Vedic mathematicss by SANKAR

Sankar Rangasamy
Sankar RangasamyAssistant Professor at Professional Group of Institutions en Professional Group of Institutions
VEDIC MATHEMATICSVEDIC MATHEMATICS
R.SANKARR.SANKAR
ASSISTANT PROFESSOR,ASSISTANT PROFESSOR,
DEPARTMENT OF MATHEMATICS,DEPARTMENT OF MATHEMATICS,
PROFESSONAL GROUP OF INSTITUTIONS,PROFESSONAL GROUP OF INSTITUTIONS,
PALLADAM-641662.PALLADAM-641662.
BYBY
INTRODUCTIONINTRODUCTION
 Vedic Mathematics is the ancient system ofVedic Mathematics is the ancient system of
Mathematics which was rediscovered early lastMathematics which was rediscovered early last
century by “century by “ Sri Bharati Krishna TirtajiSri Bharati Krishna Tirtaji
(1884-1960)(1884-1960)”.”.
 Vedic Mathematics is a new approach toVedic Mathematics is a new approach to
mathematics, direct, one-line and mentalmathematics, direct, one-line and mental
solutions to mathematical problem.solutions to mathematical problem.
 The following chapters explains how easy theThe following chapters explains how easy the
mathematics.mathematics.
TOPICSTOPICS
Left to Right Calculation:Left to Right Calculation:
1. Addition1. Addition
2. Multiplication2. Multiplication
3. Subtraction3. Subtraction
Digit Sum (Checking)Digit Sum (Checking)
Special MethodsSpecial Methods
All from 9 and Last from 10All from 9 and Last from 10
SquaringSquaring
DivisibilityDivisibility
RemaindersRemainders
Special NumbersSpecial Numbers
Left to Right CalculationLeft to Right Calculation
ADDITIONADDITION
Normal Form:Normal Form:
58+77=?58+77=?
5858
7777
135135
Vedic FormVedic Form
58+77=?58+77=?
5858
7777
135135
Sum ofSum of Ten-thTen-th place digitsplace digits 5+7=1205+7=120
Sum ofSum of UnitUnit place digitsplace digits 8+7= 158+7= 15
135135
Example : 2Example : 2
97+96=?97+96=?
9797
9696
193193
Sum ofSum of Ten-thTen-th place digits 9+9= 180place digits 9+9= 180
Sum ofSum of UnitUnit place digits 7+6= 13place digits 7+6= 13
193193
3-digit and more….3-digit and more….
789+999=?789+999=?
Sum ofSum of 100-th100-th place digits 7+9=1600place digits 7+9=1600
Sum ofSum of Ten-thTen-th place digits 8+9= 170place digits 8+9= 170
Sum ofSum of UnitUnit place digits 9+9= 18place digits 9+9= 18
17881788
We can continue this process for any digitWe can continue this process for any digit
valuevalue
Example : 2Example : 2
578+764=?578+764=?
Sum ofSum of 100-th100-th place digits 5+7=1200place digits 5+7=1200
Sum ofSum of Ten-thTen-th place digits 7+6= 130place digits 7+6= 130
Sum ofSum of UnitUnit place digitsplace digits 8+4= 128+4= 12
13421342
We can continue this process for any digitWe can continue this process for any digit
valuevalue
Practice 1Practice 1
 875 + 746875 + 746 = ?= ?
 375 + 96375 + 96 = ?= ?
 1565 + 17451565 + 1745 = ?= ?
 4688 + 46514688 + 4651 = ?= ?
 685 + 592685 + 592 = ?= ?
 88525+ 47469 = ?88525+ 47469 = ?
 87848+ 12345 = ?87848+ 12345 = ?
 68598+ 99999 = ?68598+ 99999 = ?
 9484899+99484899+9 = ?= ?
 Ans:Ans:
 ??
MULTIPLICATIONMULTIPLICATION
Find 584 × 8 = ?Find 584 × 8 = ?
Normal Form :Normal Form :
 584 × 8584 × 8
46724672
We can use Vedic method to solve theWe can use Vedic method to solve the
above problem easily.above problem easily.
Vedic FormVedic Form
 Find 584 × 8 = ?Find 584 × 8 = ?
 Multiplication ofMultiplication of 100-th100-th place 5 × 8 = 4000place 5 × 8 = 4000
 Multiplication ofMultiplication of Ten-thTen-th place 8 × 8 = 640place 8 × 8 = 640
 Multiplication ofMultiplication of UnitUnit place 4 × 8 = 32place 4 × 8 = 32
46724672
Practice 2Practice 2,, Try this:Try this:
 989 × 9=?989 × 9=?
 68778 × 5=?68778 × 5=?
Practice 2Practice 2
Try this:Try this:
 989 × 9=?989 × 9=?
 68778 × 5=?68778 × 5=?
 899474 × 8 =?899474 × 8 =?
 Sometimes theSometimes the
addition of the No’s isaddition of the No’s is
10 r more, here we10 r more, here we
carry the one to thecarry the one to the
previous no andprevious no and
continue the process.continue the process.
 989 × 9= 8100989 × 9= 8100
720720
8181
89018901
 989 × 9 = 8901989 × 9 = 8901
SUBTRACTIONSUBTRACTION
Find 625 – 183 = ?Find 625 – 183 = ?
Normal Form:Normal Form:
 625 –625 –
183183
442442
Here in the unit digit 5-3=2 and in the 10Here in the unit digit 5-3=2 and in the 10thth
place borrow 10 from 6 and make 2 as 12place borrow 10 from 6 and make 2 as 12
and then subtract 8 we get 4 and 100and then subtract 8 we get 4 and 100thth
place 5-1=4place 5-1=4
Vedic FormVedic Form
 Find 625 – 183 = ?Find 625 – 183 = ?
 We subtract in each column on the left, but before we putWe subtract in each column on the left, but before we put
an answer down we look in the next column.an answer down we look in the next column.
 IfIf the top is greater than the bottom we put the figure downthe top is greater than the bottom we put the figure down
 If not,If not, we reduce the figure by 1, put that down and give the otherwe reduce the figure by 1, put that down and give the other
1 to smaller number at the top of the next column1 to smaller number at the top of the next column
 If the figures are the same we look at the next column to decideIf the figures are the same we look at the next column to decide
whether to reduce or notwhether to reduce or not
 625 -625 -
183183
442442
 Here in the unit digit 6-1=5. Now we look at the nextHere in the unit digit 6-1=5. Now we look at the next
