SlideShare a Scribd company logo
1 of 28
Download to read offline
Quantum networks
with superconducting circuits
and optomechanical transducers
Ondřej Černotík
Leibniz Universität Hannover
IST Austria, 10 November 2016
-
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Superconducting systems are among the
best candidates for quantum computers.
2
• Quantum gates and processors

L. DiCarlo et al., Nature 460, 240 (2009); ibid. 467, 574 (2010); A. Fedorov et
al., Nature 481, 170 (2011)
• Quantum teleportation

L. Steffen et al., Nature 500, 319 (2013)
• Quantum simulations

A. Houck et al., Nature Physics 8, 292 (2012)
• Quantum error correction

A. Córcoles et al., Nature Commun. 6, 6979

(2015); J. Kelly et al., Nature 519, 66 (2015); 

D. Ristè et al., Nature Commun. 6, 6983 (2015)
R. Schoelkopf, Yale
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Light is ideal for quantum communication
due to low losses and noise.
3
• Quantum key distribution

F. Grosshans et al., Nature 421, 238 (2003); T. Schmitt-Manderbach et al., PRL
98, 010504 (2007); H. Yin et al., PRL 117, 190501 (2016)
• Quantum teleportation

D. Bouwmeester et al., Nature 390, 575 (1997); A. Furusawa et al., Science 282,
706 (1998); H. Yonezawa et al., Nature 431, 430 (2004); T. Herbst et al., PNAS
112, 14202 (2015)
• Loophole-free Bell test

B. Hensen et al., Nature 526, 682 (2015); M. Giustina 

et al., PRL 115, 250401 (2015); L. Shalm et al., ibid., 

250402 (2015)
A. Zeilinger
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
There is a large gap between
superconducting and optical systems.
4
Superconducting circuits Optical communication
10 GHz 200 THzfrequency
625 0.03thermal occupation
(300 K)
0.5 K 10,000 K
ground state
temperature
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Mechanical oscillators can mediate
coupling between microwaves and light.
5
R. Andrews et al., Nature Phys. 10, 321 (2014)
K. Stannigel et al., PRL 105, 220501 (2010)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ 6
Parity measurements
in circuit QED
Optomechanical
force sensing
Long-distance entanglement
of superconducting qubits
Fext
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Full control of a qubit is possible using an
electromagnetic field.
7
Hint = g(a + + a†
)
A. Blais et al., PRA 69, 062920 (2004)
Jaynes–Cummings interaction
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Full control of a qubit is possible using an
electromagnetic field.
8
Hint =
g2
a†
a z
A. Blais et al., PRA 69, 062920 (2004)
dispersive interaction
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Dispersive coupling can be used to read
out the qubit state.
9
|0i
|1i
R. Vijay et al., PRL 106, 110502 (2011)
K. Murch et al., Nature 502, 211 (2013)
Hint =
g2
a†
a z
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Spin measurement can be used to
generate entanglement of two qubits.
10
C. Hutchison et al., Canadian J. Phys. 87, 225 (2009)
N. Roch et al., PRL 112, 170501 (2014)
|11i
|00i
|01i + |10i
| 0i = (|0i + |1i)(|0i + |1i)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Optomechanical interaction arises due to
radiation pressure.
11
a x
!,  ⌦, ¯n
!(x) ⇡ !(0) +
d!
dx
x
Cavity frequency:
g0 =
d!
dx
xzpf =
!
L
xzpfCoupling strength:
xzpf =
r
~
2m⌦
x = xzpf (b + b†
),
Hamiltonian:
H = ~!(x)a†
a + ~⌦b†
b
H = ~!a†
a + ~⌦b†
b + ~g0a†
a(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
⌦
Strong coupling can be achieved using
laser driving.
12
Optomechanical coupling is weak
g0 = !
xzpf
L
⇡ 25 Hz
Solution: strong optical drive a ! ↵ + a
Interaction Hamiltonian Hint = ~g0↵(a + a†
)(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Red-detuned drive:
Hint ⇡ ~g(a†
b + b†
a)
Optomechanical cooling
!L = ! ⌦
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
⌦
Strong coupling can be achieved using
laser driving.
13
Optomechanical coupling is weak
g0 = !
xzpf
L
⇡ 25 Hz
Solution: strong optical drive a ! ↵ + a
⌦
Interaction Hamiltonian Hint = ~g0↵(a + a†
)(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Blue-detuned drive:
Hint ⇡ ~g(ab + a†
b†
)
Two-mode squeezing
!L = ! + ⌦
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
⌦
Strong coupling can be achieved using
laser driving.
14
Optomechanical coupling is weak
g0 = !
xzpf
L
⇡ 25 Hz
Solution: strong optical drive a ! ↵ + a
Interaction Hamiltonian Hint = ~g0↵(a + a†
)(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Resonant drive:
Hint ⇡ ~g(a + a†
)(b + b†
)
Position readout
! = !L
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Standard quantum limit bounds the
sensitivity of displacement measurements.
15
A. Clerk et al., RMP 82, 1155 (2010)
M. Aspelmeyer et al., RMP 86, 1391 (2014)
˙x = !mp
˙p = !mx p g(a + a†
) + ⇠ + Fext
˙a =

