signal space analysis.ppt

Signal-Space Analysis
ENSC 428 – Spring 2008
Reference: Lecture 10 of Gallager
Digital Communication System
Representation of Bandpass
Signal
Bandpass real signal x(t) can be written as:
     
cos 2 c
x t s t f t


     
2
2 Re where is complex envelop
c
j f t
x t x t e x t

 
  
Note that      
I Q
x t x t j x t
  
In-phase Quadrature-phase
Representation of Bandpass
Signal
   
       
       
2
2 Re
2 Re cos 2 sin 2
2 cos 2 2 sin 2
c
j f t
I Q c c
I c Q c
x t x t e
x t j x t f t j f t
x t f t x t f t

 
 
 
  
 
   
 
 
 
 
  
 
(1)
(2) Note that      
j t
x t x t e


       
   
 
2 2
2 Re 2 Re
2 cos 2
c c
j t
j f t j f t
c
x t x t e x t e e
x t f t t

 
 
 
 
  
   
 
Relation between and
2
2
 
x t  
x t
f
x
2 c
j f t
e 

fc
-fc
f fc
f f
 
x t  
x t
     
 
     
*
1
2
( ), 0
,
0, 0
c c
c
X f X f f X f f
X f f
X f X f X f f
f
 
 
    
 


  



2
Energy of s(t)
 
 
 
 
2
2
2
0
2
0
(Rayleigh's energy theorem)
2 (Conjugate symmetry of real ( ) )
E s t dt
S f df
S f df s t
S f df














Representation of bandpass LTI
System
 
h t
 
h t
 
s t
 
s t
 
r t
 
r t
     
     
    because ( ) is band-limited.
c
r t s t h t
R f S f H f
S f H f f s t
 

 
     
 
 
   
*
( ), 0
0, 0
c c
c
H f H f f H f f
H f f
H f
f
H f H f f


 
    
 


 


 
Key Ideas
Examples (1): BPSK
Examples (2): QPSK
Examples (3): QAM
Geometric Interpretation (I)
Geometric Interpretation (II)
 I/Q representation is very convenient for some
modulation types.
 We will examine an even more general way of
looking at modulations, using signal space concept,
which facilitates
 Designing a modulation scheme with certain desired
properties
 Constructing optimal receivers for a given modulation
 Analyzing the performance of a modulation.
 View the set of signals as a vector space!
Basic Algebra: Group
 A group is defined as a set of elements G and a
binary operation, denoted by · for which the
following properties are satisfied
 For any element a, b, in the set, a·b is in the set.
 The associative law is satisfied; that is for a,b,c in
the set (a·b)·c= a·(b·c)
 There is an identity element, e, in the set such that
a·e= e·a=a for all a in the set.
 For each element a in the set, there is an inverse
element a-1 in the set satisfying a· a-1 = a-1 ·a=e.
Group: example
 A set of non-singular n×n matrices of
real numbers, with matrix multiplication
 Note; the operation does not have to be
commutative to be a Group.
 Example of non-group: a set of non-
negative integers, with +
Unique identity? Unique inverse fro
each element?
 a·x=a. Then, a-1·a·x=a-1·a=e, so x=e.
 x·a=a
 a·x=e. Then, a-1·a·x=a-1·e=a-1, so x=a-1.
Abelian group
 If the operation is commutative, the group is
an Abelian group.
 The set of m×n real matrices, with + .
 The set of integers, with + .
Application?
 Later in channel coding (for error correction or
error detection).
Algebra: field
 A field is a set of two or more elements
F={a,b,..} closed under two operations, +
(addition) and * (multiplication) with the
following properties
 F is an Abelian group under addition
 The set F−{0} is an Abelian group under
multiplication, where 0 denotes the identity
under addition.
 The distributive law is satisfied:
(a+bg  ag+bg
Immediately following properties
 ab0 implies a0 or b0
 For any non-zero a, a0 ?
 a0  a  a0  a 1 a0 1 a1a;
therefore a0 0
 00 ?
For a non-zero a, its additive inverse is non-zero.
00a a 0  a0 a0 000
Examples:
 the set of real numbers
 The set of complex numbers
 Later, finite fields (Galois fields) will be
studied for channel coding
 E.g., {0,1} with + (exclusive OR), * (AND)
Vector space
 A vector space V over a given field F is a set of
elements (called vectors) closed under and operation +
called vector addition. There is also an operation *
called scalar multiplication, which operates on an
element of F (called scalar) and an element of V to
produce an element of V. The following properties are
satisfied:
 V is an Abelian group under +. Let 0 denote the additive
identity.
 For every v,w in V and every a,b in F, we have
 (abv abv)
 (abv avbv
 a v+w)=av a w
 1*v=v
Examples of vector space
 Rn over R
 Cn over C
 L2 over
Subspace.
Let V be a vector space. Let be a vector space and .
If is also a vector space with the same operations as ,
then S is called a subspace of .
S is a subspace if
,
V S V
S V
V
v w S av bw S

