DIFFERENTIAL AMPLIFIER using MOSFET

P
Praveen KumarStudent at Psg tech
DIFFERENTIALAMPLIFIER
using MOSFET
DONEBY,
NITHYAPRIYA
PRASHANNA
S.PRAVEENKUMAR
PREETHI
SATHISHKUMAR
SHAGARI
Differential amplifier
• Amplifies the difference between the input signals
INPUTS:
Differential input:
Vid = Vi1-Vi2
Common input:
Vic=( Vi1+Vi2)/2
OUTPUTS:
Differential output:
Vod = Vo1-Vo2
Common output:
Voc=( Vo1+Vo2)/2
Why differential amplifiers are
popular?
• Less sensitive to noise(CMRR>>1)
• Biasing:
1) Relatively easy direct coupling of stages
2) Biasing resistor doesnot affect the
differential gain(no need for bypass capacitor)
MOS differential amplifier
Modes of operation
Regions of operation
• Cut off region- VGS ≤ Vt
• Active region- VDS ≤ VOV
• Saturation region- VDS ≥ VOV
TO DERIVE DRAIN CURRENT EQUATION
|Q|/unit channel length = Cox W VOV
Drift velocity= μn|E|= μn (VDS/L)
The drain current is the product of charge per unit length and drift velocity
ID=[( μnCox)(W/L) VOV] VDS
ID=[( μnCox)(W/L) VGS-Vt] VDS
ID=[kn’(W/L) VGS-Vt] VDS
Replacing VOV by (VOV-(1/2) VDS)
ID=kn’(W/L) (VOV-(1/2) VDS) VDS
At saturation mode, VDS ≥ VOV,
ID=(1/2) kn’(W/L)V2
OV
The MOS differential pair with a
common-mode input voltage vCM
Operation with common mode input
• The two gate terminals are connected to a
voltage VCM called common mode voltage.
• So VG1 = VG2 =VCM
• The drain currents are,
• Voltage at sources, will be
2
21
21
I
II
QQ
DD 

GSCMs Vvv 
• Neglecting the channel length modulation and
using the relation between VGS and ID is,(at
saturation)
• Where,
W=width of the channel
L=length of the channel
VGS =gain to source voltage
Vt =threshold voltage
Kn
’ = µn Cox
2'
)(
2
1
tGSnD VV
L
W
kI 
Overdrive Voltage
• Substituting for ID we get,
• The equation can be expressed in terms of
overdrive voltage as, VOV = VGS -VT .
• overdrive voltage is defined as VGS-VT when Q1
and Q2 each carry a current of I/2.
• Thus In terms of VOV ,
2'
)(
2
1
2
tGSnD VV
L
W
k
I
I 
2'
)(
2
1
2
OVn V
L
W
k
I

 
L
W
k
I
VVV
n
tGSOV
'