column, here the top 2 is less than the bottom 8, so wecolumn, here the top 2 is less than the bottom 8, so we
put down 4 in the 1put down 4 in the 1stst
column and carry 1 in the nextcolumn and carry 1 in the next
column top so 12-8=4 in that column and look at the nextcolumn top so 12-8=4 in that column and look at the next
column 5 is greater than 3 so 5-3=2column 5 is greater than 3 so 5-3=2
Practice 3Practice 3
 68 – 25 = ?68 – 25 = ?
 813 – 489 = ?813 – 489 = ?
 986 – 584 = ?986 – 584 = ?
 6226-2662= ?6226-2662= ?
 5161-1838 = ?5161-1838 = ?
 35567-12346=?35567-12346=?
 486645 – 359 = ?486645 – 359 = ?
 Ans:Ans:
 ??
DIGIT SUM (CHECKING)DIGIT SUM (CHECKING)
 This is an interesting and also very useful to checkThis is an interesting and also very useful to check
our answer.our answer.
 TheThe digit sumdigit sum of a number is found by adding theof a number is found by adding the
digits in a number and adding again if necessarydigits in a number and adding again if necessary
until a single figure is reached.until a single figure is reached.
 Example:Example:
 consider the no:78158consider the no:78158
 Sum of the digit is7+8+1+5+8=29Sum of the digit is7+8+1+5+8=29
=2+9=2+9
=11=11
=1+1=1+1
=2=2
 Any pair or group of digits which add up to 9 can beAny pair or group of digits which add up to 9 can be
deleted.deleted.
CHECKING THE ANSWERCHECKING THE ANSWER
 58+77=?58+77=?
 5858
7777
135135
 The digit sum of 58=5+8=13=4The digit sum of 58=5+8=13=4
 The digit sum of 77=7+7=14=5The digit sum of 77=7+7=14=5
 Total digit sum is 4+5=9Total digit sum is 4+5=9
 From the answer,From the answer,
The digit sum of 135=1+3+5=9The digit sum of 135=1+3+5=9
 There fore from & , our answer is correct.There fore from & , our answer is correct.
 Check the answers from practice 1,2 and 3Check the answers from practice 1,2 and 3
1
2
1 2
Special MethodsSpecial Methods
MULTIPLICATION NEAR AMULTIPLICATION NEAR A
BASEBASE
Numbers just below the baseNumbers just below the base
Numbers just above the baseNumbers just above the base
Above and Below the baseAbove and Below the base
With different baseWith different base
NUMBERS JUST BELOW THENUMBERS JUST BELOW THE
BASEBASE
Find 98 × 94 = ?Find 98 × 94 = ?
Normal Form:Normal Form:
 98 × 9498 × 94
392392
882882
92129212
In Vedic form here we useIn Vedic form here we use 100100 as a baseas a base
98 × 94 = ?98 × 94 = ?
98 - 0298 - 02
94 - 0694 - 06
92 / 1292 / 12
Subtract 98-06 or 94-02 we get 92Subtract 98-06 or 94-02 we get 92
Multiply 02 × 06 we get 12Multiply 02 × 06 we get 12
98 × 94 =921298 × 94 =9212
Vedic FormVedic Form
Example:2Example:2
 88 × 89 = ?88 × 89 = ?
 88 - 1288 - 12
89 - 1189 - 11
77 / 13277 / 132
 Subtract 88-11 or 89-12 we getSubtract 88-11 or 89-12 we get
7777
 Multiply 12 × 11 we get 132Multiply 12 × 11 we get 132
 We can’t put the answer likeWe can’t put the answer like
this 77132this 77132
 Here from 132, 1 carry to 77Here from 132, 1 carry to 77
and it becomes 78, thenand it becomes 78, then
 88 × 89 = 783288 × 89 = 7832
 To Multiply 12 and 11,we canTo Multiply 12 and 11,we can
use 10 as a base.use 10 as a base.
 12 + 0212 + 02
11 + 0111 + 01
13/213/2
Practice 4Practice 4
 91 × 89 = ?91 × 89 = ?
 92 × 92 = ?92 × 92 = ?
 88 × 85 = ?88 × 85 = ?
 86 × 97 = ?86 × 97 = ?
 91 × 92 = ?91 × 92 = ?
 94 × 97 = ?94 × 97 = ?
 85 × 85 = ?85 × 85 = ?
 98 × 98 = ?98 × 98 = ?
 Ans:Ans:
 ??
NUMBERS JUST ABOVE THE BASENUMBERS JUST ABOVE THE BASE
Find 103 × 104 = ?Find 103 × 104 = ?
Normal Form:Normal Form:
 103 × 104103 × 104
412412
000000
103103
1071210712
Vedic FormVedic Form
In Vedic form here we useIn Vedic form here we use 100100 as a baseas a base
103 × 104 = ?103 × 104 = ?
103 + 03103 + 03
104 + 04104 + 04
107 / 12107 / 12
Add 103+04 or 104+03 we get 107Add 103+04 or 104+03 we get 107
Multiply 03 × 04 we get 12Multiply 03 × 04 we get 12
103 × 104 = 10712103 × 104 = 10712
125 × 105 = ?125 × 105 = ?
125 + 025125 + 025
105 + 005105 + 005
130 / 125130 / 125
Add 125+005 or 105+025 we get 130Add 125+005 or 105+025 we get 130
Multiply 25 × 5 we get 125Multiply 25 × 5 we get 125
We can’t put the answer like this 130125We can’t put the answer like this 130125
Here from 125, 1 carry to 130 and itHere from 125, 1 carry to 130 and it
becomes 131, thenbecomes 131, then
125 × 105 = 13125125 × 105 = 13125
Practice 5Practice 5
 128 × 112 = ?128 × 112 = ?
 109 × 105 = ?109 × 105 = ?
 131 × 109 = ?131 × 109 = ?
 125 × 125 = ?125 × 125 = ?
 114 × 112 = ?114 × 112 = ?
 107 × 108 = ?107 × 108 = ?
 113 × 113 = ?113 × 113 = ?
 102 × 125 = ?102 × 125 = ?
 Ans :Ans :
 ??
ABOVE AND BELOW THE BASEABOVE AND BELOW THE BASE
Find 102 × 95 = ?Find 102 × 95 = ?
Normal Form:Normal Form:
 102 × 95102 × 95
510510
918918
96909690
Vedic FormVedic Form
 In Vedic form here we useIn Vedic form here we use 100100 as a baseas a base
 102 × 95 = ?102 × 95 = ?
 102 + 02102 + 02
95 - 0595 - 05
97 / 1097 / 10
 Add 95 + 02 or Subtract 102-05 we get 97Add 95 + 02 or Subtract 102-05 we get 97
 Multiply 97 with 100 =9700Multiply 97 with 100 =9700
 Multiply 02 × 05 we get 10Multiply 02 × 05 we get 10
 Finally we get the answer from 9700-10Finally we get the answer from 9700-10
 102 × 95 = 9690102 × 95 = 9690
10
 136 × 90 = ?136 × 90 = ?
 136 + 36136 + 36
90 - 1090 - 10
126 / 360126 / 360
