SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
Ventajas y desventajas de la simulación 
Las principales ventajas de la simulación son: 
 Nuevas políticas, procedimientos operacionales, reglas de decisión, 
flujos de información, procedimientos organizacionales, etc. pueden ser 
estudiados sin interferencia en las operaciones del sistema real. 
 Nuevos equipos, arreglos físicos, sistemas de transporte, etc. pueden 
ser testeados antes de que se invierta recursos en las adquisiciones 
mencionadas. 
 Hipótesis de cómo y porque ciertos fenómenos ocurren pueden ser 
avalados. 
 El tiempo puede ser comprimido y expandido, permitiendo que el 
fenómeno en estudio pueda ser acelerado o retardado. 
 “Cuellos de botella” donde las informaciones o materiales tienen sus 
flujos comprometidos pueden ser identificados. 
Las principales desventajas son: 
 La construcción de modelos requieren un tratamiento especial. Puede 
ser considerado un “arte” que se aprende a lo largo del tiempo y que 
envuelve o “buen” uso de la experiencia. 
 Los resultados de la simulación pueden ser difíciles de interpretar. Como 
las salidas de la simulación pueden incluir variables aleatorias, no es 
trivial determinar si los resultados observados resultan de interrelaciones 
efectivas de las partes del sistema o si son fruto de la aleatoriedad del 
sistema. 
 Un modelamiento del sistema y un análisis de los datos pueden 
consumir mucho tiempo y muchos recursos. Por otro lado, economizar 
tiempo y recursos en el modelamiento y en el análisis pueden resultar en 
escenarios insuficientes para atender los objetivos. 
Componentes de un modelo de simulación dinámico 
 Variables de estado o niveles, corresponden a la cantidad de materia o 
energía almacenada en cada uno de los componentes (subsistemas) que 
forman parte del sistema. Suelen representarse mediante un rectángulo. 
 Flujos, indican la cantidad de materia o energía que viaja de un 
componente a otro en un intervalo determinado de tiempo. Afectan por 
tanto a los niveles, llenando unos (flujos de entrada) y vaciando otros 
(flujos de salida). Suelen representarse con una flecha, indicando la 
dirección del flujo, que atraviesa un símbolo que recuerda a un grifo. 
 Fuentes y sumideros, representan niveles exógenos que, por ser 
exteriores al sistema no interesa controlar. Suelen representarse 
mediante nubes. Los flujos que se dirigen de una fuente a una variable de 
estado son las variables de entrada, los que se dirigen de una variable de 
estado a un sumidero son las variables de salida.
 Variables auxiliares, intervienen en las diversas ecuaciones que 
componen el sistema pero no se corresponden con un nivel o flujo. Suelen 
representarse con un círculo. 
Variables exógenas, actúan fuera del sistema pero condicionan las 
variables de entrada. Pueden modificarse para construir escenarios. Un 
buen ejemplo sería la constante solar que, siendo ajena al sistema 
climático, modifica las trayectorias de este. 
 Parámetros, similares a las variables auxiliares pero cuyo valor no varía a 
lo largo del período de simulación, si el modelo se construyera a una 
escala diferente podrían dejar de ser parámetros para convertirse en 
variables. 
 Constantes, corresponden a magnitudes físicas que, como la aceleración 
de la gravedad, no varían en ningún caso. 
 Canal de información, relacionan variables, parámetros o niveles con los 
componentes en cuya ecuación se utilizan. Se representan con flechas, 
diferentes de las utilizadas para representar flujos, o mediante lineas. 
 Condiciones iniciales, valores iniciales de las variables de estado. 
 Condiciones de contorno, series temporales de valores de las variables 
de entrada. 
Escenario, conjunto plausible de variables exógenas, parámetros y 
condiciones iniciales y de contorno que permiten experimentar con un 
modelo diversas situaciones. Por ejemplo los escenarios relativos a 
diversas políticas de emisión de gases con que trabajan los Modelos 
Generales del Clima. 
Sistemas continuos y discretos 
Los modelos de simulación discretos y continuos, se definen de manera 
análoga a los sistemas discretos y continuos respectivamente. Pero debe 
entenderse que un modelo discreto de simulación no siempre se usa para 
modelar un sistema discreto. La decisión de utilizar un modelo discreto o 
continuo para simular un sistema en particular, depende de los objetivos 
específicos de estudio. Por ejemplo: un modelo de flujo de tráfico en una 
supercarretera, puede ser discreto si las características y movimientos de 
los vehículos en forma individual es importante. En cambio si los vehículos 
pueden considerarse como un agregado en el flujo de tráfico entonces se 
puede usar un modelo basado en ecuaciones diferenciales presentes en 
un modelo continuo. 
Otro ejemplo: Un fabricante de comida para perros, requiere el auxilio de 
una compañía consultora con el objeto de construir un modelo de 
simulación para su línea de fabricación, la cual produce medio millón de 
latas al día a una velocidad casi constante. Debido a que cada una de las 
latas se representó como una entidad separada en el modelo, éste resulto
ser demasiado detallado y por ende caro para correrlo, haciéndolo poco 
útil. Unos meses más tarde, se hizo una reformulación del modelo, 