2
a igx +
p
ain
Fext
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Standard quantum limit bounds the
sensitivity of displacement measurements.
16
A. Clerk et al., RMP 82, 1155 (2010)
M. Aspelmeyer et al., RMP 86, 1391 (2014)
Fext
pout = i(aout a†
out)
=
4g!m
p

(!2
m !2 + i !)( + 2i!)
✓
Fext + ⇠
2g
p

 + 2i!
xin
◆
+
 2i!
 + 2i!
pin
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Optomechanical transducer acts as a
force sensor.
17
F = ~ /(
p
2xzpf )
S2
F (!) = x2
zpf /[8g2 2
m(!)]Sensitivity:
⌧meas =
S2
F (!)
F2
=
!2
m
16 2g2
⌧ T1,2Measurement time:
H = z(b + b†
) + !mb†
b + g(a + a†
)(b + b†
)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
The thermal mechanical bath affects the
qubit.
18
mech = S2
f (!) =
2 2
!2
m
¯nDephasing rate:
⌧meas <
1
mech
! C =
4g2
 ¯n
>
1
2
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
The system can be modelled using a
conditional master equation.
19
D[O]⇢ = O⇢O† 1
2 (O†
O⇢ + ⇢O†
O)
H[O]⇢ = (O hOi)⇢ + ⇢(O†
hO†
i)
H. Wiseman & G. Milburn, Quantum
measurement and control (Cambridge)
d⇢ = i[H, ⇢]dt + Lq⇢dt +
2X
j=1
{(¯n + 1)D[bj] + ¯nD[b†
j]}⇢dt
+ D[a1 a2]⇢dt +
p
H[i(a1 a2)]⇢dW
H =
2X
j=1
j
z(bj + b†
j) + !mb†
jbj
+ g(aj + a†
j)(bj + b†
j) + i

2
(a1a†
2 a2a†
1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
The transducer is Gaussian and can be
adiabatically eliminated.
20
OC et al., PRA 92, 012124 (2015)ˇ
2 qubits
Mechanics,
light
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
We obtain an effective equation for the
qubits.
21
d⇢q =
2X
j=1