 Add 90+36 or Subtract 136-10 we get 126Add 90+36 or Subtract 136-10 we get 126
 Multiply 126 with 100 =12600Multiply 126 with 100 =12600
 Multiply 36 × 10 we get 360Multiply 36 × 10 we get 360
 Therefore 12600-360 we get the answerTherefore 12600-360 we get the answer
 136 × 90 = 12240136 × 90 = 12240
Practice 6Practice 6
 146 × 80 = ?146 × 80 = ?
 97 × 145 = ?97 × 145 = ?
 98 × 125 = ?98 × 125 = ?
 139 × 95 = ?139 × 95 = ?
 141 × 90 = ?141 × 90 = ?
 128 × 96 = ?128 × 96 = ?
 126 × 89 = ?126 × 89 = ?
 130 × 99 = ?130 × 99 = ?
 Ans:Ans:
 ??
WITH DIFFERENT BASEWITH DIFFERENT BASE
• 9997 ×9997 × 98 = ?98 = ?
• Here the numbers areHere the numbers are
close to differentclose to different
bases:10,000 and 100bases:10,000 and 100
• The deficiencies areThe deficiencies are
-3 and -2.-3 and -2.
• Therefore: 9997 – 03Therefore: 9997 – 03
98 – 0298 – 02
9797/069797/06
• 02 is not subtracted from the02 is not subtracted from the
last two digit (97) of 9997,last two digit (97) of 9997,
but from 99 of 9997.but from 99 of 9997.
• And 03 is a deficiency fromAnd 03 is a deficiency from
10,000 so we can’t subtract it10,000 so we can’t subtract it
from 98,because it’s a basefrom 98,because it’s a base
of 100of 100
• Mulply 98 by 100 andMulply 98 by 100 and
subtract 3 also give the anssubtract 3 also give the ans
• 9997 ×9997 × 98 = 97970698 = 979706
Practice 7Practice 7
999 × 80999 × 80= ?= ?
9987 × 989987 × 98 = ?= ?
99995 × 99899995 × 998 = ?= ?
96 × 896 × 8 = ?= ?
10004 × 10810004 × 108 = ?= ?
9985 × 9969985 × 996 = ?= ?
98889 × 9998889 × 99 = ?= ?
 Ans :Ans :
 ??
10,20,… As a Base10,20,… As a Base
 We can use 10 as a baseWe can use 10 as a base
for single digit numbers.for single digit numbers.
 Ex: 7Ex: 7 × 8=?× 8=?
 7-37-3
8-28-2
5/65/6
 77 × 8=56× 8=56
 We can use 20 as a baseWe can use 20 as a base
for single digit numbers.for single digit numbers.
 Ex: 25 × 24=?Ex: 25 × 24=?
 25 + 0525 + 05
24 + 0424 + 04
29/2029/20
 Now Multiply 29 by 2, weNow Multiply 29 by 2, we
get 58 again multiply byget 58 again multiply by
10,we get 580.10,we get 580.
 Add 580 with (5 × 4)=20Add 580 with (5 × 4)=20
 25 × 24=60025 × 24=600
Practice 8Practice 8
 88 × 9× 9 =?=?
 2222 × 23 =?× 23 =?
 1818 × 24 =?× 24 =?
 2929 × 34 =?× 34 =?
 5454 × 56 =?× 56 =?
 3838 × 39 =?× 39 =?
 4545 × 42 =?× 42 =?
 99 × 5× 5 =?=?
 Ans:Ans:
 ??
ALL FROM 9 AND LAST FROMALL FROM 9 AND LAST FROM
1010
 Subtraction From aSubtraction From a
Base:Base:
 If we apply the formulaIf we apply the formula
to 854 we get 146to 854 we get 146
because 8 and 5 arebecause 8 and 5 are
taken from 9 and 4 istaken from 9 and 4 is
taken from 10.taken from 10.
 1000 – 46 = ?1000 – 46 = ?
 1000 -1000 -
046046
954954
 Subtract the unitsSubtract the units
digit from 10, thendigit from 10, then
each successive digiteach successive digit
from 9, then subtractfrom 9, then subtract
1 from the digit on the1 from the digit on the
left.left.
 60000 – 34843 = ?60000 – 34843 = ?
 60000 -60000 -
3484334843
2515725157
SQUARINGSQUARING
Digits ends with five and zeroDigits ends with five and zero
Two digit numbers (aTwo digit numbers (a22
+2ab+b+2ab+b22
) form) form
DIGITS ENDS WITHDIGITS ENDS WITH FIVEFIVE ANDAND
ZEROZERO
75 × 75 =?75 × 75 =?
Normal FormNormal Form
 75 × 7575 × 75
375375
525525
56255625
Vedic FormVedic Form
75 × 75 =?75 × 75 =?
Here we use n(n+1)/25 formulaHere we use n(n+1)/25 formula
Let n= 7Let n= 7
 n+1= 8n+1= 8
 n(n+1) = 7n(n+1) = 7 × 8 = 56× 8 = 56
Therefore 75 × 75 =5625Therefore 75 × 75 =5625
3,4,… digits ends with 53,4,… digits ends with 5
135 × 135 = ?135 × 135 = ?
Let n=13Let n=13
n(n+1)=13(14)n(n+1)=13(14)
169+13=182169+13=182
135 × 135 =18225135 × 135 =18225
PracticePractice
151522
,25,2522
,etc..,etc..
 169+13=?169+13=?
 169169
1313
 11
0 70 7
1212
182182
DIGITS ENDS WITHDIGITS ENDS WITH ZEROZERO
 101022
=?, 100=?, 100
 202022
=?=?
22 × 2 = 4 and put 00× 2 = 4 and put 00
We get 400We get 400
 1250125022
=?=?
 125/0125/0
 125=12/5125=12/5
 12*13/5*5=156/2512*13/5*5=156/25
 1250125022
= 1562500= 1562500
TWO DIGIT NUMBERSTWO DIGIT NUMBERS (A(A22
+2AB+B+2AB+B22
))
FORMFORM
 36 × 36 =?36 × 36 =?
 A=3 & B=6A=3 & B=6
 3322
= 9= 9
 2*3*6 = 362*3*6 = 36
 6622
= 36= 36
 Therefore 9,36,36Therefore 9,36,36
12961296
 Left to RightLeft to Right
Calculation:Calculation:
 9+3=129+3=12
 6+3= 096+3= 09
 66 = 06= 06
12961296
Practice 9Practice 9
 89 × 8989 × 89 =?=?
 26 × 2626 × 26 =?=?
 93 × 9393 × 93 =?=?
 78 × 7878 × 78 =?=?
 61 × 6161 × 61 =?=?
 92 × 9292 × 92 =?=?
 44 × 4444 × 44 =?=?
 55 × 5555 × 55 =?=?
 Ans:Ans:
 ??
Left Side Same Digit and Addition ofLeft Side Same Digit and Addition of
Right Digit is 10Right Digit is 10
82 × 88 =?82 × 88 =?
Normal FormNormal Form
 88 × 8288 × 82
176176
704704
72167216
Vedic FormVedic Form
Here we are going to use n(n+1) formulaHere we are going to use n(n+1) formula
i.e, we take n=8 and get 8(8+1)=8(9)=72i.e, we take n=8 and get 8(8+1)=8(9)=72
and 2 × 8=16and 2 × 8=16
 Therefore 82 × 88 = 7216Therefore 82 × 88 = 7216
Practice 10Practice 10
 89 × 81 =?89 × 81 =?
 26 × 24 =?26 × 24 =?
 93 × 97 =?93 × 97 =?
 78 × 72 =?78 × 72 =?
 61 × 69 =?61 × 69 =?
 92 × 98 =?92 × 98 =?
 44 × 46 =?44 × 46 =?
 Ans:Ans:
Doubt?Doubt?
Keep Practice you will clear yourselfKeep Practice you will clear yourself
Contact:Contact:
R.SankarR.Sankar
98658176239865817623
1 de 48