tratando al proceso como un flujo continuo. Este nuevo modelo produjo 
resultados precisos y se ejecutó en una fracción del tiempo necesario por 
el modelo original. 
Pasos para un estudio de simulación 
A pesar que existen diversas variaciones en la forma de desarrollo de un 
estudio de simulación, es posible identificar ciertos pasos básicos en el 
proceso, los pasos principales a considerar son: 
1. Definición del sistema bajo estudio. 
En este paso se da a conocer el sistema que se va a modelar, es 
necesario saber que se requiere y por qué es el motivo de la realización 
del modelo de simulación, así como también determinar las variables de 
decisión y las interacciones entre ellas, determinar los alcances y 
limitaciones que el modelo de simulación podría presentar. Se recomienda 
contar con la mayor información posible para poder establecer un modelo 
del sistema que se está estudiando, incluyendo sus fronteras y todos sus 
elementos que lo componen, interacciones, flujos de productos, personas 
y recursos. Así como las variables de mayor interés. 
2. Generación del modelo de simulación base. 
Ya que el problema quedó definido se procede a generar el modelo de 
simulación base. No todo el tiempo está asegurado que el modelo quede 
totalmente detallado porque requiere de más información estadística 
previa para saber el comportamiento de las variables de decisión. Para el 
s de decisión. Para el programador, es todo un reto hacer esta simulación 
base realidad. 
3. Recolección y análisis de datos. 
En esta etapa se determina que información es útil para realizar las 
distribuciones de probabilidad para cada una de las variables que no son 
necesarias para la simulación. Es importante dedicarle el tiempo suficiente 
a esta etapa. Si no se cuenta con información suficiente o si no se confía 
con la que actualmente se tiene, se necesitara realizar un estudio 
estadístico del modelo. Al finalizar toda la recolección y el análisis de los 
datos para las variables se consideran las condiciones necesarias para 
generar la versión preliminar.
4. Generación del modelo preliminar. 
Básicamente, en esta etapa se reúne toda la información obtenida a partir 
de la etapa anterior, en algunos casos no se cuenta con información 
estadística por eso se debe estimar un rango de variación. 
5. Verificación del modelo. 
En esta etapa es necesario realizar un proceso de verificación de los datos 
para comprobar la programación del modelo y así darse cuenta de 
aquellas variables o procesos que necesiten tener más operaciones para 
que así la simulación funcione de manera correcta. 
Los problemas que se puedan presentar son aquellos que requieren 
muchas operaciones de programación o que impliquen distribuciones de 
probabilidad difíciles de programar. Estos pueden ocasionar el 
comportamiento del sistema diferente. Ya que la verificación está 
realizada en su totalidad, está listo para realizar la validación del modelo 
de simulación. 
6. Validación del modelo. 
Este paso consiste en hacer una serie de pruebas al mismo, utilizando 
información de entrada real para ver cómo se implementa dentro del 
sistema. 
7. Generación del modelo final. 
Ya que el modelo quedó validado, el análisis está listo para recrearse la 
simulación y ver el comportamiento que el proceso presente. 
8. Determinación de los escenarios para el análisis. 
En este momento es necesario acordar con el cliente que escenarios 
desea analizar, es fácil determinar este escenario utilizando un escenario 
pesimista, uno optimista y uno intermedio. 
9. Análisis de sensibilidad. 
Ya que se obtienen los resultados de los tres escenarios es importante 
realizar las pruebas correspondientes que permitan comparar estos 
escenarios con los mejores resultados finales. Si dos de ellos son 
parecidos será necesario comprar los intervalos entre ellos.
Simulación de sistema discreta 
Cuando el modelo de colas es complejo, el método que hemos estado 
utilizando hasta ahora (obtener unas ecuaciones y resolverlas) deja de ser 
válido. Es entonces cuando se recurre a simular el proceso para tener al 
menos una visión aproximada de lo que ocurre. Por supuesto, este 
procedimiento también es válido para cualquiera de los sistemas vistos en 
los capítulos precedentes. Supongamos que tenemos un modelo GI/G/1 
y queremos calcular el tiempo medio de espera en cola. En una simulación 
tenemos una lista de tiempos entre llegadas y una lista de tiempos de 
servicio generados al iniciarse la simulación de modo que los únicos 
instantes de tiempo interesantes (cuándo llega un cliente determinado, 
cuándo entra en el servicio y cuándo se va) son ya conocidos. Como entre 
dos de estos instantes consecutivos no sucede nada que afecte al 
sistema, a la hora de efectuar cálculos, avanzamos en el tiempo de forma 
discreta saltando de uno de estos tiempos al siguiente. Por ejemplo, el 
tiempo de espera del cliente k-ésimo se obtiene a partir del instante en 
que llega al servicio y el instante en que el cliente (k-1)-ésimo sale del 
sistema. Si hacemos la media de los tiempos de espera de los primeros 
100 clientes, tendremos una aproximación del tiempo de espera medio en 
esa cola. El siguiente organigrama muestra cómo implementar este 
método en cualquier lenguaje de programación.