Common mode rejection
• Voltage at each drain will be,
• Since the operation is common mode the voltage
difference betwee.n two drains is zero.
• As long as, Q1 and Q2 remains in saturation region
the current I will divide equally between them.
And the voltage at drain does not changes.
• Thus the differential pair does not responds to
common mode input signals.
DDDDDD RIVvv  21
Input common mode range
• The highest value of VCM ensures that Q1 and
Q2 remains in saturation region.
• The lowest value of VCM is determined by
presence of sufficient voltage VCS across
current source I for its proper operation.
• This is the range of VCM over which the
differential pair works properly.
DDDtCM R
I
VVv
2
(max) 
)((min) tGStCSssCM VVVVVv 
PROBLEM based on common mode:
For an NMOS differential pair with a common-mode voltage Vcm
applied as Shown in Fig.
Let Vdd=Vss=2.5V,Kn’(W/L)=3(mA/V2),Vt =0.7V,I=0.2mA,RD =5KΩ and
neglect channel length modulation.
a)Find Vov and VGS for each transistor.
b)For Vcm =0 find Vs,iD1,iD2,VD1 and VD2.
c)For Vcm =+1V.
d)For Vcm =-1V.
e)What is the highest value of Vcm for which Q1 and Q2 remain in
saturation?
f)If current source I requires a minimum voltage of 0.3v to operate
properly, what is the lowest value allowed for Vs and hence for Vcm ?
GIVEN:
VDD=VSS=2.5V, Kn’(W/L)=3(mA/V2) , Vt=0.7V , I=0.2mA,
RD=5KΩ
SOLUTION:
VOV=
=
=0.26V
1) VS1= VS2= Vcm - VGS
=0-0.96=-0.96V
2) ID1=ID2=I/2=0.1mA
3) VD1=VD2 =VDD -(I/2)*RD
=+2.5-(0.1*2.5)=2.25V
c) If Vcm =+1
1)VS1= VS2= Vcm - VGS =1-0.96
=0.04V
2) ID1=ID2=I/2=0.1mA
3) VD1=VD2 =VDD -(I/2)*RD
=+2.5-(0.1*2.5)=2.25V.
Contd…
d) If Vcm =-1V
1)VS1= VS2= Vcm - VGS =-1-0.96
=-1.96V
2) ID1=ID2=I/2=0.1mA
3) VD1=VD2 =VDD -(I/2)*RD
=+2.5-(0.1*2.5)=2.25V.
e)VCMAX = Vt +VDD -(I/2)*RD
= 0.7+2.5-(0.1*2.5)=+2.95V.
f)VCMIN = -VSS + VCS +Vt +VOV
=-2.5+0.3+0.7+0.26 = -1.24V
VSMIN = VCMIN -VGS
= -1.24 - 0.96 = -2.2V.
Differential Amplifier – Common
Mode
Because of the symmetry, the common-mode circuit breaks into two
identical “half-circuits” .
Differential Amplifier – Differential
Mode
Because of the symmetry, the differential-mode circuit also breaks into two
identical half-circuits.
OPERATION OF MOS DIFFERENTIAL
AMPLIFIER IN DIFFERENCE MODE
Vid is applied to gate of Q1 and gate of Q2 is grounded.
Applying KVL,
Vid = VGS1 - VGS2
we know that,
Vd1 = Vdd - id1RD
Vd2 = Vdd - id2RD
case(i)
Vid is positive
VGS1 > VGS2
id1 > id2
Vd1 < Vd2
Hence, Vd2 - Vd1 is positive.
case(ii)
Vid is negative
VGS1 <VGS2
id1 < id2
Vd1 > Vd2
Hence, Vd2 - Vd1 is negative
Differential pair responds to difference mode or
differential input signals by providing a
corresponding differential output signal between
the two drains.
If the full bias current flows through the Q1 , VG2 is reduced to Vt
, at which point VS = - Vt , id1 = I.
I =
1
2
kn’ (
𝑊
𝐿
)(𝑉𝐺𝑆1 − 𝑉𝑡)2
by simplyfication, VGS1 = Vt+ 2𝐼/kn’(
𝑊
𝐿
)
But, VOV = 𝐼/kn’(
𝑊
𝐿
)
hence, VGS1 = Vt+ 𝟐 VOV
Where, kn’-process transconductance parameter which is the product of electron
mobility( µ 𝑛) and oxide capacitance (𝐶 𝑜𝑥).
where VOV is the overdrive voltage corresponds to the drain current of I/2.
Thus the value of Vid at which the entire bias current I is
steered into Q1 is,
Vidmax = VGS1 +VS
= Vt+ 2 VOV - Vt
Vidmax = 2 VOV
(i) Vid > 2 VOV
id1 remains equal to I
VGS1 remains Vt+ 2 VOV
VS rises correspondingly(thus keeping Q2 off)
(ii)Vid ≥ - 2 VOV
Q1 turns off, Q2 conducts the entire bias current I. Thus
the current I can be steered from one transistor to other by
varying Vid in the range,
- 2 VOV ≤ Vid ≤ 2 VOV
Which is the range of different mode operation.
Advantages
• Manipulating differential signals
• High input impedance
• Not sensitive to temperature
• Fabrication is easier
• Provides immunity to external noise
• A 6 db increase in dynamic range which is a
clear advantage for low voltage systems
• Reduces second order harmonics
Disadvantages
• Lower gain
• Complexity
• Need for negative voltage source for proper
bias
Applications
• Analog systems
• DC amplifiers
• Audio amplifiers
- speakers and microphone circuits in
cellphones
• Servocontrol systems
• Analog computers
1 de 25