Recomendados

Vedic maths ppt by lakshay virmani por
Vedic maths ppt by lakshay virmaniVedic maths ppt by lakshay virmani
Vedic maths ppt by lakshay virmaniNitika Virmani
4.1K vistas17 diapositivas
Vedic mathematics por
Vedic mathematicsVedic mathematics
Vedic mathematicsAbacus Vedic Maths Australia
3.7K vistas27 diapositivas
Vedic maths por
Vedic mathsVedic maths
Vedic mathsSaransh Sharma
12.9K vistas31 diapositivas
Basics of Vedic Mathematics - Multiplication (1 of 2) por
Basics of Vedic Mathematics - Multiplication (1 of 2)Basics of Vedic Mathematics - Multiplication (1 of 2)
Basics of Vedic Mathematics - Multiplication (1 of 2)A V Prakasam
6.1K vistas22 diapositivas
Vedic Mathematics For All por
Vedic Mathematics For AllVedic Mathematics For All
Vedic Mathematics For Allguest574aac2
11.4K vistas30 diapositivas
Vedic maths tutorial (interactive) por
Vedic maths tutorial (interactive)Vedic maths tutorial (interactive)
Vedic maths tutorial (interactive)Anurag Panda
230 vistas12 diapositivas

Más contenido relacionado

La actualidad más candente

Vedic maths- its relevance to real learning por
Vedic maths- its relevance to real learningVedic maths- its relevance to real learning
Vedic maths- its relevance to real learningPANKAJ VASHISTH
850 vistas31 diapositivas
Vedic math por
Vedic mathVedic math
Vedic mathCareer_Clicks
12.3K vistas22 diapositivas
vedic mathematics por
vedic mathematics vedic mathematics
vedic mathematics Nitin Chhaperwal
2.1K vistas32 diapositivas
Vedic maths por
Vedic mathsVedic maths
Vedic mathspavan uikey
912 vistas47 diapositivas
Vedic math por
Vedic mathVedic math
Vedic mathShahnavazoddin Shaikh
5.2K vistas77 diapositivas
Vedic Mathematics ppt por
Vedic Mathematics pptVedic Mathematics ppt
Vedic Mathematics pptKrishna Kumawat
121.8K vistas32 diapositivas

La actualidad más candente(13)

Destacado

Item #6 312 Agro por
Item #6   312 AgroItem #6   312 Agro
Item #6 312 AgroMarian Vargas Mendoza
105 vistas25 diapositivas
Excel with Business - Finance for Non-Finance Professionals por
Excel with Business - Finance for Non-Finance ProfessionalsExcel with Business - Finance for Non-Finance Professionals
Excel with Business - Finance for Non-Finance ProfessionalsWynand Killian
131 vistas3 diapositivas
AH CCM 02.08.16 - Item #6 - 248 Castano por
AH CCM 02.08.16 - Item #6 - 248 CastanoAH CCM 02.08.16 - Item #6 - 248 Castano
AH CCM 02.08.16 - Item #6 - 248 CastanoMarian Vargas Mendoza
266 vistas25 diapositivas
Vedic mathematicss-R.SANKAR por
Vedic mathematicss-R.SANKARVedic mathematicss-R.SANKAR
Vedic mathematicss-R.SANKARSankar Rangasamy
274 vistas48 diapositivas
ใบงานสำรวจตนเอง M6-33 por
ใบงานสำรวจตนเอง M6-33ใบงานสำรวจตนเอง M6-33
ใบงานสำรวจตนเอง M6-33bernfaibaifern
239 vistas3 diapositivas
Item #7 Overnight parking amend por
Item #7   Overnight parking amendItem #7   Overnight parking amend
Item #7 Overnight parking amendMarian Vargas Mendoza
198 vistas6 diapositivas