   
Linear independence of vectors
1 2
Def)
A set of vectors , , are linearly independent iff
n
v v v V

Basis
0
Consider vector space V over F (a field).
We say that a set (finite or infinite) is a basis, if
* every finite subset of vectors of linearly independent, and
* for every ,
it
B V
B B
x V



1 1
1 1
is possible to choose , ..., and , ...,
such that ... .
The sums in the above definition are all finite because without
additional structure the axioms of a vector
n n
n n
a a F v v B
x a v a v
 
  
space do not permit us
to meaningfully speak about an infinite sum of vectors.
Finite dimensional vector space
1 2
1 2
A set of vectors , , is said to span if
every vector is a linear combination of , , .
Example:
n
n
n
v v v V V
u V v v v
R


Finite dimensional vector space
 A vector space V is finite dimensional if there
is a finite set of vectors u1, u2, …, un that span V.
Finite dimensional vector space
1 2
1 2
1 2
Let V be a finite dimensional vector space. Then
If , , are linearly independent but do not span , then
has a basis with vectors ( ) that include , , .
If , , span and but ar
m
m
m
v v v V V
n n m v v v
v v v V



1 2
e linearly dependent, then
a subset of , , is a basis for with vectors ( ) .
Every basis of contains the same number of vectors.
Dimension of a finiate dimensional vector space.
m
v v v V n n m
V


Example: Rn and its Basis Vectors



Inner product space: for length and
angle
Example: Rn












Orthonormal set and projection
theorem
Def)
A non-empty subset of an inner product space is said to be
orthonormal iff
1) , , 1 and
2) If , and , then , 0.
S
x S x x
x y S x y x y
   
   
Projection onto a finite dimensional
subspace
Gallager Thm 5.1
Corollary: norm bound
Corollary: Bessel’s inequality
Gram –Schmidt orthonormalization
 
 
1
1
1 1
Consider linearly independent , ..., , and inner product space.
We can construct an orthonormal set , ..., so that
{ , ..., } , ...,
n
n
n n
s s V
V
span s s span
 
 



Gram-Schmidt Orthog. Procedure
Step 1 : Starting with s1(t)
Step 2 :
Step k :
Key Facts
Examples (1)
cont … (step 1)
cont … (step 2)
cont … (step 3)
cont … (step 4)
Example application of projection
theorem
Linear estimation
L2([0,T])
(is an inner product space.)
 
 
 
2
Consider an orthonormal set
1 2
exp 0, 1, 2,... .
Any function ( ) in 0, is , . Fourier series.
For this reason, this orthonormal set is called complete
k
k k
k
kt
t j k
T
T
u t L T u u


 


 
 
   
 
 
 
 
 
2
.
Thm: Every orthonormal set in is contained in some
complete orthonormal set.
Note that the complete orthonormal set above is not unique.
L
Significance? IQ-modulation and
received signal in L2
       
 
   
 
2
2
3 4
, , 0,
span 2 cos2 , 2 sin 2
Any signal in can be represented as ( ).
There exist a complete orthonormal set
2 cos2 , 2 sin 2 , ( ), ( ),...
c c
i i
i
c c
r t s t N t L T
s t T f t T f t
L r t
f t f t t t
 
 

   
  
 


On Hilbert space over C. For special
folks (e.g., mathematicians) only
L2 is a separable Hilbert space. We have very useful
results on
1) isomorphism 2)countable complete orthonormal set
Thm
If H is separable and infinite dimensional, then it is
isomorphic to l2 (the set of square summable sequence
of complex numbers)
If H is n-dimensional, then it is isomorphic to Cn.
The same story with Hilbert space over R. In some sense there is only one real and one
complex infinite dimensional separable Hilbert space.
L. Debnath and P. Mikusinski, Hilbert Spaces with Applications, 3rd Ed., Elsevier, 2005.
Hilbert space
Def)
A complete inner product space.
Def) A space is complete if every Cauchy
sequence converges to a point in the space.
Example: L2
Orthonormal set S in Hilbert space
H is complete if
2
2
Equivalent definitions
1) There is no other orthonormal set strictly containing . (maximal)
2) , ,
3) , , implies 0
4) , ,
Here, we do not need to assume H is separable.
i i
i
S
x H x x e e
x e e S x
x H x x e
  
  
  


Summations in 2) and 4) make sense because we can prove the following:
Only for mathematicians (We don’t
need separability.)
 