Recomendados

Pass Transistor Logic por
Pass Transistor LogicPass Transistor Logic
Pass Transistor LogicSudhanshu Janwadkar
14.5K vistas21 diapositivas
Mos transistor por
Mos transistorMos transistor
Mos transistorMurali Rai
6.5K vistas24 diapositivas
Rc delay modelling in vlsi por
Rc delay modelling in vlsiRc delay modelling in vlsi
Rc delay modelling in vlsiDr. Vishal Sharma
15.9K vistas33 diapositivas
Power dissipation cmos por
Power dissipation cmosPower dissipation cmos
Power dissipation cmosRajesh Tiwary
22.8K vistas26 diapositivas
MOSFET Small signal model por
MOSFET Small signal modelMOSFET Small signal model
MOSFET Small signal modelTeam-VLSI-ITMU
14.5K vistas18 diapositivas
integrator and differentiator op-amp por
integrator and differentiator op-ampintegrator and differentiator op-amp
integrator and differentiator op-ampdanish iqbal
18.4K vistas14 diapositivas

Más contenido relacionado

La actualidad más candente

current mirrors por
current mirrorscurrent mirrors
current mirrorsMallavarapu Mounika
9.2K vistas18 diapositivas
MOS as Diode, Switch and Active Resistor por
MOS as Diode, Switch and Active ResistorMOS as Diode, Switch and Active Resistor
MOS as Diode, Switch and Active ResistorSudhanshu Janwadkar
24K vistas17 diapositivas
Design of CMOS operational Amplifiers using CADENCE por
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEnandivashishth
26.5K vistas62 diapositivas
Single Sideband Suppressed Carrier (SSB-SC) por
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Ridwanul Hoque
1.2K vistas21 diapositivas
Low power vlsi design ppt por
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design pptAnil Yadav
109.9K vistas326 diapositivas
CMOS Topic 5 -_cmos_inverter por
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterIkhwan_Fakrudin
14.4K vistas18 diapositivas

La actualidad más candente(20)

Design of CMOS operational Amplifiers using CADENCE por nandivashishth
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
nandivashishth26.5K vistas
Single Sideband Suppressed Carrier (SSB-SC) por Ridwanul Hoque
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)
Ridwanul Hoque1.2K vistas
Low power vlsi design ppt por Anil Yadav
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
Anil Yadav109.9K vistas
CMOS Topic 5 -_cmos_inverter por Ikhwan_Fakrudin
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverter
Ikhwan_Fakrudin14.4K vistas
Cascaded differential amplifier por Hasit Trivedi
Cascaded differential amplifierCascaded differential amplifier
Cascaded differential amplifier
Hasit Trivedi1.1K vistas
Transistor Transistor Logic por surat murthy
Transistor Transistor LogicTransistor Transistor Logic
Transistor Transistor Logic
surat murthy10.5K vistas
Pass Transistor Logic por Diwaker Pant
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
Diwaker Pant59.3K vistas
Solved problems in waveguides por subhashinivec
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
subhashinivec6.2K vistas
Time base Generators (part-1) por m balaji
Time base Generators (part-1)Time base Generators (part-1)
Time base Generators (part-1)
m balaji1.1K vistas