Destacado(20)

Excel with Business - Finance for Non-Finance Professionals por Wynand Killian
Excel with Business - Finance for Non-Finance ProfessionalsExcel with Business - Finance for Non-Finance Professionals
Excel with Business - Finance for Non-Finance Professionals
Wynand Killian131 vistas
ใบงานสำรวจตนเอง M6-33 por bernfaibaifern
ใบงานสำรวจตนเอง M6-33ใบงานสำรวจตนเอง M6-33
ใบงานสำรวจตนเอง M6-33
bernfaibaifern239 vistas
A Meta-Analysis of the Impacts of Genetically Modified Crops por Kiran Shaw
A Meta-Analysis of the Impacts of Genetically Modified CropsA Meta-Analysis of the Impacts of Genetically Modified Crops
A Meta-Analysis of the Impacts of Genetically Modified Crops
Kiran Shaw1.3K vistas
AH City Council Meeting 12.14.15 - Item #11 - Bexar County Interlocal Agreement por Marian Vargas Mendoza
AH City Council Meeting 12.14.15 - Item #11 - Bexar County Interlocal AgreementAH City Council Meeting 12.14.15 - Item #11 - Bexar County Interlocal Agreement
AH City Council Meeting 12.14.15 - Item #11 - Bexar County Interlocal Agreement
Excel with Business - Leadership & Management por Wynand Killian
Excel with Business - Leadership & ManagementExcel with Business - Leadership & Management
Excel with Business - Leadership & Management
Wynand Killian107 vistas
Thinking strategically about social media por CILIPScotland
Thinking strategically about social mediaThinking strategically about social media
Thinking strategically about social media
CILIPScotland249 vistas
AH City Council Meeting 12.14.15 - Item #14 - Intent to Develop 6061 Broadway por Marian Vargas Mendoza
AH City Council Meeting 12.14.15 - Item #14 - Intent to Develop 6061 BroadwayAH City Council Meeting 12.14.15 - Item #14 - Intent to Develop 6061 Broadway
AH City Council Meeting 12.14.15 - Item #14 - Intent to Develop 6061 Broadway
Why Radical Librarianship? por CILIPScotland
Why Radical Librarianship?Why Radical Librarianship?
Why Radical Librarianship?
CILIPScotland383 vistas
Amy Finnegan and Helen Monagle: The New Library Professionals Network por CILIPScotland
Amy Finnegan and Helen Monagle: The New Library Professionals NetworkAmy Finnegan and Helen Monagle: The New Library Professionals Network
Amy Finnegan and Helen Monagle: The New Library Professionals Network
CILIPScotland451 vistas
My web based lesson - The Story Behind the Guy Fawkes Mask por DianaGMendes
My web based lesson - The Story Behind the Guy Fawkes MaskMy web based lesson - The Story Behind the Guy Fawkes Mask
My web based lesson - The Story Behind the Guy Fawkes Mask
DianaGMendes1.1K vistas
David McMenemy: Synthesising political philosophy & professional ethics for e... por CILIPScotland
David McMenemy: Synthesising political philosophy & professional ethics for e...David McMenemy: Synthesising political philosophy & professional ethics for e...
David McMenemy: Synthesising political philosophy & professional ethics for e...
CILIPScotland559 vistas
Kiro หุ่นยนต์ครูอนุบาล. por Au Waraporn
Kiro หุ่นยนต์ครูอนุบาล.Kiro หุ่นยนต์ครูอนุบาล.
Kiro หุ่นยนต์ครูอนุบาล.
Au Waraporn184 vistas

Similar a Vedic mathematicss by SANKAR

Vedic maths tutorial (interactive) por
Vedic maths tutorial (interactive)Vedic maths tutorial (interactive)
Vedic maths tutorial (interactive)Anurag Panda
162 vistas12 diapositivas
Everyday Math And Algorithms Ppt July 06 por
Everyday Math And Algorithms Ppt July 06Everyday Math And Algorithms Ppt July 06
Everyday Math And Algorithms Ppt July 06lcirulli
2K vistas26 diapositivas
Vedic maths por
Vedic mathsVedic maths
Vedic mathsjayraj92
283 vistas14 diapositivas
10 ways to do fast math por
10 ways to do fast math10 ways to do fast math
10 ways to do fast mathnazeer08cs79
79 vistas5 diapositivas
15minute-math-integers.ppt por
15minute-math-integers.ppt15minute-math-integers.ppt
15minute-math-integers.pptRicardoDeGuzman9
2 vistas15 diapositivas
10 easy arithmetic tricks por
10 easy arithmetic tricks10 easy arithmetic tricks
10 easy arithmetic trickshome
237 vistas16 diapositivas

Similar a Vedic mathematicss by SANKAR(20)

Vedic maths tutorial (interactive) por Anurag Panda
Vedic maths tutorial (interactive)Vedic maths tutorial (interactive)
Vedic maths tutorial (interactive)
Anurag Panda162 vistas
Everyday Math And Algorithms Ppt July 06 por lcirulli
Everyday Math And Algorithms Ppt July 06Everyday Math And Algorithms Ppt July 06
Everyday Math And Algorithms Ppt July 06
lcirulli2K vistas
Vedic maths por jayraj92
Vedic mathsVedic maths
Vedic maths
jayraj92283 vistas
10 ways to do fast math por nazeer08cs79
10 ways to do fast math10 ways to do fast math
10 ways to do fast math
nazeer08cs7979 vistas
10 easy arithmetic tricks por home
10 easy arithmetic tricks10 easy arithmetic tricks
10 easy arithmetic tricks
home 237 vistas
15minute-math-integers.ppt por jaywarven1
15minute-math-integers.ppt15minute-math-integers.ppt
15minute-math-integers.ppt
jaywarven11 vista
OPERATIONS ON INTEGERS.ppt por san_6384
OPERATIONS ON INTEGERS.pptOPERATIONS ON INTEGERS.ppt
OPERATIONS ON INTEGERS.ppt
san_638432 vistas
Beauty Of Mathematics por MaxPerlman
Beauty Of MathematicsBeauty Of Mathematics
Beauty Of Mathematics
MaxPerlman279 vistas
Beauty Of Mathematics por Tom Kuipers
Beauty Of  MathematicsBeauty Of  Mathematics
Beauty Of Mathematics
Tom Kuipers440 vistas
Gauss elimination & Gauss Jordan method por Naimesh Bhavsar
Gauss elimination & Gauss Jordan methodGauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan method
Naimesh Bhavsar8.5K vistas
Orderofoperations 201217015300 por Lea Perez
Orderofoperations 201217015300Orderofoperations 201217015300
Orderofoperations 201217015300
Lea Perez83 vistas
AptitudeTestBook www.mechengg.net.pdf por HitendraThakur4
AptitudeTestBook www.mechengg.net.pdfAptitudeTestBook www.mechengg.net.pdf
AptitudeTestBook www.mechengg.net.pdf
HitendraThakur458 vistas
Class 6 - Maths (Integers).pptx por SadiqHameed2
Class 6 - Maths (Integers).pptxClass 6 - Maths (Integers).pptx
Class 6 - Maths (Integers).pptx
SadiqHameed2146 vistas