 
2 2
Let be an orthonormal set in a Hilbert space .
For each vector x , set , 0 is
either empty or countable.
Proof: Let , .
Then, (finite)
Also, any element in (however small
n
n
O H
H S e O x e
S e O x e x n
S n
e S
   
  

1
, is)
is in for some (sufficiently large).
Therefore, . Countable.
n
n
n
x e
S n
S S



Theorem
 Every orothonormal set in a Hilbert space is
contained in some complete orthonormal set.
 Every non-zero Hilbert space contains a complete
orthonormal set.
 (Trivially follows from the above.)
( “non-zero” Hilbert space means that the space has a non-zero element.
We do not have to assume separable Hilbert space.)
 Reference: D. Somasundaram, A first course in functional analysis, Oxford, U.K.: Alpha Science, 2006.
Only for mathematicians.
(Separability is nice.)
Euivalent definitions
Def) is separable iff there exists a countable subset
which is dense in , that is, .
Def) is separable iff there exists a countable subset such that
,
H D
H D H
H D
x H

  there exists a sequence in convergeing to .
Thm: If has a countable complete orthonormal set, then is separable.
proof: set of linear combinations (loosely speaking)
D x
H H
with ratioanl real and imaginary parts. This set is dense (show sequence)
Thm: If is separable, then every orthogonal set is countable.
proof: normalize it. Distance between two orthonorma
H
l elements is 2. .....
Signal Spaces:
L2 of complex functions
Use of orthonormal set
1 2
1 2
1 2 1 2
M-ary modulation { ( ), ( ),..., ( )}
Find orthonormal functions ( ), ( ),.., ( ) so that
{ ( ), ( ),..., ( )} { ( ), ( ),.., ( )}
M
K
M K
s t s t s t
f t f t f t
s t s t s t span f t f t f t

Examples (1)
2
T
2
T
Signal Constellation
cont …
cont …
cont …
QPSK
Examples (2)
Example: Use of orthonormal set
and basis
 Two square functions
Signal Constellation
Geometric Interpretation (III)
Key Observations
Vector XTMR/RCVR Model
 
 
 

  
1 t   
1 t
  
 t   
 t
r = s + n
1 1 1
s1
Vector
RCVR
Vector
XTMR
Waveform channel / Correlation
Receiver
s(t)
n(t)
r(t)
s2
sN
r = s + n
2 2 2
r = s + n
N N N
  
 t   
 t


s(t)
n(t)
r(t) = s(t) + n(t)
0
T
z
0
T
z
0
T
z
}
i 1



i 1
N

   ,  
i i j
t i = j
 
i t
si
ni
s(t) =
n(t) =
A
.
.
.
.
.
.
.
.
.
.
.
.
1 de 67

Recomendados

pulse shaping and equalization por
pulse shaping and equalizationpulse shaping and equalization
pulse shaping and equalizationremyard
3.9K vistas36 diapositivas
Digital communication unit II por
Digital communication unit IIDigital communication unit II
Digital communication unit IIGangatharan Narayanan
7.5K vistas77 diapositivas
Butterworth filter design por
Butterworth filter designButterworth filter design
Butterworth filter designSushant Shankar
31.4K vistas10 diapositivas
Butterworth filter por
Butterworth filterButterworth filter
Butterworth filterMOHAMMAD AKRAM
8.2K vistas11 diapositivas
Correlative level coding por
Correlative level codingCorrelative level coding
Correlative level codingsrkrishna341
18.2K vistas27 diapositivas
baseband system por
baseband systembaseband system
baseband systemVIT VELLORE
109 vistas43 diapositivas

Más contenido relacionado

La actualidad más candente

Matched filter por
Matched filterMatched filter
Matched filtersrkrishna341
28.9K vistas23 diapositivas
Pulse shaping por
Pulse shapingPulse shaping
Pulse shapingRamraj Choudhary
712 vistas5 diapositivas
Introduction to equalization por
Introduction to equalizationIntroduction to equalization
Introduction to equalizationHarshit Srivastava
6K vistas20 diapositivas
pulse modulation por
pulse modulation pulse modulation
pulse modulation Herin Gala
29.6K vistas36 diapositivas
Channel capacity por
Channel capacityChannel capacity
Channel capacityPALLAB DAS
2.5K vistas15 diapositivas
Drive circuitry for LEDs and LASER por
Drive circuitry for LEDs and LASERDrive circuitry for LEDs and LASER
Drive circuitry for LEDs and LASERDiwaker Pant
13.3K vistas28 diapositivas

La actualidad más candente(20)