Más contenido relacionado

La actualidad más candente

Unidad i simulacion
Unidad i simulacionUnidad i simulacion
Unidad i simulacionneferh22
 
Uso de un similudaor de procesos en solucion de problemas de ingenieria quimica
Uso de un similudaor de procesos en solucion de problemas de ingenieria quimicaUso de un similudaor de procesos en solucion de problemas de ingenieria quimica
Uso de un similudaor de procesos en solucion de problemas de ingenieria quimicaYazmin Mendoza
 
Conceptos relacionados con la simulacion
Conceptos relacionados con la simulacionConceptos relacionados con la simulacion
Conceptos relacionados con la simulacionJose Hernandez Landa
 
Introduccion a la Simulación de Sistemas
Introduccion a la Simulación de SistemasIntroduccion a la Simulación de Sistemas
Introduccion a la Simulación de SistemasP.A. Ortiz Bochard
 
Investigaciones de operaciones
Investigaciones de operacionesInvestigaciones de operaciones
Investigaciones de operacionesJoseph De Crateris
 
01 simulacion de sistemas semana1 - elvis del aguila lopez
01 simulacion de sistemas   semana1 - elvis del aguila lopez01 simulacion de sistemas   semana1 - elvis del aguila lopez
01 simulacion de sistemas semana1 - elvis del aguila lopezElvis Del Aguila Lopez
 
Métodos de evaluación de riesgos
Métodos de evaluación de riesgosMétodos de evaluación de riesgos
Métodos de evaluación de riesgosalexandracasas9
 
Caracteristicas que debe cumplir un buen modelo]
Caracteristicas que debe cumplir un buen modelo]Caracteristicas que debe cumplir un buen modelo]
Caracteristicas que debe cumplir un buen modelo]Alba Lissette Peguero
 
Introducción a la Simulación
Introducción a la SimulaciónIntroducción a la Simulación
Introducción a la Simulaciónjgonza2326
 
Simulacion de sistemas discretos
Simulacion de sistemas discretosSimulacion de sistemas discretos
Simulacion de sistemas discretosMP4R
 
Paso 3 diagnostico_inicial_juan_sastoque_104561_1
Paso 3 diagnostico_inicial_juan_sastoque_104561_1Paso 3 diagnostico_inicial_juan_sastoque_104561_1
Paso 3 diagnostico_inicial_juan_sastoque_104561_1Juan Ca Sastoque L
 
capitulo v materiales y métodos
capitulo v materiales y métodoscapitulo v materiales y métodos
capitulo v materiales y métodosDiskCom - Negocios
 
Investigación de Operaciones II : Simulación
Investigación de Operaciones II : Simulación Investigación de Operaciones II : Simulación
Investigación de Operaciones II : Simulación Jose
 
Métodos de evaluación de riesgos
Métodos de evaluación de riesgosMétodos de evaluación de riesgos
Métodos de evaluación de riesgosNombre Apellidos
 