Similar a DIFFERENTIAL AMPLIFIER using MOSFET

MOSFET.ppt por
MOSFET.pptMOSFET.ppt
MOSFET.pptSouravRoyElectronics
39 vistas49 diapositivas
Lec17 mosfet iv por
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet ivgerminal nana
3K vistas49 diapositivas
MOSFET Operation por
MOSFET OperationMOSFET Operation
MOSFET Operationkarthigeyankassn
575 vistas49 diapositivas
CMOS Inverter: Static Behavior por
CMOS Inverter: Static BehaviorCMOS Inverter: Static Behavior
CMOS Inverter: Static BehaviorVARUN KUMAR
957 vistas10 diapositivas
Lect2 up190 (100327) por
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)aicdesign
228 vistas15 diapositivas
CMOS Inverter static characterstics.pptx por
CMOS Inverter static characterstics.pptxCMOS Inverter static characterstics.pptx
CMOS Inverter static characterstics.pptxindrajeetPatel22
249 vistas45 diapositivas

Similar a DIFFERENTIAL AMPLIFIER using MOSFET(20)

CMOS Inverter: Static Behavior por VARUN KUMAR
CMOS Inverter: Static BehaviorCMOS Inverter: Static Behavior
CMOS Inverter: Static Behavior
VARUN KUMAR957 vistas
Lect2 up190 (100327) por aicdesign
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
aicdesign228 vistas
CMOS Inverter static characterstics.pptx por indrajeetPatel22
CMOS Inverter static characterstics.pptxCMOS Inverter static characterstics.pptx
CMOS Inverter static characterstics.pptx
indrajeetPatel22249 vistas
Lect2 up210 (100327) por aicdesign
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
aicdesign306 vistas
Lect2 up140 (100325) por aicdesign
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
aicdesign364 vistas
A current mode quadrature oscillator using cdta por Nishant Yaduvanshi
A current mode quadrature oscillator using cdtaA current mode quadrature oscillator using cdta
A current mode quadrature oscillator using cdta
Nishant Yaduvanshi415 vistas
A new approach for design of cmos based cascode current mirror for asp applic... por IAEME Publication
A new approach for design of cmos based cascode current mirror for asp applic...A new approach for design of cmos based cascode current mirror for asp applic...
A new approach for design of cmos based cascode current mirror for asp applic...
IAEME Publication1.5K vistas
A new approach for design of cmos based cascode current mirror for asp applic... por IAEME Publication
A new approach for design of cmos based cascode current mirror for asp applic...A new approach for design of cmos based cascode current mirror for asp applic...
A new approach for design of cmos based cascode current mirror for asp applic...
IAEME Publication398 vistas
A Low Power Low Voltage High Performance CMOS Current Mirror por IJERA Editor
A Low Power Low Voltage High Performance CMOS Current MirrorA Low Power Low Voltage High Performance CMOS Current Mirror
A Low Power Low Voltage High Performance CMOS Current Mirror
IJERA Editor144 vistas
IC Design of Power Management Circuits (II) por Claudia Sin
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
Claudia Sin12.7K vistas

Más de Praveen Kumar

Level sensitive scan design(LSSD) and Boundry scan(BS) por
Level sensitive scan design(LSSD) and Boundry scan(BS)Level sensitive scan design(LSSD) and Boundry scan(BS)
Level sensitive scan design(LSSD) and Boundry scan(BS)Praveen Kumar
6.7K vistas37 diapositivas
An introduction to FUSES por
An introduction to FUSESAn introduction to FUSES
An introduction to FUSESPraveen Kumar
13.8K vistas57 diapositivas
Introduction to SCADA por
Introduction to SCADAIntroduction to SCADA
Introduction to SCADAPraveen Kumar
14.3K vistas29 diapositivas
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS por
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELSSPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELSPraveen Kumar
9.9K vistas39 diapositivas
Finite word length of IIR filters Limit cycles due to product round-off error... por
Finite word length of IIR filters Limit cycles due to product round-off error...Finite word length of IIR filters Limit cycles due to product round-off error...
Finite word length of IIR filters Limit cycles due to product round-off error...Praveen Kumar
1.2K vistas26 diapositivas
SOLAR POWER generation using solar PV and Concentrated solar power technology por
SOLAR POWER generation using solar PV and Concentrated solar power technologySOLAR POWER generation using solar PV and Concentrated solar power technology
SOLAR POWER generation using solar PV and Concentrated solar power technologyPraveen Kumar
784 vistas55 diapositivas