Matched filter por srkrishna341
Matched filterMatched filter
Matched filter
srkrishna34128.9K vistas
pulse modulation por Herin Gala
pulse modulation pulse modulation
pulse modulation
Herin Gala29.6K vistas
Channel capacity por PALLAB DAS
Channel capacityChannel capacity
Channel capacity
PALLAB DAS2.5K vistas
Drive circuitry for LEDs and LASER por Diwaker Pant
Drive circuitry for LEDs and LASERDrive circuitry for LEDs and LASER
Drive circuitry for LEDs and LASER
Diwaker Pant13.3K vistas
NYQUIST CRITERION FOR ZERO ISI por FAIZAN SHAFI
NYQUIST CRITERION FOR ZERO ISINYQUIST CRITERION FOR ZERO ISI
NYQUIST CRITERION FOR ZERO ISI
FAIZAN SHAFI2.7K vistas
Companding & Pulse Code Modulation por Yeshudas Muttu
Companding & Pulse Code ModulationCompanding & Pulse Code Modulation
Companding & Pulse Code Modulation
Yeshudas Muttu3.2K vistas
Discrete Fourier Transform por Abhishek Choksi
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
Abhishek Choksi20.7K vistas
SIGNAL CHARACTERISTICS por RUpaliLohar
SIGNAL CHARACTERISTICSSIGNAL CHARACTERISTICS
SIGNAL CHARACTERISTICS
RUpaliLohar326 vistas
Design of Filters PPT por Imtiyaz Rashed
Design of Filters PPTDesign of Filters PPT
Design of Filters PPT
Imtiyaz Rashed11.9K vistas
Digital modulation techniques por srkrishna341
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
srkrishna34147.6K vistas
Digital communication (DSSS) por SSGMCE SHEGAON
Digital communication  (DSSS)Digital communication  (DSSS)
Digital communication (DSSS)
SSGMCE SHEGAON3.4K vistas
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN) por mohammedalimahdi
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)
mohammedalimahdi5.3K vistas
non parametric methods for power spectrum estimaton por Bhavika Jethani
non parametric methods for power spectrum estimatonnon parametric methods for power spectrum estimaton
non parametric methods for power spectrum estimaton
Bhavika Jethani10.6K vistas
Basics of channel coding por DrAimalKhan
Basics of channel codingBasics of channel coding
Basics of channel coding
DrAimalKhan1.9K vistas
Line coding por Rina Ahire
Line codingLine coding
Line coding
Rina Ahire80.7K vistas
Chapter 5 por wafaa_A7
Chapter 5Chapter 5
Chapter 5
wafaa_A71.9K vistas

Similar a signal space analysis.ppt

math camp por
math campmath camp
math campssuser8cde591
28 vistas50 diapositivas
Signal Processing Introduction using Fourier Transforms por
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsArvind Devaraj
7.7K vistas8 diapositivas
paper por
paperpaper
paperVictor Castillo
81 vistas20 diapositivas
Signal Processing Homework Help por
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework HelpMatlab Assignment Experts
64 vistas11 diapositivas
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion por
Reproducing Kernel Hilbert Space of A Set Indexed Brownian MotionReproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
Reproducing Kernel Hilbert Space of A Set Indexed Brownian MotionIJMERJOURNAL
121 vistas8 diapositivas
Vector spaces por
Vector spaces Vector spaces
Vector spaces Jitin Pillai
10.3K vistas38 diapositivas

Similar a signal space analysis.ppt(20)

Signal Processing Introduction using Fourier Transforms por Arvind Devaraj
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
Arvind Devaraj7.7K vistas
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion por IJMERJOURNAL
Reproducing Kernel Hilbert Space of A Set Indexed Brownian MotionReproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
IJMERJOURNAL121 vistas
Vector spaces por Jitin Pillai
Vector spaces Vector spaces
Vector spaces
Jitin Pillai10.3K vistas
International Journal of Mathematics and Statistics Invention (IJMSI) por inventionjournals
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
inventionjournals313 vistas
conference_poster_4 por Jiayi Jiang
conference_poster_4conference_poster_4
conference_poster_4
Jiayi Jiang61 vistas
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf por ShivamSharma340355
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdfproblems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
ShivamSharma340355388 vistas
11.final paper -0047www.iiste.org call-for_paper-58 por Alexander Decker
11.final paper -0047www.iiste.org call-for_paper-5811.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-58
Alexander Decker304 vistas
Programmable PN Sequence Generators por Rajesh Singh
Programmable PN Sequence GeneratorsProgrammable PN Sequence Generators
Programmable PN Sequence Generators
Rajesh Singh1.2K vistas
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi... por inventionjournals
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
inventionjournals431 vistas
Signal Constellation, Geometric Interpretation of Signals por ArijitDhali
Signal Constellation,  Geometric Interpretation of  SignalsSignal Constellation,  Geometric Interpretation of  Signals
Signal Constellation, Geometric Interpretation of Signals
ArijitDhali41 vistas
Linear vector space por Safiya Amer
Linear vector spaceLinear vector space
Linear vector space
Safiya Amer5.1K vistas