La actualidad más candente (20)

Unidad i simulacion
Unidad i simulacionUnidad i simulacion
Unidad i simulacion
 
unidad 1 simulacion completa
unidad 1 simulacion completaunidad 1 simulacion completa
unidad 1 simulacion completa
 
Uso de un similudaor de procesos en solucion de problemas de ingenieria quimica
Uso de un similudaor de procesos en solucion de problemas de ingenieria quimicaUso de un similudaor de procesos en solucion de problemas de ingenieria quimica
Uso de un similudaor de procesos en solucion de problemas de ingenieria quimica
 
1 simulacion unidad1
1 simulacion   unidad11 simulacion   unidad1
1 simulacion unidad1
 
Conceptos relacionados con la simulacion
Conceptos relacionados con la simulacionConceptos relacionados con la simulacion
Conceptos relacionados con la simulacion
 
Introduccion a la Simulación de Sistemas
Introduccion a la Simulación de SistemasIntroduccion a la Simulación de Sistemas
Introduccion a la Simulación de Sistemas
 
Investigaciones de operaciones
Investigaciones de operacionesInvestigaciones de operaciones
Investigaciones de operaciones
 
Simulacion de procesos
Simulacion de procesosSimulacion de procesos
Simulacion de procesos
 
01 simulacion de sistemas semana1 - elvis del aguila lopez
01 simulacion de sistemas   semana1 - elvis del aguila lopez01 simulacion de sistemas   semana1 - elvis del aguila lopez
01 simulacion de sistemas semana1 - elvis del aguila lopez
 
Métodos de evaluación de riesgos
Métodos de evaluación de riesgosMétodos de evaluación de riesgos
Métodos de evaluación de riesgos
 
Tipos de sistemas
Tipos de sistemasTipos de sistemas
Tipos de sistemas
 
Proyecto de Simulación
Proyecto de SimulaciónProyecto de Simulación
Proyecto de Simulación
 
Caracteristicas que debe cumplir un buen modelo]
Caracteristicas que debe cumplir un buen modelo]Caracteristicas que debe cumplir un buen modelo]
Caracteristicas que debe cumplir un buen modelo]
 
Introducción a la Simulación
Introducción a la SimulaciónIntroducción a la Simulación
Introducción a la Simulación
 
Simulacion de sistemas discretos
Simulacion de sistemas discretosSimulacion de sistemas discretos
Simulacion de sistemas discretos
 
Paso 3 diagnostico_inicial_juan_sastoque_104561_1
Paso 3 diagnostico_inicial_juan_sastoque_104561_1Paso 3 diagnostico_inicial_juan_sastoque_104561_1
Paso 3 diagnostico_inicial_juan_sastoque_104561_1
 
capitulo v materiales y métodos
capitulo v materiales y métodoscapitulo v materiales y métodos
capitulo v materiales y métodos
 
Investigación operativa
Investigación operativaInvestigación operativa
Investigación operativa
 
Investigación de Operaciones II : Simulación
Investigación de Operaciones II : Simulación Investigación de Operaciones II : Simulación
Investigación de Operaciones II : Simulación
 
Métodos de evaluación de riesgos
Métodos de evaluación de riesgosMétodos de evaluación de riesgos
Métodos de evaluación de riesgos
 

Similar a Sistemas de simulacion

Simulación de sistemas
Simulación de sistemasSimulación de sistemas
Simulación de sistemasjack_corvil
 
1. Fundamentación General de la simulación de sistemas.pdf
1. Fundamentación General de la simulación de sistemas.pdf1. Fundamentación General de la simulación de sistemas.pdf
1. Fundamentación General de la simulación de sistemas.pdfhectorrosales52
 
Introducción a la Simulación2.pptx
Introducción a la Simulación2.pptxIntroducción a la Simulación2.pptx
Introducción a la Simulación2.pptxJearvaviVzquez
 
Taller # 3 Modelos de Colas y Simulación”.pdf
Taller # 3 Modelos de Colas y Simulación”.pdfTaller # 3 Modelos de Colas y Simulación”.pdf
Taller # 3 Modelos de Colas y Simulación”.pdfJuanPabloPea19
 
2 como simular
2 como simular2 como simular
2 como simulardantori
 
Clase 1 - Modelos y Simulación
Clase 1 - Modelos y Simulación   Clase 1 - Modelos y Simulación
Clase 1 - Modelos y Simulación Gustavo Sánchez
 