1
T1
D[ j
] +
✓
1
T2
+ mech
◆
D[ j
z] ⇢qdt
+ measD[ 1
z + 2
z]⇢qdt +
p
measH[ 1
z + 2
z]⇢qdW
meas = 16
2
g2
!2
m
, mech =
2
!2
m
(2¯n + 1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Optical losses introduce additional
dephasing.
22
p
⌘ measH[ 1
z + 2
z]⇢q
(1 ⌧) measD[ 1
z]⇢q
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
A transmon qubit can capacitively couple
to a nanobeam oscillator.
23
G. Anetsberger et al., Nature Phys. 5, 909 (2009)
J. Pirkkalainen et al., Nat. Commun. 6, 6981 (2015)
= 2⇡ ⇥ 5.8 MHz
g = 2⇡ ⇥ 900 kHz
 = 2⇡ ⇥ 39MHz
!m = 2⇡ ⇥ 8.7 MHz
Qm = 5 ⇥ 104
T = 20 mK
¯n = 48
T1,2 = 20 µs
C = 10
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
A transmon qubit can capacitively couple
to a nanobeam oscillator.
24
= 2⇡ ⇥ 5.8 MHz
g = 2⇡ ⇥ 900 kHz
 = 2⇡ ⇥ 39MHz
!m = 2⇡ ⇥ 8.7 MHz
Qm = 5 ⇥ 104
T = 20 mK
¯n = 48
T1,2 = 20 µs
C = 10
⌘
Psucc
Psucc
OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
With high-frequency mechanical
oscillators, modulated interaction can be
used.
25
H = z(b + b†
) ig(a + a†
)(b b†
)
meas = 16
2
g2
 2
, mech =
2
(2¯n + 1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Microwave cavity can improve the
lifetime of the qubit.
26
meas = 256
2
g2
ag2
c
2
a!2
mc
,
deph = 4
2
a
+ 256
2
g4
a
3
a!2
m
+ 16
2
g2
a
2
a!2
m
(2¯n + 1)
H = z(a + a†
)
iga(a a†
)(b + b†
)
+ !mb†
b + gc(c + c†
)(b + b†
)
a
b
c
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Both techniques can also be combined in
one system.
27
a
b
c
H = z(a + a†
)
iga(a a†
)(b + b†
)
igc(c + c†
)(b b†
)
meas = 1024
2
g2
ag2
c
2
a
2c
,
deph = 4
2
a
+ 64
2
g2
a
2
a
(2¯n + 1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Mechanical oscillators can mediate
interaction between light and SC qubits.
28
OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
-
C =
4g2
 ¯n
>
1
2
• Strong optomechanical cooperativity,
• Sufficient qubit lifetime

More Related Content

What's hot

optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
student
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Anax Fotopoulos
 
Loss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar CellsLoss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar Cells
disorderedmatter
 
Презентация Microsoft PowerPoint
Презентация Microsoft PowerPointПрезентация Microsoft PowerPoint
Презентация Microsoft PowerPoint
Oleg Rudakov
 

What's hot (20)

Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Visit at CERN
Visit at CERNVisit at CERN
Visit at CERN
 
Fundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar CellsFundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar Cells
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracy
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
 
CUPC Oct 14, 2015
CUPC Oct 14, 2015CUPC Oct 14, 2015
CUPC Oct 14, 2015
 
Gupta Roy MS Thesis Defense
Gupta Roy MS Thesis DefenseGupta Roy MS Thesis Defense
Gupta Roy MS Thesis Defense
 
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
Two efficient algorithms for drawing accurate and beautiful phonon dispersionTwo efficient algorithms for drawing accurate and beautiful phonon dispersion
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
 
VPrasad_DAEBRNSHEPDec2014talk
VPrasad_DAEBRNSHEPDec2014talkVPrasad_DAEBRNSHEPDec2014talk
VPrasad_DAEBRNSHEPDec2014talk
 
ppt on the Solar cells understanding semiconductor devices
ppt on the Solar cells understanding semiconductor devicesppt on the Solar cells understanding semiconductor devices
ppt on the Solar cells understanding semiconductor devices
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
 
Characterization of Carrier Lifetime
Characterization of Carrier LifetimeCharacterization of Carrier Lifetime
Characterization of Carrier Lifetime
 
27 Double π0 photoproduction on the neutron at GRAAL - Physics Letters B, Jul...
27 Double π0 photoproduction on the neutron at GRAAL - Physics Letters B, Jul...27 Double π0 photoproduction on the neutron at GRAAL - Physics Letters B, Jul...
27 Double π0 photoproduction on the neutron at GRAAL - Physics Letters B, Jul...
 
