Millions of people all around the world Learn with Chegg. Education at Chegg is powered by the depth and diversity of the content that we have. A huge part of our content is in form of images. These images could be uploaded by students or by content creators. Images contain text that is extracted using a transcription service. Very often uploaded images are noisy. This leads to irrelevant characters or words in the transcribed text. Using object detection techniques we develop a service that extracts the relevant parts of the image and uses a transcription service to get clean text. In the first part of the presentation, I will talk about building an object detection model using YOLO for cropping and masking images to obtain a cleaner text from transcription. YOLO is a deep learning object detection and recognition modeling framework that is able to produce highly accurate results with low latency. In the next part of my presentation, I will talk about the building the Computer Vision landscape at Chegg. Starting from images on academic materials that are composed of elements such as text, equations, diagrams we create a pipeline for extracting these image elements. Using state of the art deep learning techniques we create embeddings for these elements to enhance downstream machine learning models such as content quality and similarity.