Más de PatrickMumba7

519transmissionlinetheory-130315033930-phpapp02.pdf por
519transmissionlinetheory-130315033930-phpapp02.pdf519transmissionlinetheory-130315033930-phpapp02.pdf
519transmissionlinetheory-130315033930-phpapp02.pdfPatrickMumba7
2 vistas24 diapositivas
mwr-ppt-priyanka-160217084541.pdf por
mwr-ppt-priyanka-160217084541.pdfmwr-ppt-priyanka-160217084541.pdf
mwr-ppt-priyanka-160217084541.pdfPatrickMumba7
2 vistas29 diapositivas
microstriptl1st3-170309071044.pdf por
microstriptl1st3-170309071044.pdfmicrostriptl1st3-170309071044.pdf
microstriptl1st3-170309071044.pdfPatrickMumba7
2 vistas19 diapositivas
Lec2WirelessChannelandRadioPropagation.pdf por
Lec2WirelessChannelandRadioPropagation.pdfLec2WirelessChannelandRadioPropagation.pdf
Lec2WirelessChannelandRadioPropagation.pdfPatrickMumba7
9 vistas67 diapositivas
Roger Freeman - Telecommunication System Engineering.pdf por
Roger Freeman - Telecommunication System Engineering.pdfRoger Freeman - Telecommunication System Engineering.pdf
Roger Freeman - Telecommunication System Engineering.pdfPatrickMumba7
19 vistas1008 diapositivas
Modern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdf por
Modern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdfModern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdf
Modern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdfPatrickMumba7
3 vistas203 diapositivas

Más de PatrickMumba7(20)

519transmissionlinetheory-130315033930-phpapp02.pdf por PatrickMumba7
519transmissionlinetheory-130315033930-phpapp02.pdf519transmissionlinetheory-130315033930-phpapp02.pdf
519transmissionlinetheory-130315033930-phpapp02.pdf
PatrickMumba72 vistas
mwr-ppt-priyanka-160217084541.pdf por PatrickMumba7
mwr-ppt-priyanka-160217084541.pdfmwr-ppt-priyanka-160217084541.pdf
mwr-ppt-priyanka-160217084541.pdf
PatrickMumba72 vistas
microstriptl1st3-170309071044.pdf por PatrickMumba7
microstriptl1st3-170309071044.pdfmicrostriptl1st3-170309071044.pdf
microstriptl1st3-170309071044.pdf
PatrickMumba72 vistas
Lec2WirelessChannelandRadioPropagation.pdf por PatrickMumba7
Lec2WirelessChannelandRadioPropagation.pdfLec2WirelessChannelandRadioPropagation.pdf
Lec2WirelessChannelandRadioPropagation.pdf
PatrickMumba79 vistas
Roger Freeman - Telecommunication System Engineering.pdf por PatrickMumba7
Roger Freeman - Telecommunication System Engineering.pdfRoger Freeman - Telecommunication System Engineering.pdf
Roger Freeman - Telecommunication System Engineering.pdf
PatrickMumba719 vistas
Modern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdf por PatrickMumba7
Modern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdfModern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdf
Modern Telecommunications_ Basic Principles and Practices ( PDFDrive ).pdf
PatrickMumba73 vistas
microstrip transmission lines explained.pdf por PatrickMumba7
microstrip transmission lines explained.pdfmicrostrip transmission lines explained.pdf
microstrip transmission lines explained.pdf
PatrickMumba710 vistas
microstriptl1st3-170309071044 (1).pdf por PatrickMumba7
microstriptl1st3-170309071044 (1).pdfmicrostriptl1st3-170309071044 (1).pdf
microstriptl1st3-170309071044 (1).pdf
PatrickMumba75 vistas
L8. LTI systems described via difference equations.pdf por PatrickMumba7
L8. LTI systems described via difference equations.pdfL8. LTI systems described via difference equations.pdf
L8. LTI systems described via difference equations.pdf
PatrickMumba746 vistas
solutions to recommended problems por PatrickMumba7
solutions to recommended problemssolutions to recommended problems
solutions to recommended problems
PatrickMumba79 vistas
Signals and systems: part i solutions por PatrickMumba7
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
PatrickMumba7101 vistas
Assignment properties of linear time-invariant systems por PatrickMumba7
Assignment properties of linear time-invariant systemsAssignment properties of linear time-invariant systems
Assignment properties of linear time-invariant systems
PatrickMumba736 vistas
Signals and systems: Part ii por PatrickMumba7
Signals and systems:  Part iiSignals and systems:  Part ii
Signals and systems: Part ii
PatrickMumba721 vistas
Signals and Systems part 2 solutions por PatrickMumba7
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions
PatrickMumba757 vistas