SIMULACIÓN DE SISTEMAS-UNIDAD I.ppt
SIMULACIÓN DE SISTEMAS-UNIDAD I.pptSIMULACIÓN DE SISTEMAS-UNIDAD I.ppt
SIMULACIÓN DE SISTEMAS-UNIDAD I.pptUGMA
 
Manual simulacion h._caselli_g
Manual simulacion h._caselli_gManual simulacion h._caselli_g
Manual simulacion h._caselli_geliianiitta12
 
Manual simulacion h._caselli_g
Manual simulacion h._caselli_gManual simulacion h._caselli_g
Manual simulacion h._caselli_gJosé Pedro Avila
 

Similar a Sistemas de simulacion (20)

Simulación de sistemas
Simulación de sistemasSimulación de sistemas
Simulación de sistemas
 
337 lectura6.3.1
337 lectura6.3.1337 lectura6.3.1
337 lectura6.3.1
 
1. Fundamentación General de la simulación de sistemas.pdf
1. Fundamentación General de la simulación de sistemas.pdf1. Fundamentación General de la simulación de sistemas.pdf
1. Fundamentación General de la simulación de sistemas.pdf
 
Introducción a la Simulación2.pptx
Introducción a la Simulación2.pptxIntroducción a la Simulación2.pptx
Introducción a la Simulación2.pptx
 
Teoria de Cola
Teoria de ColaTeoria de Cola
Teoria de Cola
 
Simulacion
SimulacionSimulacion
Simulacion
 
Taller # 3 Modelos de Colas y Simulación”.pdf
Taller # 3 Modelos de Colas y Simulación”.pdfTaller # 3 Modelos de Colas y Simulación”.pdf
Taller # 3 Modelos de Colas y Simulación”.pdf
 
paso4.docx
paso4.docxpaso4.docx
paso4.docx
 
taller 3 parte 1.docx
taller 3 parte 1.docxtaller 3 parte 1.docx
taller 3 parte 1.docx
 
Clase 01.pdf
Clase 01.pdfClase 01.pdf
Clase 01.pdf
 
2 como simular
2 como simular2 como simular
2 como simular
 
simulacion-compartido.pdf
simulacion-compartido.pdfsimulacion-compartido.pdf
simulacion-compartido.pdf
 
ETAPAS DEL PROCESO DE SIMULACION
ETAPAS DEL PROCESO DE SIMULACIONETAPAS DEL PROCESO DE SIMULACION
ETAPAS DEL PROCESO DE SIMULACION
 
Clase 1 - Modelos y Simulación
Clase 1 - Modelos y Simulación   Clase 1 - Modelos y Simulación
Clase 1 - Modelos y Simulación
 
Simulación de procesos
Simulación de procesosSimulación de procesos
Simulación de procesos
 
SIMULACIÓN DE SISTEMAS-UNIDAD I.ppt
SIMULACIÓN DE SISTEMAS-UNIDAD I.pptSIMULACIÓN DE SISTEMAS-UNIDAD I.ppt
SIMULACIÓN DE SISTEMAS-UNIDAD I.ppt
 
Investigación de operaciones
Investigación de operacionesInvestigación de operaciones
Investigación de operaciones
 
Manual simulacion h._caselli_g
Manual simulacion h._caselli_gManual simulacion h._caselli_g
Manual simulacion h._caselli_g
 
Manual 2 Software Arena
Manual 2 Software ArenaManual 2 Software Arena
Manual 2 Software Arena
 
Manual simulacion h._caselli_g
Manual simulacion h._caselli_gManual simulacion h._caselli_g
Manual simulacion h._caselli_g
 

