Top 10 Supercomputers Report
What is Supercomputer?
A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2017, there are supercomputers which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS
Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). They have been essential in the field of cryptanalysis.
1. The Fugaku Supercomputer
Introduction:
Fugaku is a petascale supercomputer (while only at petascale for mainstream benchmark), at the Riken Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer, and started operating in 2021. Fugaku made its debut in 2020, and became the fastest supercomputer in the world in the June 2020 TOP500 list, as well as becoming the first ARM architecture-based computer to achieve this. In June 2020, it achieved 1.42 exaFLOPS (in HPL-AI benchmark making it the first ever supercomputer that achieved 1 exaFLOPS. As of November 2021, Fugaku is the fastest supercomputer in the world. It is named after an alternative name for Mount Fuji.
Block Diagram:
Functional Units:
Functional Units, Co-Design and System for the Supercomputer “Fugaku”
1. Performance estimation tool: This tool, taking Fujitsu FX100 (FX100 is the previous Fujitsu supercomputer) execution profile data as an input, enables the performance projection by a given set of architecture parameters. The performance projection is modeled according to the Fujitsu microarchitecture. This tool can also estimate the power consumption based on the architecture model.
2. Fujitsu in-house processor simulator: We used an extended FX100 SPARC instruction-set simulator and compiler, developed by Fujitsu, for preliminary studies in the initial phase, and an Armv8þSVE simulator and compiler afterward.
3. Gem5 simulator for the Post-K processor: The Post-K processor simulator3 based on an opensource system-level processor simulator, Gem5, was developed by RIKEN during the co-design for architecture verification and performance tuning. A fundamental problem is the scale of scientific applications that are expected to be run on Post-K. Even our target applications are thousands of lines of code and are written to use complex algorithms and data structures. Altho