Último

Pitchbook Repowerlab.pdf por
Pitchbook Repowerlab.pdfPitchbook Repowerlab.pdf
Pitchbook Repowerlab.pdfVictoriaGaleano
5 vistas12 diapositivas
Renewal Projects in Seismic Construction por
Renewal Projects in Seismic ConstructionRenewal Projects in Seismic Construction
Renewal Projects in Seismic ConstructionEngineering & Seismic Construction
5 vistas8 diapositivas
Web Dev Session 1.pptx por
Web Dev Session 1.pptxWeb Dev Session 1.pptx
Web Dev Session 1.pptxVedVekhande
11 vistas22 diapositivas
_MAKRIADI-FOTEINI_diploma thesis.pptx por
_MAKRIADI-FOTEINI_diploma thesis.pptx_MAKRIADI-FOTEINI_diploma thesis.pptx
_MAKRIADI-FOTEINI_diploma thesis.pptxfotinimakriadi
8 vistas32 diapositivas
802.11 Computer Networks por
802.11 Computer Networks802.11 Computer Networks
802.11 Computer NetworksTusharChoudhary72015
13 vistas33 diapositivas
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...csegroupvn
5 vistas210 diapositivas

Último(20)

Web Dev Session 1.pptx por VedVekhande
Web Dev Session 1.pptxWeb Dev Session 1.pptx
Web Dev Session 1.pptx
VedVekhande11 vistas
_MAKRIADI-FOTEINI_diploma thesis.pptx por fotinimakriadi
_MAKRIADI-FOTEINI_diploma thesis.pptx_MAKRIADI-FOTEINI_diploma thesis.pptx
_MAKRIADI-FOTEINI_diploma thesis.pptx
fotinimakriadi8 vistas
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por csegroupvn
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
csegroupvn5 vistas
REACTJS.pdf por ArthyR3
REACTJS.pdfREACTJS.pdf
REACTJS.pdf
ArthyR334 vistas
Update 42 models(Diode/General ) in SPICE PARK(DEC2023) por Tsuyoshi Horigome
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Tsuyoshi Horigome38 vistas
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth por Innomantra
BCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for GrowthBCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for Growth
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth
Innomantra 6 vistas
Proposal Presentation.pptx por keytonallamon
Proposal Presentation.pptxProposal Presentation.pptx
Proposal Presentation.pptx
keytonallamon52 vistas
MongoDB.pdf por ArthyR3
MongoDB.pdfMongoDB.pdf
MongoDB.pdf
ArthyR345 vistas
Searching in Data Structure por raghavbirla63
Searching in Data StructureSearching in Data Structure
Searching in Data Structure
raghavbirla6314 vistas
GDSC Mikroskil Members Onboarding 2023.pdf por gdscmikroskil
GDSC Mikroskil Members Onboarding 2023.pdfGDSC Mikroskil Members Onboarding 2023.pdf
GDSC Mikroskil Members Onboarding 2023.pdf
gdscmikroskil58 vistas
SUMIT SQL PROJECT SUPERSTORE 1.pptx por Sumit Jadhav
SUMIT SQL PROJECT SUPERSTORE 1.pptxSUMIT SQL PROJECT SUPERSTORE 1.pptx
SUMIT SQL PROJECT SUPERSTORE 1.pptx
Sumit Jadhav 18 vistas
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure6 vistas
Ansari: Practical experiences with an LLM-based Islamic Assistant por M Waleed Kadous
Ansari: Practical experiences with an LLM-based Islamic AssistantAnsari: Practical experiences with an LLM-based Islamic Assistant
Ansari: Practical experiences with an LLM-based Islamic Assistant
M Waleed Kadous5 vistas
Design of machine elements-UNIT 3.pptx por gopinathcreddy
Design of machine elements-UNIT 3.pptxDesign of machine elements-UNIT 3.pptx
Design of machine elements-UNIT 3.pptx
gopinathcreddy33 vistas