Loss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar CellsLoss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar Cells
 
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
 
giessen short
giessen shortgiessen short
giessen short
 
Презентация Microsoft PowerPoint
Презентация Microsoft PowerPointПрезентация Microsoft PowerPoint
Презентация Microsoft PowerPoint
 

Similar to Quantum networks with superconducting circuits and optomechanical transducers

24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
Cristian Randieri PhD
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensors
Ram Niwas Bajiya
 
Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...
Thomas Actn
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
laboratoridalbasso
 

Similar to Quantum networks with superconducting circuits and optomechanical transducers (20)

Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Interference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesInterference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranes
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Non-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developmentsNon-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developments
 
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well DevicesLocalized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
 
Wireless Power Transmission for Implantable Medical Devices
Wireless Power Transmission for Implantable Medical DevicesWireless Power Transmission for Implantable Medical Devices
Wireless Power Transmission for Implantable Medical Devices
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensors
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...
 
Noise Resilience of Variational Quantum Compiling
Noise Resilience of Variational Quantum CompilingNoise Resilience of Variational Quantum Compiling
Noise Resilience of Variational Quantum Compiling
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+
 
Generation and application of attosecond laser pulse
Generation and application of attosecond laser pulseGeneration and application of attosecond laser pulse
Generation and application of attosecond laser pulse
 
Gaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringGaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scattering
 
nothing
nothingnothing
nothing
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag
 

More from Ondrej Cernotik

Transformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of lightTransformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of light
Ondrej Cernotik
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
Ondrej Cernotik
 
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Ondrej Cernotik
 
Interference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanicsInterference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanics
Ondrej Cernotik
 

More from Ondrej Cernotik (9)

Transformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of lightTransformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of light
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
Entangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersEntangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducers
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Displacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationDisplacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentration
 
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
 
Cavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrorsCavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrors
 
Interference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanicsInterference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanics
 
Motional Gaussian states and gates for a levitating particle
Motional Gaussian states and gates for a levitating particleMotional Gaussian states and gates for a levitating particle
Motional Gaussian states and gates for a levitating particle
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Recently uploaded (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 

