Publicidad
Publicidad

Más contenido relacionado

Publicidad
Publicidad

fe-c diagram

  1. The Iron–Carbon Phase Diagram
  2. Iron–Carbon Phase Diagram • In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The Fe-C phase diagram is a fairly complex one, but we will only consider the steel and cast iron part of the diagram, up to 6.67% Carbon.
  3. Fe – C Equilibrium Diagram
  4. Phases in Fe–C Phase Diagram • α-ferrite - solid solution of C in BCC Fe • Stable form of iron at room temperature. • The maximum solubility of C is 0.025 % at eutectoid temperature • Transforms to FCC γ-austenite at 910°C • γ-austenite - solid solution of C in FCC Fe • The maximum solubility of C is 2.14 % at eutectic temperature • Transforms to BCC δ-ferrite at 1395 °C • Is not stable below the eutectoid temperature(727 ° C) unless cooled rapidly • δ-ferrite solid solution of C in BCC Fe • The same structure as α-ferrite • Stable only at high Temp., above 1394 °C • Melts at 1538 °C
  5. Phases in Fe–C Phase Diagram • Fe3C (iron carbide or cementite) It is an intermetallic compound between iron and carbon. It contains 6.67 % carbon and is hard and brittle. This intermetallic compound is a metastablephase and it remains as a compound indefinitely at room temperature.
  6. A few comments on Fe–C system • Carbon occupies interstitial positions in Fe. It forms a solid solution with α, γ, δ phases of iron • Maximum solubility in BCC α-ferrite is limited (max. 0.025 % at 727 °C) - BCC has relatively small interstitial positions • Maximum solubility in FCC austenite is 2.14 % at 1147 °C - FCC has larger interstitial positions
  7. A few comments on Fe–C system • Mechanical properties – Cementite is very hard and brittle - can strengthen steels. – Mechanical properties depend on the microstructure, that is, how ferrite and cementite are distributed. • Magnetic properties: α -ferrite is magnetic below 768 °C, austenite is non-magnetic
  8. Classification • Three types of ferrous alloy • Iron: less than 0.008% C in α−ferrite at room temp. • Steels: 0.008 - 2.14% C (usually < 1%) αferrite + Fe3C at room temp. • Cast iron: 2.14 - 6.7% (usually < 4.5%)
  9. Eutectic and eutectoid reactions in Fe–C Eutectic: 4.30 wt% C, 1147 °C L (4.30% C) ↔ γ (2.14% C) + Fe3C Eutectoid: 0.76 wt%C, 727 °C γ(0.76% C) ↔ α (0.022% C) + Fe3C
  10. • Eutectic and eutectoid reactions are very important in heat treatment of steels
  11. Development of Microstructure in Iron - Carbon alloys • Microstructure depends on composition (carbon content) and heat treatment. In the discussion below we consider slow cooling in which equilibrium is maintained.
  12. Iron-Carbon (Fe-C) Phase Diagram T(°C) 1600 - Eutectic (A): L Adapted from Fig. 10.28, Callister & Rethwisch 3e. L 1400 + Fe3C - Eutectoid (B): + Fe3C 1200 +L AA (austenite) 1000 800 +Fe3C B 727°C = T eutectoid 600 120 m Result: Pearlite is alternating layers of 400 0 (Fe) L+Fe3C 1148°C Fe3C (cementite) • 2 points +Fe3C 1 0.76 and Fe3C phases 2 3 4 4.30 5 6 6.7 C, wt% C Fe3C (cementite-hard) (ferrite-soft) 12
  13. Microstructure of eutectoid steel
  14. Microstructure of eutectoid steel • When alloy of eutectoid composition (0.76 wt % C) is cooled slowly it forms perlite, a lamellar or layered structure of two phases: α-ferrite and cementite (Fe3C). • The layers of alternating phases in pearlite are formed for the same reason as layered structure of eutectic structures: redistribution C atoms between ferrite (0.022 wt%) and cementite (6.7 wt%) by atomic diffusion. • Mechanically, pearlite has properties intermediate to soft, ductile ferrite and hard, brittle cementite.
  15. Microstructure of eutectoid steel In the micrograph, the dark areas are Fe3C layers, the light phase is αferrite
  16. Microstructure of hypoeutectoid steel Compositions to the left of eutectoid (0.022 0.76 wt % C) is hypoeutectoid (less than eutectoid -Greek) alloys. γ → α + γ → α + Fe3C
  17. Hypoeutectoid Steel T(°C) 1600 Adapted from Figs. 10.28 and 10.33 L 1400 1000 + Fe3C 800 727°C 600 pearlite + Fe3C 1 0.76 400 0 (Fe)C0 L+Fe3C 1148°C (austenite) 2 3 4 5 6 6.7 C, wt% C 100 m pearlite (Fe-C System) Fe3C (cementite) 1200 +L Hypoeutectoid steel proeutectoid ferrite Adapted from Fig. 10.34, Callister & Rethwisch 3e. 17