signal space analysis.ppt

  • 1. Signal-Space Analysis ENSC 428 – Spring 2008 Reference: Lecture 10 of Gallager
  • 3. Representation of Bandpass Signal Bandpass real signal x(t) can be written as:       cos 2 c x t s t f t         2 2 Re where is complex envelop c j f t x t x t e x t       Note that       I Q x t x t j x t    In-phase Quadrature-phase
  • 4. Representation of Bandpass Signal                     2 2 Re 2 Re cos 2 sin 2 2 cos 2 2 sin 2 c j f t I Q c c I c Q c x t x t e x t j x t f t j f t x t f t x t f t                              (1) (2) Note that       j t x t x t e                 2 2 2 Re 2 Re 2 cos 2 c c j t j f t j f t c x t x t e x t e e x t f t t                  
  • 5. Relation between and 2 2   x t   x t f x 2 c j f t e   fc -fc f fc f f   x t   x t               * 1 2 ( ), 0 , 0, 0 c c c X f X f f X f f X f f X f X f X f f f                    2
  • 6. Energy of s(t)         2 2 2 0 2 0 (Rayleigh's energy theorem) 2 (Conjugate symmetry of real ( ) ) E s t dt S f df S f df s t S f df              
  • 7. Representation of bandpass LTI System   h t   h t   s t   s t   r t   r t                 because ( ) is band-limited. c r t s t h t R f S f H f S f H f f s t                    * ( ), 0 0, 0 c c c H f H f f H f f H f f H f f H f H f f                   
  • 13. Geometric Interpretation (II)  I/Q representation is very convenient for some modulation types.  We will examine an even more general way of looking at modulations, using signal space concept, which facilitates  Designing a modulation scheme with certain desired properties  Constructing optimal receivers for a given modulation  Analyzing the performance of a modulation.  View the set of signals as a vector space!
  • 14. Basic Algebra: Group  A group is defined as a set of elements G and a binary operation, denoted by · for which the following properties are satisfied  For any element a, b, in the set, a·b is in the set.  The associative law is satisfied; that is for a,b,c in the set (a·b)·c= a·(b·c)  There is an identity element, e, in the set such that a·e= e·a=a for all a in the set.  For each element a in the set, there is an inverse element a-1 in the set satisfying a· a-1 = a-1 ·a=e.
  • 15. Group: example  A set of non-singular n×n matrices of real numbers, with matrix multiplication  Note; the operation does not have to be commutative to be a Group.  Example of non-group: a set of non- negative integers, with +
  • 16. Unique identity? Unique inverse fro each element?  a·x=a. Then, a-1·a·x=a-1·a=e, so x=e.  x·a=a  a·x=e. Then, a-1·a·x=a-1·e=a-1, so x=a-1.
  • 17. Abelian group  If the operation is commutative, the group is an Abelian group.  The set of m×n real matrices, with + .  The set of integers, with + .
  • 18. Application?  Later in channel coding (for error correction or error detection).
  • 19. Algebra: field  A field is a set of two or more elements F={a,b,..} closed under two operations, + (addition) and * (multiplication) with the following properties  F is an Abelian group under addition  The set F−{0} is an Abelian group under multiplication, where 0 denotes the identity under addition.  The distributive law is satisfied: (a+bg  ag+bg
  • 20. Immediately following properties  ab0 implies a0 or b0  For any non-zero a, a0 ?  a0  a  a0  a 1 a0 1 a1a; therefore a0 0  00 ? For a non-zero a, its additive inverse is non-zero. 00a a 0  a0 a0 000
  • 21. Examples:  the set of real numbers  The set of complex numbers  Later, finite fields (Galois fields) will be studied for channel coding  E.g., {0,1} with + (exclusive OR), * (AND)
  • 22. Vector space  A vector space V over a given field F is a set of elements (called vectors) closed under and operation + called vector addition. There is also an operation * called scalar multiplication, which operates on an element of F (called scalar) and an element of V to produce an element of V. The following properties are satisfied:  V is an Abelian group under +. Let 0 denote the additive identity.  For every v,w in V and every a,b in F, we have  (abv abv)  (abv avbv  a v+w)=av a w  1*v=v
  • 23. Examples of vector space  Rn over R  Cn over C  L2 over
  • 24. Subspace. Let V be a vector space. Let be a vector space and . If is also a vector space with the same operations as , then S is called a subspace of . S is a subspace if , V S V S V V v w S av bw S     
  • 25. Linear independence of vectors 1 2 Def) A set of vectors , , are linearly independent iff n v v v V 
  • 26. Basis 0 Consider vector space V over F (a field). We say that a set (finite or infinite) is a basis, if * every finite subset of vectors of linearly independent, and * for every , it B V B B x V    1 1 1 1 is possible to choose , ..., and , ..., such that ... . The sums in the above definition are all finite because without additional structure the axioms of a vector n n n n a a F v v B x a v a v      space do not permit us to meaningfully speak about an infinite sum of vectors.
  • 27. Finite dimensional vector space 1 2 1 2 A set of vectors , , is said to span if every vector is a linear combination of , , . Example: n n n v v v V V u V v v v R  
  • 28. Finite dimensional vector space  A vector space V is finite dimensional if there is a finite set of vectors u1, u2, …, un that span V.
