metal centers in 2 are octahedral and bridged by PO43-, HPO4 2-, and
OH2 groups to form a complex three-dimensional network. XPS analysison 1 and 2 confirms that manganese exists
in the +2 oxidation state.Compound 2 is a poor ion exchanger, but some improvement is observed on partial
dehydration. The magnetic properties of both 1 and 2 were studied in detail to examine the amplitudeof the
magnetic interactions through phosphate ligand bridges. While1 reveals dominantantiferromagnetic interactions
between the spin carriers,a complete investigation of the magnetic properties of 2 revealed its true nature to be a
glassy magnet.
3) US4057534A
Title: Method for preventing scaleformation in a continuous ester-interchange reaction for production of
polyesters
In order to perform the ester-interchange reaction smoothly, various metal compounds are used as a catalyst,and
manganese compounds such as manganese acetate are used preferably because of their superior catalytic activity.
The use of such manganese compounds, however, suffers from the defect that foreign materials areformed in the
reaction system. These foreign materials adhereto the equipment, such as a reaction vessel or piping,to form
scales which in turn prevent the normal operation of the equipment. Hence, the equipment must be disassembled
and cleaned. Since this requires a complicated procedure, the working efficiency of the equipment is reduced.
Furthermore, the adhesion of the scales gives riseto an increasein heattransmission resistance,and makes it
difficultto maintain the reaction system at a predetermined temperature. These defects are very serious especially
in a continuous ester-interchange reaction,and are required to be removed.
4) US4154921
The scaleis believed to be insolublemanganeseterephthalate, presumably formed by reaction of manganese
acetate catalystgenerated as a resultof a sidereaction during the ester exchange reaction of dimethyl
terephthalate with excess ethylene glycol.Preferably an alkali metal saltof an organic acid,such as sodiumacetate
or lithiumacetate is also used to give a synergistic effectin combination with the hindered acid.
Primarily insolublemanganeseterephthalate, presumably formed by the reaction of manganese acetate catalyst
with terephthalic acid
EP425215A2
Manganese is the preferred catalystfor ester interchange reactions, but the amount of manganese employed must
be strictly controlled. The presence of too littlemanganese duringthe ester interchange reaction results in very
longreaction times, whilethe presence of too much manganese results in unwanted sideproducts duringthe
polycondensation reaction (thus loweringthe yield of monomer), and unacceptabledegradation of the polymer
resultingin poor color (thus lowering the quality). The exact range of manganese which proves to be the most
desirablemustgenerally be determined through trial and error becausemany factors affect the reactivity of the
manganese. For example, reaction temperature, reaction pressure, the degree of mixing duringreaction,the
purity of the rawmaterials,the presence of other additives,etc., all affectthe effectiveness of manganese.
In prior artprocesses,manganese was employed to obtain suitableester interchange reaction times, but the
manganese had to be sequestered after ester interchange or duringpolycondensation by a polyvalent
phosphorous compound to aid in reducingthe discoloration and unwanted sideproducts. Generally,prior art
processes employed about 50 ppm to 150 ppm manganese based on the expected yield of the polymer, as the
ester interchangecatalyst.Usingmore than about150 ppm manganese resulted in polymer degradation even if
phosphorous was employed in excess to seguester the manganese. It is believed that this occurred because the
phosphorous was incapableof complexingwith the manganese to the degree necessary to prevent discoloration

More Related Content

Recently uploaded

well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxzaydmeerab121
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clonechaudhary charan shingh university
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptAmirRaziq1
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxtuking87
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxzeus70441
 
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfReplisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfAtiaGohar1
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxkumarsanjai28051
 
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdfDECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdfDivyaK787011
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 

Recently uploaded (20)

Interferons.pptx.
Interferons.pptx.Interferons.pptx.
Interferons.pptx.
 
well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptx
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clone
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.ppt
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptx
 
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfReplisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptx
 
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdfDECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