Último

The Future of Micro-credentials: Is Small Really Beautiful? por
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?Mark Brown
121 vistas35 diapositivas
Gross Anatomy of the Liver por
Gross Anatomy of the LiverGross Anatomy of the Liver
Gross Anatomy of the Liverobaje godwin sunday
100 vistas12 diapositivas
11.30.23A Poverty and Inequality in America.pptx por
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptxmary850239
228 vistas18 diapositivas
The Picture Of A Photograph por
The Picture Of A PhotographThe Picture Of A Photograph
The Picture Of A PhotographEvelyn Donaldson
38 vistas81 diapositivas
Interaction of microorganisms with vascular plants.pptx por
Interaction of microorganisms with vascular plants.pptxInteraction of microorganisms with vascular plants.pptx
Interaction of microorganisms with vascular plants.pptxMicrobiologyMicro
75 vistas33 diapositivas
DISTILLATION.pptx por
DISTILLATION.pptxDISTILLATION.pptx
DISTILLATION.pptxAnupkumar Sharma
82 vistas47 diapositivas

Último(20)

The Future of Micro-credentials: Is Small Really Beautiful? por Mark Brown
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?
Mark Brown121 vistas
11.30.23A Poverty and Inequality in America.pptx por mary850239
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptx
mary850239228 vistas
Interaction of microorganisms with vascular plants.pptx por MicrobiologyMicro
Interaction of microorganisms with vascular plants.pptxInteraction of microorganisms with vascular plants.pptx
Interaction of microorganisms with vascular plants.pptx
MicrobiologyMicro75 vistas
Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf por TechSoup
 Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf
Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf
TechSoup 67 vistas
JRN 362 - Lecture Twenty-Two por Rich Hanley
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-Two
Rich Hanley39 vistas
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx por Niranjan Chavan
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxGuidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Niranjan Chavan43 vistas
UNIT NO 13 ORGANISMS AND POPULATION.pptx por Madhuri Bhande
UNIT NO 13 ORGANISMS AND POPULATION.pptxUNIT NO 13 ORGANISMS AND POPULATION.pptx
UNIT NO 13 ORGANISMS AND POPULATION.pptx
Madhuri Bhande48 vistas
OOPs - JAVA Quick Reference.pdf por ArthyR3
OOPs - JAVA Quick Reference.pdfOOPs - JAVA Quick Reference.pdf
OOPs - JAVA Quick Reference.pdf
ArthyR376 vistas
Introduction to AERO Supply Chain - #BEAERO Trainning program por Guennoun Wajih
Introduction to AERO Supply Chain  - #BEAERO Trainning programIntroduction to AERO Supply Chain  - #BEAERO Trainning program
Introduction to AERO Supply Chain - #BEAERO Trainning program
Guennoun Wajih135 vistas
Career Building in AI - Technologies, Trends and Opportunities por WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy51 vistas
GSoC 2024 .pdf por ShabNaz2
GSoC 2024 .pdfGSoC 2024 .pdf
GSoC 2024 .pdf
ShabNaz245 vistas
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating... por Taste
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...
Taste39 vistas
11.21.23 Economic Precarity and Global Economic Forces.pptx por mary850239
11.21.23 Economic Precarity and Global Economic Forces.pptx11.21.23 Economic Precarity and Global Economic Forces.pptx
11.21.23 Economic Precarity and Global Economic Forces.pptx
mary85023994 vistas