  • 29. Finite dimensional vector space 1 2 1 2 1 2 Let V be a finite dimensional vector space. Then If , , are linearly independent but do not span , then has a basis with vectors ( ) that include , , . If , , span and but ar m m m v v v V V n n m v v v v v v V    1 2 e linearly dependent, then a subset of , , is a basis for with vectors ( ) . Every basis of contains the same number of vectors. Dimension of a finiate dimensional vector space. m v v v V n n m V  
  • 30. Example: Rn and its Basis Vectors   
  • 31. Inner product space: for length and angle
  • 33. Orthonormal set and projection theorem Def) A non-empty subset of an inner product space is said to be orthonormal iff 1) , , 1 and 2) If , and , then , 0. S x S x x x y S x y x y        
  • 34. Projection onto a finite dimensional subspace Gallager Thm 5.1 Corollary: norm bound Corollary: Bessel’s inequality
  • 35. Gram –Schmidt orthonormalization     1 1 1 1 Consider linearly independent , ..., , and inner product space. We can construct an orthonormal set , ..., so that { , ..., } , ..., n n n n s s V V span s s span       
  • 37. Step 1 : Starting with s1(t)
  • 46. Example application of projection theorem Linear estimation
  • 47. L2([0,T]) (is an inner product space.)       2 Consider an orthonormal set 1 2 exp 0, 1, 2,... . Any function ( ) in 0, is , . Fourier series. For this reason, this orthonormal set is called complete k k k k kt t j k T T u t L T u u                         2 . Thm: Every orthonormal set in is contained in some complete orthonormal set. Note that the complete orthonormal set above is not unique. L
  • 48. Significance? IQ-modulation and received signal in L2                 2 2 3 4 , , 0, span 2 cos2 , 2 sin 2 Any signal in can be represented as ( ). There exist a complete orthonormal set 2 cos2 , 2 sin 2 , ( ), ( ),... c c i i i c c r t s t N t L T s t T f t T f t L r t f t f t t t                
  • 49. On Hilbert space over C. For special folks (e.g., mathematicians) only L2 is a separable Hilbert space. We have very useful results on 1) isomorphism 2)countable complete orthonormal set Thm If H is separable and infinite dimensional, then it is isomorphic to l2 (the set of square summable sequence of complex numbers) If H is n-dimensional, then it is isomorphic to Cn. The same story with Hilbert space over R. In some sense there is only one real and one complex infinite dimensional separable Hilbert space. L. Debnath and P. Mikusinski, Hilbert Spaces with Applications, 3rd Ed., Elsevier, 2005.
  • 50. Hilbert space Def) A complete inner product space. Def) A space is complete if every Cauchy sequence converges to a point in the space. Example: L2
  • 51. Orthonormal set S in Hilbert space H is complete if 2 2 Equivalent definitions 1) There is no other orthonormal set strictly containing . (maximal) 2) , , 3) , , implies 0 4) , , Here, we do not need to assume H is separable. i i i S x H x x e e x e e S x x H x x e            Summations in 2) and 4) make sense because we can prove the following:
  • 52. Only for mathematicians (We don’t need separability.)     2 2 Let be an orthonormal set in a Hilbert space . For each vector x , set , 0 is either empty or countable. Proof: Let , . Then, (finite) Also, any element in (however small n n O H H S e O x e S e O x e x n S n e S         1 , is) is in for some (sufficiently large). Therefore, . Countable. n n n x e S n S S   
  • 53. Theorem  Every orothonormal set in a Hilbert space is contained in some complete orthonormal set.  Every non-zero Hilbert space contains a complete orthonormal set.  (Trivially follows from the above.) ( “non-zero” Hilbert space means that the space has a non-zero element. We do not have to assume separable Hilbert space.)  Reference: D. Somasundaram, A first course in functional analysis, Oxford, U.K.: Alpha Science, 2006.
  • 54. Only for mathematicians. (Separability is nice.) Euivalent definitions Def) is separable iff there exists a countable subset which is dense in , that is, . Def) is separable iff there exists a countable subset such that , H D H D H H D x H    there exists a sequence in convergeing to . Thm: If has a countable complete orthonormal set, then is separable. proof: set of linear combinations (loosely speaking) D x H H with ratioanl real and imaginary parts. This set is dense (show sequence) Thm: If is separable, then every orthogonal set is countable. proof: normalize it. Distance between two orthonorma H l elements is 2. .....
  • 55. Signal Spaces: L2 of complex functions
  • 56. Use of orthonormal set 1 2 1 2 1 2 1 2 M-ary modulation { ( ), ( ),..., ( )} Find orthonormal functions ( ), ( ),.., ( ) so that { ( ), ( ),..., ( )} { ( ), ( ),.., ( )} M K M K s t s t s t f t f t f t s t s t s t span f t f t f t 
  • 63. Example: Use of orthonormal set and basis  Two square functions
  • 67. Vector XTMR/RCVR Model           1 t    1 t     t     t r = s + n 1 1 1 s1 Vector RCVR Vector XTMR Waveform channel / Correlation Receiver s(t) n(t) r(t) s2 sN r = s + n 2 2 2 r = s + n N N N     t     t   s(t) n(t) r(t) = s(t) + n(t) 0 T z 0 T z 0 T z } i 1    i 1 N     ,   i i j t i = j   i t si ni s(t) = n(t) = A . . . . . . . . . . . .