Manganese acetate and phosphoric acid effect on pet synthesis

  • 1. Effect of Manganese acetate and phosphoric acid/ phosphoric acid ester (TMP) in PET Synthesis. Introduction of additives Generally manganese acetate areused preferably becauseof their superior catalytic activity,itincreasethe esterification reaction rate. Major function of phosphoric acid or trimethyl phosphateis heat stabilizer.Itwill reducethe polymer degradation and formation of –COOH end group in polycondensation stage. Phosphoric acid or their esters (TMP) must be added at the end of esterification reaction.There are two reasons to add at the end of esterification 1. Phosphoric acid stabilizers are inactivein presenceof higher –COOH end groups 2. Transesterification catalyst(Mn) will be deactivated if you use phosphoric acid atearly stage But there are considerablebenefits by the individual addition of manganese acetate and phosphoric acid at deferent stages. What is the effect if I can use both manganese acetate and phosphoric acid or their esters at a time? There is a disadvantageby addingboth manganese acetate and phosphoric acid or their ester in the beginningof the esterification stage. Manganese acetate may react with phosphoric acid and forma manganese phosphate. It i s very difficultto dissolvein ethylene glycol and incorporation in polymer matrix. Manganese Acetate: Phosphoric Acid Trimethyl phosphate  CAS: 638-38-0  Molecular Formula:C4H6MnO4  Molecular Structure: Chemical Properties  Molecular Weight:173.026  Density:1.589  Water solubility: soluble  Boiling Point:117.1°C at 760 mmHg  MeltingPoint: 180°C  Flash Point: 40 °C  Solubility: soluble  Appearance: light pint crystals CAS :7664-38-2 Molecular Formula:H3PO4 Synonyms: orthophosphoric acid; Molecular Structure: Chemical Properties Molecular Weight: 97.99 Density: 1.685 Water solubility: MISCIBLE Boiling Point:158℃ MeltingPoint:21℃ CAS: 512-56-1 Molecular Formula:C3H9O4P Molecular Structure: Chemical Properties Molecular Weight:140.07 Density:1.197 Boiling Point:197℃ MeltingPoint:-46℃ Flash Point:107℃ Refractive index:1.395-1.397 Solubility: good Appearance: clear liquid
  • 2. 3Mn(CH3COO)2 + 2H3PO4 ---------------------- Mn3O8P2 Manganese acetate Phosphoric Acid Manganese phosphate The use of manganese compounds suffers from the defect that foreign materials areformed in the reaction system. These foreign materials adhereto the equipment, such as a reaction vessel or piping,to form scales which in turn prevent the normal operation of the equipment The scaleis believed to be insolublemanganeseterephthalate itis formedbythe reactionof manganese acetate catalystwithterephthalicacid Manganese has a very high reactivity in both the ester interchangereaction and the polycondensation reac tion. However, it is generally preferred to sequester manganese at the end of the ester interchangeprocess, otherwise manganese produces a polymer with bad color,the polymer has a broader molecular weight distribution, which is undesirable,and when manganese is activeas a catalystin thepolycondensation stage,many by-products such as oxides,etc., arecreated, which discolor theresultantpolymer. The excess of manganese acetate will enhancethe beta-elimination (itis a major thermal degradation reaction of PET) So it will givehigher –COOH end groups and difficultto get high IV in SSP it must be kept in mind that manganese yields bad color,undesirableby-products,and broad molecular weight distribution for the polymer formed Source: http://144.206.159.178/ft/862/10095/194702.pdf Manganese phosphate may have magnetic properties and itmay settle at the bottom of reactor. Source: http://www.chem.tamu.edu/rgroup/dunbar/Publications/2003-172.pdf Conclusion: Excess of manganese acetate may create the followingproblems 1) Discoloration 2) Scaleor insolublematter formation 3) Degradation 4) Low molecular weight 5) Broad MW distribution 6) It will reactwith phosphoric acid and forma manganese phosphate itmay not dissolvein EG
  • 3. References: 1) US20090043022 Relevant Text: Further, the present invention is intended for lightshielding,and thus stability of the polymer upon exposure to sunlight,in particular UVlight,is of primary importance.As such,UV stability iscertainly necessary and thereby it is importantto add a UV stabilizer.As a resultof various tests, the present inventors have found that manganese phosphate is mosteffective. However, manganese phosphateis insolublein ethylene glycol,thereby making it difficultto be incorporated into the polymer. Therefore, the present inventors have found that it is most proper to synthesize manganese phosphate in a reaction system by separately introducing manganese acetate and phosphoric acid to the reactor, instead of directly introducing manganese phosphate into a reactor. The content of manganese acetate utilized for synthesis of manganese phosphateis preferably in the range of 0.1 to 500 ppm, and more preferably 0.2 to 200 ppm, based on manganese atoms in the polymer. If the content of manganese acetate is below0.1 ppm, it is difficultto obtain the desired UV stability.If the content of manganese acetate exceeds 500 ppm, problems associated with dispersibility arise,thereby leadingto increased pack pressureupon spinning.In addition,the content of phosphoric acid ispreferably in the range of 0.1 to 500 ppm, and more preferably 0.2 to 200 ppm based on the phosphorus atom content relative to the polymer. Although phosphorus based materials may be added in any amount, so long as the reaction between the phosphorus material and the manganese saltis notinhibited,concentrations greater than 500 ppm may lead to decreased catalytic activity, thereby it makingdifficultto prepare the desired flame retardantpolyester. 