Sistemas de simulacion

  • 1. Ventajas y desventajas de la simulación Las principales ventajas de la simulación son:  Nuevas políticas, procedimientos operacionales, reglas de decisión, flujos de información, procedimientos organizacionales, etc. pueden ser estudiados sin interferencia en las operaciones del sistema real.  Nuevos equipos, arreglos físicos, sistemas de transporte, etc. pueden ser testeados antes de que se invierta recursos en las adquisiciones mencionadas.  Hipótesis de cómo y porque ciertos fenómenos ocurren pueden ser avalados.  El tiempo puede ser comprimido y expandido, permitiendo que el fenómeno en estudio pueda ser acelerado o retardado.  “Cuellos de botella” donde las informaciones o materiales tienen sus flujos comprometidos pueden ser identificados. Las principales desventajas son:  La construcción de modelos requieren un tratamiento especial. Puede ser considerado un “arte” que se aprende a lo largo del tiempo y que envuelve o “buen” uso de la experiencia.  Los resultados de la simulación pueden ser difíciles de interpretar. Como las salidas de la simulación pueden incluir variables aleatorias, no es trivial determinar si los resultados observados resultan de interrelaciones efectivas de las partes del sistema o si son fruto de la aleatoriedad del sistema.  Un modelamiento del sistema y un análisis de los datos pueden consumir mucho tiempo y muchos recursos. Por otro lado, economizar tiempo y recursos en el modelamiento y en el análisis pueden resultar en escenarios insuficientes para atender los objetivos. Componentes de un modelo de simulación dinámico  Variables de estado o niveles, corresponden a la cantidad de materia o energía almacenada en cada uno de los componentes (subsistemas) que forman parte del sistema. Suelen representarse mediante un rectángulo.  Flujos, indican la cantidad de materia o energía que viaja de un componente a otro en un intervalo determinado de tiempo. Afectan por tanto a los niveles, llenando unos (flujos de entrada) y vaciando otros (flujos de salida). Suelen representarse con una flecha, indicando la dirección del flujo, que atraviesa un símbolo que recuerda a un grifo.  Fuentes y sumideros, representan niveles exógenos que, por ser exteriores al sistema no interesa controlar. Suelen representarse mediante nubes. Los flujos que se dirigen de una fuente a una variable de estado son las variables de entrada, los que se dirigen de una variable de estado a un sumidero son las variables de salida.
  • 2.  Variables auxiliares, intervienen en las diversas ecuaciones que componen el sistema pero no se corresponden con un nivel o flujo. Suelen representarse con un círculo. Variables exógenas, actúan fuera del sistema pero condicionan las variables de entrada. Pueden modificarse para construir escenarios. Un buen ejemplo sería la constante solar que, siendo ajena al sistema climático, modifica las trayectorias de este.  Parámetros, similares a las variables auxiliares pero cuyo valor no varía a lo largo del período de simulación, si el modelo se construyera a una escala diferente podrían dejar de ser parámetros para convertirse en variables.  Constantes, corresponden a magnitudes físicas que, como la aceleración de la gravedad, no varían en ningún caso.  Canal de información, relacionan variables, parámetros o niveles con los componentes en cuya ecuación se utilizan. Se representan con flechas, diferentes de las utilizadas para representar flujos, o mediante lineas.  Condiciones iniciales, valores iniciales de las variables de estado.  Condiciones de contorno, series temporales de valores de las variables de entrada. Escenario, conjunto plausible de variables exógenas, parámetros y condiciones iniciales y de contorno que permiten experimentar con un modelo diversas situaciones. Por ejemplo los escenarios relativos a diversas políticas de emisión de gases con que trabajan los Modelos Generales del Clima. Sistemas continuos y discretos Los modelos de simulación discretos y continuos, se definen de manera análoga a los sistemas discretos y continuos respectivamente. Pero debe entenderse que un modelo discreto de simulación no siempre se usa para modelar un sistema discreto. La decisión de utilizar un modelo discreto o continuo para simular un sistema en particular, depende de los objetivos específicos de estudio. Por ejemplo: un modelo de flujo de tráfico en una supercarretera, puede ser discreto si las características y movimientos de los vehículos en forma individual es importante. En cambio si los vehículos pueden considerarse como un agregado en el flujo de tráfico entonces se puede usar un modelo basado en ecuaciones diferenciales presentes en un modelo continuo. Otro ejemplo: Un fabricante de comida para perros, requiere el auxilio de una compañía consultora con el objeto de construir un modelo de simulación para su línea de fabricación, la cual produce medio millón de latas al día a una velocidad casi constante. Debido a que cada una de las latas se representó como una entidad separada en el modelo, éste resulto