Quantum networks with superconducting circuits and optomechanical transducers

  • 1. Quantum networks with superconducting circuits and optomechanical transducers Ondřej Černotík Leibniz Universität Hannover IST Austria, 10 November 2016 -
  • 2. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Superconducting systems are among the best candidates for quantum computers. 2 • Quantum gates and processors
 L. DiCarlo et al., Nature 460, 240 (2009); ibid. 467, 574 (2010); A. Fedorov et al., Nature 481, 170 (2011) • Quantum teleportation
 L. Steffen et al., Nature 500, 319 (2013) • Quantum simulations
 A. Houck et al., Nature Physics 8, 292 (2012) • Quantum error correction
 A. Córcoles et al., Nature Commun. 6, 6979
 (2015); J. Kelly et al., Nature 519, 66 (2015); 
 D. Ristè et al., Nature Commun. 6, 6983 (2015) R. Schoelkopf, Yale
  • 3. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Light is ideal for quantum communication due to low losses and noise. 3 • Quantum key distribution
 F. Grosshans et al., Nature 421, 238 (2003); T. Schmitt-Manderbach et al., PRL 98, 010504 (2007); H. Yin et al., PRL 117, 190501 (2016) • Quantum teleportation
 D. Bouwmeester et al., Nature 390, 575 (1997); A. Furusawa et al., Science 282, 706 (1998); H. Yonezawa et al., Nature 431, 430 (2004); T. Herbst et al., PNAS 112, 14202 (2015) • Loophole-free Bell test
 B. Hensen et al., Nature 526, 682 (2015); M. Giustina 
 et al., PRL 115, 250401 (2015); L. Shalm et al., ibid., 
 250402 (2015) A. Zeilinger
  • 4. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ There is a large gap between superconducting and optical systems. 4 Superconducting circuits Optical communication 10 GHz 200 THzfrequency 625 0.03thermal occupation (300 K) 0.5 K 10,000 K ground state temperature
  • 5. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Mechanical oscillators can mediate coupling between microwaves and light. 5 R. Andrews et al., Nature Phys. 10, 321 (2014) K. Stannigel et al., PRL 105, 220501 (2010)
  • 6. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ 6 Parity measurements in circuit QED Optomechanical force sensing Long-distance entanglement of superconducting qubits Fext
  • 7. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Full control of a qubit is possible using an electromagnetic field. 7 Hint = g(a + + a† ) A. Blais et al., PRA 69, 062920 (2004) Jaynes–Cummings interaction
  • 8. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Full control of a qubit is possible using an electromagnetic field. 8 Hint = g2 a† a z A. Blais et al., PRA 69, 062920 (2004) dispersive interaction
  • 9. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Dispersive coupling can be used to read out the qubit state. 9 |0i |1i R. Vijay et al., PRL 106, 110502 (2011) K. Murch et al., Nature 502, 211 (2013) Hint = g2 a† a z
  • 10. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Spin measurement can be used to generate entanglement of two qubits. 10 C. Hutchison et al., Canadian J. Phys. 87, 225 (2009) N. Roch et al., PRL 112, 170501 (2014) |11i |00i |01i + |10i | 0i = (|0i + |1i)(|0i + |1i)
  • 11. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Optomechanical interaction arises due to radiation pressure. 11 a x !,  ⌦, ¯n !(x) ⇡ !(0) + d! dx x Cavity frequency: g0 = d! dx xzpf = ! L xzpfCoupling strength: xzpf = r ~ 2m⌦ x = xzpf (b + b† ), Hamiltonian: H = ~!(x)a† a + ~⌦b† b H = ~!a† a + ~⌦b† b + ~g0a† a(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014)
  • 12. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ ⌦ Strong coupling can be achieved using laser driving. 12 Optomechanical coupling is weak g0 = ! xzpf L ⇡ 25 Hz Solution: strong optical drive a ! ↵ + a Interaction Hamiltonian Hint = ~g0↵(a + a† )(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014) Red-detuned drive: Hint ⇡ ~g(a† b + b† a) Optomechanical cooling !L = ! ⌦
  • 13. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ ⌦ Strong coupling can be achieved using laser driving. 13 Optomechanical coupling is weak g0 = ! xzpf L ⇡ 25 Hz Solution: strong optical drive a ! ↵ + a ⌦ Interaction Hamiltonian Hint = ~g0↵(a + a† )(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014) Blue-detuned drive: Hint ⇡ ~g(ab + a† b† ) Two-mode squeezing !L = ! + ⌦