Más de Praveen Kumar(20)

Level sensitive scan design(LSSD) and Boundry scan(BS) por Praveen Kumar
Level sensitive scan design(LSSD) and Boundry scan(BS)Level sensitive scan design(LSSD) and Boundry scan(BS)
Level sensitive scan design(LSSD) and Boundry scan(BS)
Praveen Kumar6.7K vistas
An introduction to FUSES por Praveen Kumar
An introduction to FUSESAn introduction to FUSES
An introduction to FUSES
Praveen Kumar13.8K vistas
Introduction to SCADA por Praveen Kumar
Introduction to SCADAIntroduction to SCADA
Introduction to SCADA
Praveen Kumar14.3K vistas
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS por Praveen Kumar
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELSSPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
Praveen Kumar9.9K vistas
Finite word length of IIR filters Limit cycles due to product round-off error... por Praveen Kumar
Finite word length of IIR filters Limit cycles due to product round-off error...Finite word length of IIR filters Limit cycles due to product round-off error...
Finite word length of IIR filters Limit cycles due to product round-off error...
Praveen Kumar1.2K vistas
SOLAR POWER generation using solar PV and Concentrated solar power technology por Praveen Kumar
SOLAR POWER generation using solar PV and Concentrated solar power technologySOLAR POWER generation using solar PV and Concentrated solar power technology
SOLAR POWER generation using solar PV and Concentrated solar power technology
Praveen Kumar784 vistas
SELECTION OF DRIVES AND CONTROL SCHEMES FOR MACHINE TOOLS por Praveen Kumar
SELECTION OF DRIVES AND CONTROL SCHEMES FOR MACHINE TOOLS SELECTION OF DRIVES AND CONTROL SCHEMES FOR MACHINE TOOLS
SELECTION OF DRIVES AND CONTROL SCHEMES FOR MACHINE TOOLS
Praveen Kumar3.2K vistas
Insertion sort and shell sort por Praveen Kumar
Insertion sort and shell sortInsertion sort and shell sort
Insertion sort and shell sort
Praveen Kumar1.7K vistas
Vehicle safety system in automobiles por Praveen Kumar
Vehicle safety system in automobiles Vehicle safety system in automobiles
Vehicle safety system in automobiles
Praveen Kumar986 vistas
Field effect transistors and MOSFET's por Praveen Kumar
Field effect transistors and MOSFET'sField effect transistors and MOSFET's
Field effect transistors and MOSFET's
Praveen Kumar2.1K vistas
Draft tubes merits and demerits por Praveen Kumar
Draft tubes merits and demeritsDraft tubes merits and demerits
Draft tubes merits and demerits
Praveen Kumar2.8K vistas
Orcad pspice intro and basics por Praveen Kumar
Orcad pspice intro and basicsOrcad pspice intro and basics
Orcad pspice intro and basics
Praveen Kumar1K vistas
Interfacing GPS with 8051 por Praveen Kumar
Interfacing GPS with 8051Interfacing GPS with 8051
Interfacing GPS with 8051
Praveen Kumar992 vistas
REVERSE POWER RELAY for solar PV systems por Praveen Kumar
REVERSE POWER RELAY for solar PV systemsREVERSE POWER RELAY for solar PV systems
REVERSE POWER RELAY for solar PV systems
Praveen Kumar4.4K vistas
Digital Voltmeter, Digital Ammeter and Digital Multimeter por Praveen Kumar
Digital Voltmeter, Digital Ammeter and Digital MultimeterDigital Voltmeter, Digital Ammeter and Digital Multimeter
Digital Voltmeter, Digital Ammeter and Digital Multimeter
Praveen Kumar3.5K vistas
Autonomous bot using OP-AMP(lm741) por Praveen Kumar
Autonomous bot using OP-AMP(lm741)Autonomous bot using OP-AMP(lm741)
Autonomous bot using OP-AMP(lm741)
Praveen Kumar350 vistas
Ventilating systems for electrical machines por Praveen Kumar
Ventilating systems for electrical machinesVentilating systems for electrical machines
Ventilating systems for electrical machines
Praveen Kumar5.5K vistas