Vedic mathematicss by SANKAR

  • 1. VEDIC MATHEMATICSVEDIC MATHEMATICS R.SANKARR.SANKAR ASSISTANT PROFESSOR,ASSISTANT PROFESSOR, DEPARTMENT OF MATHEMATICS,DEPARTMENT OF MATHEMATICS, PROFESSONAL GROUP OF INSTITUTIONS,PROFESSONAL GROUP OF INSTITUTIONS, PALLADAM-641662.PALLADAM-641662. BYBY
  • 2. INTRODUCTIONINTRODUCTION  Vedic Mathematics is the ancient system ofVedic Mathematics is the ancient system of Mathematics which was rediscovered early lastMathematics which was rediscovered early last century by “century by “ Sri Bharati Krishna TirtajiSri Bharati Krishna Tirtaji (1884-1960)(1884-1960)”.”.  Vedic Mathematics is a new approach toVedic Mathematics is a new approach to mathematics, direct, one-line and mentalmathematics, direct, one-line and mental solutions to mathematical problem.solutions to mathematical problem.  The following chapters explains how easy theThe following chapters explains how easy the mathematics.mathematics.
  • 3. TOPICSTOPICS Left to Right Calculation:Left to Right Calculation: 1. Addition1. Addition 2. Multiplication2. Multiplication 3. Subtraction3. Subtraction Digit Sum (Checking)Digit Sum (Checking) Special MethodsSpecial Methods All from 9 and Last from 10All from 9 and Last from 10 SquaringSquaring DivisibilityDivisibility RemaindersRemainders Special NumbersSpecial Numbers
  • 4. Left to Right CalculationLeft to Right Calculation
  • 6. Vedic FormVedic Form 58+77=?58+77=? 5858 7777 135135 Sum ofSum of Ten-thTen-th place digitsplace digits 5+7=1205+7=120 Sum ofSum of UnitUnit place digitsplace digits 8+7= 158+7= 15 135135
  • 7. Example : 2Example : 2 97+96=?97+96=? 9797 9696 193193 Sum ofSum of Ten-thTen-th place digits 9+9= 180place digits 9+9= 180 Sum ofSum of UnitUnit place digits 7+6= 13place digits 7+6= 13 193193
  • 8. 3-digit and more….3-digit and more…. 789+999=?789+999=? Sum ofSum of 100-th100-th place digits 7+9=1600place digits 7+9=1600 Sum ofSum of Ten-thTen-th place digits 8+9= 170place digits 8+9= 170 Sum ofSum of UnitUnit place digits 9+9= 18place digits 9+9= 18 17881788 We can continue this process for any digitWe can continue this process for any digit valuevalue
  • 9. Example : 2Example : 2 578+764=?578+764=? Sum ofSum of 100-th100-th place digits 5+7=1200place digits 5+7=1200 Sum ofSum of Ten-thTen-th place digits 7+6= 130place digits 7+6= 130 Sum ofSum of UnitUnit place digitsplace digits 8+4= 128+4= 12 13421342 We can continue this process for any digitWe can continue this process for any digit valuevalue
  • 10. Practice 1Practice 1  875 + 746875 + 746 = ?= ?  375 + 96375 + 96 = ?= ?  1565 + 17451565 + 1745 = ?= ?  4688 + 46514688 + 4651 = ?= ?  685 + 592685 + 592 = ?= ?  88525+ 47469 = ?88525+ 47469 = ?  87848+ 12345 = ?87848+ 12345 = ?  68598+ 99999 = ?68598+ 99999 = ?  9484899+99484899+9 = ?= ?  Ans:Ans:  ??
  • 11. MULTIPLICATIONMULTIPLICATION Find 584 × 8 = ?Find 584 × 8 = ? Normal Form :Normal Form :  584 × 8584 × 8 46724672 We can use Vedic method to solve theWe can use Vedic method to solve the above problem easily.above problem easily.
  • 12. Vedic FormVedic Form  Find 584 × 8 = ?Find 584 × 8 = ?  Multiplication ofMultiplication of 100-th100-th place 5 × 8 = 4000place 5 × 8 = 4000  Multiplication ofMultiplication of Ten-thTen-th place 8 × 8 = 640place 8 × 8 = 640  Multiplication ofMultiplication of UnitUnit place 4 × 8 = 32place 4 × 8 = 32 46724672 Practice 2Practice 2,, Try this:Try this:  989 × 9=?989 × 9=?  68778 × 5=?68778 × 5=?
  • 13. Practice 2Practice 2 Try this:Try this:  989 × 9=?989 × 9=?  68778 × 5=?68778 × 5=?  899474 × 8 =?899474 × 8 =?  Sometimes theSometimes the addition of the No’s isaddition of the No’s is 10 r more, here we10 r more, here we carry the one to thecarry the one to the previous no andprevious no and continue the process.continue the process.  989 × 9= 8100989 × 9= 8100 720720 8181 89018901  989 × 9 = 8901989 × 9 = 8901
  • 14. SUBTRACTIONSUBTRACTION Find 625 – 183 = ?Find 625 – 183 = ? Normal Form:Normal Form:  625 –625 – 183183 442442 Here in the unit digit 5-3=2 and in the 10Here in the unit digit 5-3=2 and in the 10thth place borrow 10 from 6 and make 2 as 12place borrow 10 from 6 and make 2 as 12 and then subtract 8 we get 4 and 100and then subtract 8 we get 4 and 100thth place 5-1=4place 5-1=4
  • 15. Vedic FormVedic Form  Find 625 – 183 = ?Find 625 – 183 = ?  We subtract in each column on the left, but before we putWe subtract in each column on the left, but before we put an answer down we look in the next column.an answer down we look in the next column.  IfIf the top is greater than the bottom we put the figure downthe top is greater than the bottom we put the figure down  If not,If not, we reduce the figure by 1, put that down and give the otherwe reduce the figure by 1, put that down and give the other 1 to smaller number at the top of the next column1 to smaller number at the top of the next column  If the figures are the same we look at the next column to decideIf the figures are the same we look at the next column to decide whether to reduce or notwhether to reduce or not  625 -625 - 183183 442442  Here in the unit digit 6-1=5. Now we look at the nextHere in the unit digit 6-1=5. Now we look at the next column, here the top 2 is less than the bottom 8, so wecolumn, here the top 2 is less than the bottom 8, so we put down 4 in the 1put down 4 in the 1stst column and carry 1 in the nextcolumn and carry 1 in the next column top so 12-8=4 in that column and look at the nextcolumn top so 12-8=4 in that column and look at the next column 5 is greater than 3 so 5-3=2column 5 is greater than 3 so 5-3=2
  • 16. Practice 3Practice 3  68 – 25 = ?68 – 25 = ?  813 – 489 = ?813 – 489 = ?  986 – 584 = ?986 – 584 = ?  6226-2662= ?6226-2662= ?  5161-1838 = ?5161-1838 = ?  35567-12346=?35567-12346=?  486645 – 359 = ?486645 – 359 = ?  Ans:Ans:  ??