  • 14. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ ⌦ Strong coupling can be achieved using laser driving. 14 Optomechanical coupling is weak g0 = ! xzpf L ⇡ 25 Hz Solution: strong optical drive a ! ↵ + a Interaction Hamiltonian Hint = ~g0↵(a + a† )(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014) Resonant drive: Hint ⇡ ~g(a + a† )(b + b† ) Position readout ! = !L
  • 15. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Standard quantum limit bounds the sensitivity of displacement measurements. 15 A. Clerk et al., RMP 82, 1155 (2010) M. Aspelmeyer et al., RMP 86, 1391 (2014) ˙x = !mp ˙p = !mx p g(a + a† ) + ⇠ + Fext ˙a =  2 a igx + p ain Fext
  • 16. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Standard quantum limit bounds the sensitivity of displacement measurements. 16 A. Clerk et al., RMP 82, 1155 (2010) M. Aspelmeyer et al., RMP 86, 1391 (2014) Fext pout = i(aout a† out) = 4g!m p  (!2 m !2 + i !)( + 2i!) ✓ Fext + ⇠ 2g p   + 2i! xin ◆ +  2i!  + 2i! pin
  • 17. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Optomechanical transducer acts as a force sensor. 17 F = ~ /( p 2xzpf ) S2 F (!) = x2 zpf /[8g2 2 m(!)]Sensitivity: ⌧meas = S2 F (!) F2 = !2 m 16 2g2 ⌧ T1,2Measurement time: H = z(b + b† ) + !mb† b + g(a + a† )(b + b† )
  • 18. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ The thermal mechanical bath affects the qubit. 18 mech = S2 f (!) = 2 2 !2 m ¯nDephasing rate: ⌧meas < 1 mech ! C = 4g2  ¯n > 1 2
  • 19. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ The system can be modelled using a conditional master equation. 19 D[O]⇢ = O⇢O† 1 2 (O† O⇢ + ⇢O† O) H[O]⇢ = (O hOi)⇢ + ⇢(O† hO† i) H. Wiseman & G. Milburn, Quantum measurement and control (Cambridge) d⇢ = i[H, ⇢]dt + Lq⇢dt + 2X j=1 {(¯n + 1)D[bj] + ¯nD[b† j]}⇢dt + D[a1 a2]⇢dt + p H[i(a1 a2)]⇢dW H = 2X j=1 j z(bj + b† j) + !mb† jbj + g(aj + a† j)(bj + b† j) + i  2 (a1a† 2 a2a† 1)
  • 20. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ The transducer is Gaussian and can be adiabatically eliminated. 20 OC et al., PRA 92, 012124 (2015)ˇ 2 qubits Mechanics, light
  • 21. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ We obtain an effective equation for the qubits. 21 d⇢q = 2X j=1  1 T1 D[ j ] + ✓ 1 T2 + mech ◆ D[ j z] ⇢qdt + measD[ 1 z + 2 z]⇢qdt + p measH[ 1 z + 2 z]⇢qdW meas = 16 2 g2 !2 m , mech = 2 !2 m (2¯n + 1)
  • 22. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Optical losses introduce additional dephasing. 22 p ⌘ measH[ 1 z + 2 z]⇢q (1 ⌧) measD[ 1 z]⇢q
  • 23. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ A transmon qubit can capacitively couple to a nanobeam oscillator. 23 G. Anetsberger et al., Nature Phys. 5, 909 (2009) J. Pirkkalainen et al., Nat. Commun. 6, 6981 (2015) = 2⇡ ⇥ 5.8 MHz g = 2⇡ ⇥ 900 kHz  = 2⇡ ⇥ 39MHz !m = 2⇡ ⇥ 8.7 MHz Qm = 5 ⇥ 104 T = 20 mK ¯n = 48 T1,2 = 20 µs C = 10
  • 24. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ A transmon qubit can capacitively couple to a nanobeam oscillator. 24 = 2⇡ ⇥ 5.8 MHz g = 2⇡ ⇥ 900 kHz  = 2⇡ ⇥ 39MHz !m = 2⇡ ⇥ 8.7 MHz Qm = 5 ⇥ 104 T = 20 mK ¯n = 48 T1,2 = 20 µs C = 10 ⌘ Psucc Psucc OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
  • 25. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ With high-frequency mechanical oscillators, modulated interaction can be used. 25 H = z(b + b† ) ig(a + a† )(b b† ) meas = 16 2 g2  2 , mech = 2 (2¯n + 1)
  • 26. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Microwave cavity can improve the lifetime of the qubit. 26 meas = 256 2 g2 ag2 c 2 a!2 mc , deph = 4 2 a + 256 2 g4 a 3 a!2 m + 16 2 g2 a 2 a!2 m (2¯n + 1) H = z(a + a† ) iga(a a† )(b + b† ) + !mb† b + gc(c + c† )(b + b† ) a b c
  • 27. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Both techniques can also be combined in one system. 27 a b c H = z(a + a† ) iga(a a† )(b + b† ) igc(c + c† )(b b† ) meas = 1024 2 g2 ag2 c 2 a 2c , deph = 4 2 a + 64 2 g2 a 2 a (2¯n + 1)
  • 28. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Mechanical oscillators can mediate interaction between light and SC qubits. 28 OC and K. Hammerer, PRA 94, 012340 (2016)ˇ - C = 4g2  ¯n > 1 2 • Strong optomechanical cooperativity, • Sufficient qubit lifetime