Último

Guess Papers ADC 1, Karachi University por
Guess Papers ADC 1, Karachi UniversityGuess Papers ADC 1, Karachi University
Guess Papers ADC 1, Karachi UniversityKhalid Aziz
105 vistas17 diapositivas
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv... por
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...Taste
62 vistas21 diapositivas
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023 por
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023A Guide to Applying for the Wells Mountain Initiative Scholarship 2023
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023Excellence Foundation for South Sudan
87 vistas26 diapositivas
Retail Store Scavenger Hunt.pptx por
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptxjmurphy154
53 vistas10 diapositivas
REFERENCING, CITATION.pptx por
REFERENCING, CITATION.pptxREFERENCING, CITATION.pptx
REFERENCING, CITATION.pptxabhisrivastava11
41 vistas26 diapositivas
JQUERY.pdf por
JQUERY.pdfJQUERY.pdf
JQUERY.pdfArthyR3
107 vistas22 diapositivas

Último(20)

Guess Papers ADC 1, Karachi University por Khalid Aziz
Guess Papers ADC 1, Karachi UniversityGuess Papers ADC 1, Karachi University
Guess Papers ADC 1, Karachi University
Khalid Aziz105 vistas
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv... por Taste
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Taste62 vistas
Retail Store Scavenger Hunt.pptx por jmurphy154
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptx
jmurphy15453 vistas
JQUERY.pdf por ArthyR3
JQUERY.pdfJQUERY.pdf
JQUERY.pdf
ArthyR3107 vistas
Education of marginalized and socially disadvantages segments.pptx por GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati547 vistas
11.30.23A Poverty and Inequality in America.pptx por mary850239
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptx
mary850239181 vistas
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice por Taste
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a ChoiceCreative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Taste52 vistas
Interaction of microorganisms with vascular plants.pptx por MicrobiologyMicro
Interaction of microorganisms with vascular plants.pptxInteraction of microorganisms with vascular plants.pptx
Interaction of microorganisms with vascular plants.pptx
MicrobiologyMicro58 vistas
Career Building in AI - Technologies, Trends and Opportunities por WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy47 vistas
UNIT NO 13 ORGANISMS AND POPULATION.pptx por Madhuri Bhande
UNIT NO 13 ORGANISMS AND POPULATION.pptxUNIT NO 13 ORGANISMS AND POPULATION.pptx
UNIT NO 13 ORGANISMS AND POPULATION.pptx
Madhuri Bhande43 vistas
Monthly Information Session for MV Asterix (November) por Esquimalt MFRC
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)
Esquimalt MFRC213 vistas
INT-244 Topic 6b Confucianism por S Meyer
INT-244 Topic 6b ConfucianismINT-244 Topic 6b Confucianism
INT-244 Topic 6b Confucianism
S Meyer49 vistas
JRN 362 - Lecture Twenty-Two por Rich Hanley
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-Two
Rich Hanley39 vistas