  • 3. ser demasiado detallado y por ende caro para correrlo, haciéndolo poco útil. Unos meses más tarde, se hizo una reformulación del modelo, tratando al proceso como un flujo continuo. Este nuevo modelo produjo resultados precisos y se ejecutó en una fracción del tiempo necesario por el modelo original. Pasos para un estudio de simulación A pesar que existen diversas variaciones en la forma de desarrollo de un estudio de simulación, es posible identificar ciertos pasos básicos en el proceso, los pasos principales a considerar son: 1. Definición del sistema bajo estudio. En este paso se da a conocer el sistema que se va a modelar, es necesario saber que se requiere y por qué es el motivo de la realización del modelo de simulación, así como también determinar las variables de decisión y las interacciones entre ellas, determinar los alcances y limitaciones que el modelo de simulación podría presentar. Se recomienda contar con la mayor información posible para poder establecer un modelo del sistema que se está estudiando, incluyendo sus fronteras y todos sus elementos que lo componen, interacciones, flujos de productos, personas y recursos. Así como las variables de mayor interés. 2. Generación del modelo de simulación base. Ya que el problema quedó definido se procede a generar el modelo de simulación base. No todo el tiempo está asegurado que el modelo quede totalmente detallado porque requiere de más información estadística previa para saber el comportamiento de las variables de decisión. Para el s de decisión. Para el programador, es todo un reto hacer esta simulación base realidad. 3. Recolección y análisis de datos. En esta etapa se determina que información es útil para realizar las distribuciones de probabilidad para cada una de las variables que no son necesarias para la simulación. Es importante dedicarle el tiempo suficiente a esta etapa. Si no se cuenta con información suficiente o si no se confía con la que actualmente se tiene, se necesitara realizar un estudio estadístico del modelo. Al finalizar toda la recolección y el análisis de los datos para las variables se consideran las condiciones necesarias para generar la versión preliminar.
  • 4. 4. Generación del modelo preliminar. Básicamente, en esta etapa se reúne toda la información obtenida a partir de la etapa anterior, en algunos casos no se cuenta con información estadística por eso se debe estimar un rango de variación. 5. Verificación del modelo. En esta etapa es necesario realizar un proceso de verificación de los datos para comprobar la programación del modelo y así darse cuenta de aquellas variables o procesos que necesiten tener más operaciones para que así la simulación funcione de manera correcta. Los problemas que se puedan presentar son aquellos que requieren muchas operaciones de programación o que impliquen distribuciones de probabilidad difíciles de programar. Estos pueden ocasionar el comportamiento del sistema diferente. Ya que la verificación está realizada en su totalidad, está listo para realizar la validación del modelo de simulación. 6. Validación del modelo. Este paso consiste en hacer una serie de pruebas al mismo, utilizando información de entrada real para ver cómo se implementa dentro del sistema. 7. Generación del modelo final. Ya que el modelo quedó validado, el análisis está listo para recrearse la simulación y ver el comportamiento que el proceso presente. 8. Determinación de los escenarios para el análisis. En este momento es necesario acordar con el cliente que escenarios desea analizar, es fácil determinar este escenario utilizando un escenario pesimista, uno optimista y uno intermedio. 9. Análisis de sensibilidad. Ya que se obtienen los resultados de los tres escenarios es importante realizar las pruebas correspondientes que permitan comparar estos escenarios con los mejores resultados finales. Si dos de ellos son parecidos será necesario comprar los intervalos entre ellos.
  • 5. Simulación de sistema discreta Cuando el modelo de colas es complejo, el método que hemos estado utilizando hasta ahora (obtener unas ecuaciones y resolverlas) deja de ser válido. Es entonces cuando se recurre a simular el proceso para tener al menos una visión aproximada de lo que ocurre. Por supuesto, este procedimiento también es válido para cualquiera de los sistemas vistos en los capítulos precedentes. Supongamos que tenemos un modelo GI/G/1 y queremos calcular el tiempo medio de espera en cola. En una simulación tenemos una lista de tiempos entre llegadas y una lista de tiempos de servicio generados al iniciarse la simulación de modo que los únicos instantes de tiempo interesantes (cuándo llega un cliente determinado, cuándo entra en el servicio y cuándo se va) son ya conocidos. Como entre dos de estos instantes consecutivos no sucede nada que afecte al sistema, a la hora de efectuar cálculos, avanzamos en el tiempo de forma discreta saltando de uno de estos tiempos al siguiente. Por ejemplo, el tiempo de espera del cliente k-ésimo se obtiene a partir del instante en que llega al servicio y el instante en que el cliente (k-1)-ésimo sale del sistema. Si hacemos la media de los tiempos de espera de los primeros 100 clientes, tendremos una aproximación del tiempo de espera medio en esa cola. El siguiente organigrama muestra cómo implementar este método en cualquier lenguaje de programación.