2) Magnetic Property Studies of Manganese-Phosphate Complexes Phosphoric acid forms two distinctcoordination compounds with manganese salts in aqueous media ,a two- dimensional layered structure,[Mn(HPO4)â(H2O)3], 1, under ambient conditions,and a three-dimensional synthetic mineral,[Mn5(í-OH2)2(HPO4)2(PO4)2(H2O)2],2, under hydrothermal procedures, at120 °C. In compound 1, the oxygen atom of the doubly deprotonated phosphoric acid interconnects themetal centers to form a layered structure. The neutral hydrophiliclayersof 1 are separated by 5.5 Å and may potentially intercalate hydrophilic organic guest molecules.The metal centers in 2 are octahedral and bridged by PO43-, HPO4 2-, and OH2 groups to form a complex three-dimensional network. XPS analysison 1 and 2 confirms that manganese exists in the +2 oxidation state.Compound 2 is a poor ion exchanger, but some improvement is observed on partial dehydration. The magnetic properties of both 1 and 2 were studied in detail to examine the amplitudeof the magnetic interactions through phosphate ligand bridges. While1 reveals dominantantiferromagnetic interactions between the spin carriers,a complete investigation of the magnetic properties of 2 revealed its true nature to be a glassy magnet. 3) US4057534A Title: Method for preventing scaleformation in a continuous ester-interchange reaction for production of polyesters In order to perform the ester-interchange reaction smoothly, various metal compounds are used as a catalyst,and manganese compounds such as manganese acetate are used preferably because of their superior catalytic activity. The use of such manganese compounds, however, suffers from the defect that foreign materials areformed in the reaction system. These foreign materials adhereto the equipment, such as a reaction vessel or piping,to form scales which in turn prevent the normal operation of the equipment. Hence, the equipment must be disassembled
  • 4. and cleaned. Since this requires a complicated procedure, the working efficiency of the equipment is reduced. Furthermore, the adhesion of the scales gives riseto an increasein heattransmission resistance,and makes it difficultto maintain the reaction system at a predetermined temperature. These defects are very serious especially in a continuous ester-interchange reaction,and are required to be removed. 4) US4154921 The scaleis believed to be insolublemanganeseterephthalate, presumably formed by reaction of manganese acetate catalystgenerated as a resultof a sidereaction during the ester exchange reaction of dimethyl terephthalate with excess ethylene glycol.Preferably an alkali metal saltof an organic acid,such as sodiumacetate or lithiumacetate is also used to give a synergistic effectin combination with the hindered acid. Primarily insolublemanganeseterephthalate, presumably formed by the reaction of manganese acetate catalyst with terephthalic acid EP425215A2 Manganese is the preferred catalystfor ester interchange reactions, but the amount of manganese employed must be strictly controlled. The presence of too littlemanganese duringthe ester interchange reaction results in very longreaction times, whilethe presence of too much manganese results in unwanted sideproducts duringthe polycondensation reaction (thus loweringthe yield of monomer), and unacceptabledegradation of the polymer resultingin poor color (thus lowering the quality). The exact range of manganese which proves to be the most desirablemustgenerally be determined through trial and error becausemany factors affect the reactivity of the manganese. For example, reaction temperature, reaction pressure, the degree of mixing duringreaction,the purity of the rawmaterials,the presence of other additives,etc., all affectthe effectiveness of manganese. In prior artprocesses,manganese was employed to obtain suitableester interchange reaction times, but the manganese had to be sequestered after ester interchange or duringpolycondensation by a polyvalent phosphorous compound to aid in reducingthe discoloration and unwanted sideproducts. Generally,prior art processes employed about 50 ppm to 150 ppm manganese based on the expected yield of the polymer, as the ester interchangecatalyst.Usingmore than about150 ppm manganese resulted in polymer degradation even if phosphorous was employed in excess to seguester the manganese. It is believed that this occurred because the phosphorous was incapableof complexingwith the manganese to the degree necessary to prevent discoloration