DIFFERENTIAL AMPLIFIER using MOSFET

  • 2. Differential amplifier • Amplifies the difference between the input signals INPUTS: Differential input: Vid = Vi1-Vi2 Common input: Vic=( Vi1+Vi2)/2 OUTPUTS: Differential output: Vod = Vo1-Vo2 Common output: Voc=( Vo1+Vo2)/2
  • 3. Why differential amplifiers are popular? • Less sensitive to noise(CMRR>>1) • Biasing: 1) Relatively easy direct coupling of stages 2) Biasing resistor doesnot affect the differential gain(no need for bypass capacitor)
  • 6. Regions of operation • Cut off region- VGS ≤ Vt • Active region- VDS ≤ VOV • Saturation region- VDS ≥ VOV TO DERIVE DRAIN CURRENT EQUATION |Q|/unit channel length = Cox W VOV Drift velocity= μn|E|= μn (VDS/L) The drain current is the product of charge per unit length and drift velocity ID=[( μnCox)(W/L) VOV] VDS ID=[( μnCox)(W/L) VGS-Vt] VDS ID=[kn’(W/L) VGS-Vt] VDS Replacing VOV by (VOV-(1/2) VDS) ID=kn’(W/L) (VOV-(1/2) VDS) VDS At saturation mode, VDS ≥ VOV, ID=(1/2) kn’(W/L)V2 OV
  • 7. The MOS differential pair with a common-mode input voltage vCM
  • 8. Operation with common mode input • The two gate terminals are connected to a voltage VCM called common mode voltage. • So VG1 = VG2 =VCM • The drain currents are, • Voltage at sources, will be 2 21 21 I II QQ DD   GSCMs Vvv 
  • 9. • Neglecting the channel length modulation and using the relation between VGS and ID is,(at saturation) • Where, W=width of the channel L=length of the channel VGS =gain to source voltage Vt =threshold voltage Kn ’ = µn Cox 2' )( 2 1 tGSnD VV L W kI 
  • 10. Overdrive Voltage • Substituting for ID we get, • The equation can be expressed in terms of overdrive voltage as, VOV = VGS -VT . • overdrive voltage is defined as VGS-VT when Q1 and Q2 each carry a current of I/2. • Thus In terms of VOV , 2' )( 2 1 2 tGSnD VV L W k I I  2' )( 2 1 2 OVn V L W k I    L W k I VVV n tGSOV ' 
  • 11. Common mode rejection • Voltage at each drain will be, • Since the operation is common mode the voltage difference betwee.n two drains is zero. • As long as, Q1 and Q2 remains in saturation region the current I will divide equally between them. And the voltage at drain does not changes. • Thus the differential pair does not responds to common mode input signals. DDDDDD RIVvv  21
  • 12. Input common mode range • The highest value of VCM ensures that Q1 and Q2 remains in saturation region. • The lowest value of VCM is determined by presence of sufficient voltage VCS across current source I for its proper operation. • This is the range of VCM over which the differential pair works properly. DDDtCM R I VVv 2 (max)  )((min) tGStCSssCM VVVVVv 
  • 13. PROBLEM based on common mode: For an NMOS differential pair with a common-mode voltage Vcm applied as Shown in Fig. Let Vdd=Vss=2.5V,Kn’(W/L)=3(mA/V2),Vt =0.7V,I=0.2mA,RD =5KΩ and neglect channel length modulation. a)Find Vov and VGS for each transistor. b)For Vcm =0 find Vs,iD1,iD2,VD1 and VD2. c)For Vcm =+1V. d)For Vcm =-1V. e)What is the highest value of Vcm for which Q1 and Q2 remain in saturation? f)If current source I requires a minimum voltage of 0.3v to operate properly, what is the lowest value allowed for Vs and hence for Vcm ?