  18. Hypoeutectoid Steel T(°C) 1600 L 1400 (austenite) 1000 800 600 pearlite Wpearlite = W + Fe3C r s 727°C RS 400 0 (Fe)C0 + Fe3C 1 0.76 W = s/(r + s) W =(1 - W ) L+Fe3C 1148°C W ’ = S/(R + S) WFe3C =(1 – W ’) pearlite 2 3 4 5 6 (Fe-C System) Fe3C (cementite) 1200 +L 6.7 C, wt% C 100 m Hypoeutectoid steel proeutectoid ferrite Adapted from Fig. 10.34, Callister & Rethwisch 3e. 18
  19. Microstructure of hypoeutectoid steel Hypoeutectoid alloys contain proeutectoid ferrite (formed above the eutectoid temperature) plus the eutectoid perlite that contain eutectoid ferrite and cementite.
  20. Microstructure of hypereutectoid steel Compositions to the right of eutectoid (0.76 - 2.14 wt % C) is hypereutectoid (more than eutectoid -Greek) alloys. γ → γ + Fe3C → α + Fe3C
  21. Microstructure of hypereutectoid steel
  22. T(°C) Hypereutectoid Steel 1600 L 1400 +L 1000 +Fe3C 800 600 400 0 (Fe) pearlite +Fe3C 0.76 Fe3C L+Fe3C 1148°C (austenite) 1 C0 2 3 4 5 6 Fe3C (cementite) 1200 6.7 C, wt%C 60 mHypereutectoid steel pearlite proeutectoid Fe3C Adapted from Fig. 10.37, Callister & Rethwisch 3e. 22
  23. T(°C) Hypereutectoid Steel 1600 L 1400 1200 +L 1000 +Fe3C W =x/(v + x) v x 800 600 pearlite 400 0 (Fe) Wpearlite = W V X +Fe3C 0.76 WFe3C =(1-W ) 1 C0 W = X/(V + X) WFe 3C’ L+Fe3C 1148°C (austenite) 2 3 4 5 6 Fe3C (cementite) Fe3C 6.7 C, wt%C 60 mHypereutectoid steel =(1 - W ) pearlite proeutectoid Fe3C Adapted from Fig. 10.37, Callister & Rethwisch 3e. 23
  24. Relative amounts of proeutectoid phase (α or Fe3C) and pearlite? Application of the lever rule with tie line that extends from the eutectoid composition (0.76 wt% C) to α – (α + Fe3C) boundary (0.022 wt% C) for hypoeutectoid alloys and to (α + Fe3C) – Fe3C boundary (6.7 wt% C) for hypereutectoid alloys. Fraction of α phase is determined by application of the lever rule across the entire (α + Fe3C) phase field.
  25. Example for hypereutectoid alloy with composition C1 Fraction of pearlite: WP = X / (V+X) = (6.7 – C1) / (6.7 – 0.76) Fraction of proeutectoid cementite: WFe3C = V / (V+X) = (C1 – 0.76) / (6.7 – 0.76)
  26. Example Problem Steel For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: a) The compositions of Fe3C and ferrite ( ). b) The amount of cementite (in grams) that forms in 100 g of steel. c) The amounts of pearlite and proeutectoid ferrite ( ) in the 100 g. 26
  27. Solution to Problem a) Use RS tie line just below Eutectoid b) Use lever rule with the tie line shown WFe 3C R R S 1600 T(°C) 1200 C0 C CFe 3C C 0.40 0.022 6.70 0.022 L 1400 +L 1000 + Fe3C 800 727°C R 0.057 S + Fe3C 600 400 0 Amount of Fe3C in 100 g L+Fe3C 1148°C (austenite) Fe3C (cementite) C = 0.022 wt% C CFe3C = 6.70 wt% C C C0 1 2 3 4 C, wt% C 5 6 6.7 CFe 3C = (100 g)WFe3C = (100 g)(0.057) = 5.7 g 27
  28. Solution to Problem c) Using the VX tie line just above the eutectoid and realizing that C0 = 0.40 wt% C C = 0.022 wt% C Cpearlite = C = 0.76 wt% C V X T(°C) C0 C C C 0.40 0.022 0.76 0.022 L 1400 1200 +L L+Fe3C 1148°C (austenite) 1000 + Fe3C 0.512 800 727°C VX Amount of pearlite in 100 g = (100 g)Wpearlite = (100 g)(0.512) = 51.2 g 600 400 0 + Fe3C 1 C C0 C 2 3 4 5 6 Fe C (cementite) Wpearlite V 1600 6.7 C, wt% C 28
  29. Summary Phase Diagrams and Microstructures • Phase (T vs c) diagrams are useful to determine: - the number and types of phases, - the wt% of each phase, - and the composition of each phase for a given T and composition of the system. • Alloying to produce a solid solution usually - increases the tensile strength (TS) - decreases the ductility. • Binary eutectics and binary eutectoids allow for a range of microstructures. - Alloy composition and annealing temperature and time determine possible microstructure(s). Slow vs. Fast. - In 2-phase regions, use “lever rule” to get wt% of phases. - Varying microstructure affects mechanical properties. 29
  30. Alloying Steel With More Elements Ti Mo • Ceutectoid changes: Si W Cr Mn Ni wt. % of alloying elements Adapted from Fig. 10.38,Callister & Rethwisch 3e. (Fig. 10.38 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) Ceutectoid (wt% C) T Eutectoid (°C) • Teutectoid changes: Ni Cr Si Ti Mo W Mn wt. % of alloying elements Adapted from Fig. 10.39,Callister & Rethwisch 3e. (Fig. 10.39 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) 30
  31. THANKS
Publicidad