  • 14. GIVEN: VDD=VSS=2.5V, Kn’(W/L)=3(mA/V2) , Vt=0.7V , I=0.2mA, RD=5KΩ
  • 15. SOLUTION: VOV= = =0.26V 1) VS1= VS2= Vcm - VGS =0-0.96=-0.96V 2) ID1=ID2=I/2=0.1mA 3) VD1=VD2 =VDD -(I/2)*RD =+2.5-(0.1*2.5)=2.25V c) If Vcm =+1 1)VS1= VS2= Vcm - VGS =1-0.96 =0.04V 2) ID1=ID2=I/2=0.1mA 3) VD1=VD2 =VDD -(I/2)*RD =+2.5-(0.1*2.5)=2.25V.
  • 16. Contd… d) If Vcm =-1V 1)VS1= VS2= Vcm - VGS =-1-0.96 =-1.96V 2) ID1=ID2=I/2=0.1mA 3) VD1=VD2 =VDD -(I/2)*RD =+2.5-(0.1*2.5)=2.25V. e)VCMAX = Vt +VDD -(I/2)*RD = 0.7+2.5-(0.1*2.5)=+2.95V. f)VCMIN = -VSS + VCS +Vt +VOV =-2.5+0.3+0.7+0.26 = -1.24V VSMIN = VCMIN -VGS = -1.24 - 0.96 = -2.2V.
  • 17. Differential Amplifier – Common Mode Because of the symmetry, the common-mode circuit breaks into two identical “half-circuits” .
  • 18. Differential Amplifier – Differential Mode Because of the symmetry, the differential-mode circuit also breaks into two identical half-circuits.
  • 19. OPERATION OF MOS DIFFERENTIAL AMPLIFIER IN DIFFERENCE MODE Vid is applied to gate of Q1 and gate of Q2 is grounded. Applying KVL, Vid = VGS1 - VGS2 we know that, Vd1 = Vdd - id1RD Vd2 = Vdd - id2RD case(i) Vid is positive VGS1 > VGS2 id1 > id2 Vd1 < Vd2 Hence, Vd2 - Vd1 is positive.
  • 20. case(ii) Vid is negative VGS1 <VGS2 id1 < id2 Vd1 > Vd2 Hence, Vd2 - Vd1 is negative Differential pair responds to difference mode or differential input signals by providing a corresponding differential output signal between the two drains.
  • 21. If the full bias current flows through the Q1 , VG2 is reduced to Vt , at which point VS = - Vt , id1 = I. I = 1 2 kn’ ( 𝑊 𝐿 )(𝑉𝐺𝑆1 − 𝑉𝑡)2 by simplyfication, VGS1 = Vt+ 2𝐼/kn’( 𝑊 𝐿 ) But, VOV = 𝐼/kn’( 𝑊 𝐿 ) hence, VGS1 = Vt+ 𝟐 VOV Where, kn’-process transconductance parameter which is the product of electron mobility( µ 𝑛) and oxide capacitance (𝐶 𝑜𝑥). where VOV is the overdrive voltage corresponds to the drain current of I/2.
  • 22. Thus the value of Vid at which the entire bias current I is steered into Q1 is, Vidmax = VGS1 +VS = Vt+ 2 VOV - Vt Vidmax = 2 VOV (i) Vid > 2 VOV id1 remains equal to I VGS1 remains Vt+ 2 VOV VS rises correspondingly(thus keeping Q2 off) (ii)Vid ≥ - 2 VOV Q1 turns off, Q2 conducts the entire bias current I. Thus the current I can be steered from one transistor to other by varying Vid in the range, - 2 VOV ≤ Vid ≤ 2 VOV Which is the range of different mode operation.
  • 23. Advantages • Manipulating differential signals • High input impedance • Not sensitive to temperature • Fabrication is easier • Provides immunity to external noise • A 6 db increase in dynamic range which is a clear advantage for low voltage systems • Reduces second order harmonics
  • 24. Disadvantages • Lower gain • Complexity • Need for negative voltage source for proper bias
  • 25. Applications • Analog systems • DC amplifiers • Audio amplifiers - speakers and microphone circuits in cellphones • Servocontrol systems • Analog computers