  • 17. DIGIT SUM (CHECKING)DIGIT SUM (CHECKING)  This is an interesting and also very useful to checkThis is an interesting and also very useful to check our answer.our answer.  TheThe digit sumdigit sum of a number is found by adding theof a number is found by adding the digits in a number and adding again if necessarydigits in a number and adding again if necessary until a single figure is reached.until a single figure is reached.  Example:Example:  consider the no:78158consider the no:78158  Sum of the digit is7+8+1+5+8=29Sum of the digit is7+8+1+5+8=29 =2+9=2+9 =11=11 =1+1=1+1 =2=2  Any pair or group of digits which add up to 9 can beAny pair or group of digits which add up to 9 can be deleted.deleted.
  • 18. CHECKING THE ANSWERCHECKING THE ANSWER  58+77=?58+77=?  5858 7777 135135  The digit sum of 58=5+8=13=4The digit sum of 58=5+8=13=4  The digit sum of 77=7+7=14=5The digit sum of 77=7+7=14=5  Total digit sum is 4+5=9Total digit sum is 4+5=9  From the answer,From the answer, The digit sum of 135=1+3+5=9The digit sum of 135=1+3+5=9  There fore from & , our answer is correct.There fore from & , our answer is correct.  Check the answers from practice 1,2 and 3Check the answers from practice 1,2 and 3 1 2 1 2
  • 20. MULTIPLICATION NEAR AMULTIPLICATION NEAR A BASEBASE Numbers just below the baseNumbers just below the base Numbers just above the baseNumbers just above the base Above and Below the baseAbove and Below the base With different baseWith different base
  • 21. NUMBERS JUST BELOW THENUMBERS JUST BELOW THE BASEBASE Find 98 × 94 = ?Find 98 × 94 = ? Normal Form:Normal Form:  98 × 9498 × 94 392392 882882 92129212
  • 22. In Vedic form here we useIn Vedic form here we use 100100 as a baseas a base 98 × 94 = ?98 × 94 = ? 98 - 0298 - 02 94 - 0694 - 06 92 / 1292 / 12 Subtract 98-06 or 94-02 we get 92Subtract 98-06 or 94-02 we get 92 Multiply 02 × 06 we get 12Multiply 02 × 06 we get 12 98 × 94 =921298 × 94 =9212 Vedic FormVedic Form
  • 23. Example:2Example:2  88 × 89 = ?88 × 89 = ?  88 - 1288 - 12 89 - 1189 - 11 77 / 13277 / 132  Subtract 88-11 or 89-12 we getSubtract 88-11 or 89-12 we get 7777  Multiply 12 × 11 we get 132Multiply 12 × 11 we get 132  We can’t put the answer likeWe can’t put the answer like this 77132this 77132  Here from 132, 1 carry to 77Here from 132, 1 carry to 77 and it becomes 78, thenand it becomes 78, then  88 × 89 = 783288 × 89 = 7832  To Multiply 12 and 11,we canTo Multiply 12 and 11,we can use 10 as a base.use 10 as a base.  12 + 0212 + 02 11 + 0111 + 01 13/213/2
  • 24. Practice 4Practice 4  91 × 89 = ?91 × 89 = ?  92 × 92 = ?92 × 92 = ?  88 × 85 = ?88 × 85 = ?  86 × 97 = ?86 × 97 = ?  91 × 92 = ?91 × 92 = ?  94 × 97 = ?94 × 97 = ?  85 × 85 = ?85 × 85 = ?  98 × 98 = ?98 × 98 = ?  Ans:Ans:  ??
  • 25. NUMBERS JUST ABOVE THE BASENUMBERS JUST ABOVE THE BASE Find 103 × 104 = ?Find 103 × 104 = ? Normal Form:Normal Form:  103 × 104103 × 104 412412 000000 103103 1071210712
  • 26. Vedic FormVedic Form In Vedic form here we useIn Vedic form here we use 100100 as a baseas a base 103 × 104 = ?103 × 104 = ? 103 + 03103 + 03 104 + 04104 + 04 107 / 12107 / 12 Add 103+04 or 104+03 we get 107Add 103+04 or 104+03 we get 107 Multiply 03 × 04 we get 12Multiply 03 × 04 we get 12 103 × 104 = 10712103 × 104 = 10712
  • 27. 125 × 105 = ?125 × 105 = ? 125 + 025125 + 025 105 + 005105 + 005 130 / 125130 / 125 Add 125+005 or 105+025 we get 130Add 125+005 or 105+025 we get 130 Multiply 25 × 5 we get 125Multiply 25 × 5 we get 125 We can’t put the answer like this 130125We can’t put the answer like this 130125 Here from 125, 1 carry to 130 and itHere from 125, 1 carry to 130 and it becomes 131, thenbecomes 131, then 125 × 105 = 13125125 × 105 = 13125
  • 28. Practice 5Practice 5  128 × 112 = ?128 × 112 = ?  109 × 105 = ?109 × 105 = ?  131 × 109 = ?131 × 109 = ?  125 × 125 = ?125 × 125 = ?  114 × 112 = ?114 × 112 = ?  107 × 108 = ?107 × 108 = ?  113 × 113 = ?113 × 113 = ?  102 × 125 = ?102 × 125 = ?  Ans :Ans :  ??
  • 29. ABOVE AND BELOW THE BASEABOVE AND BELOW THE BASE Find 102 × 95 = ?Find 102 × 95 = ? Normal Form:Normal Form:  102 × 95102 × 95 510510 918918 96909690
  • 30. Vedic FormVedic Form  In Vedic form here we useIn Vedic form here we use 100100 as a baseas a base  102 × 95 = ?102 × 95 = ?  102 + 02102 + 02 95 - 0595 - 05 97 / 1097 / 10  Add 95 + 02 or Subtract 102-05 we get 97Add 95 + 02 or Subtract 102-05 we get 97  Multiply 97 with 100 =9700Multiply 97 with 100 =9700  Multiply 02 × 05 we get 10Multiply 02 × 05 we get 10  Finally we get the answer from 9700-10Finally we get the answer from 9700-10  102 × 95 = 9690102 × 95 = 9690 10
  • 31.  136 × 90 = ?136 × 90 = ?  136 + 36136 + 36 90 - 1090 - 10 126 / 360126 / 360  Add 90+36 or Subtract 136-10 we get 126Add 90+36 or Subtract 136-10 we get 126  Multiply 126 with 100 =12600Multiply 126 with 100 =12600  Multiply 36 × 10 we get 360Multiply 36 × 10 we get 360  Therefore 12600-360 we get the answerTherefore 12600-360 we get the answer  136 × 90 = 12240136 × 90 = 12240
  • 32. Practice 6Practice 6  146 × 80 = ?146 × 80 = ?  97 × 145 = ?97 × 145 = ?  98 × 125 = ?98 × 125 = ?  139 × 95 = ?139 × 95 = ?  141 × 90 = ?141 × 90 = ?  128 × 96 = ?128 × 96 = ?  126 × 89 = ?126 × 89 = ?  130 × 99 = ?130 × 99 = ?  Ans:Ans:  ??
  • 33. WITH DIFFERENT BASEWITH DIFFERENT BASE • 9997 ×9997 × 98 = ?98 = ? • Here the numbers areHere the numbers are close to differentclose to different bases:10,000 and 100bases:10,000 and 100 • The deficiencies areThe deficiencies are -3 and -2.-3 and -2. • Therefore: 9997 – 03Therefore: 9997 – 03 98 – 0298 – 02 9797/069797/06 • 02 is not subtracted from the02 is not subtracted from the last two digit (97) of 9997,last two digit (97) of 9997, but from 99 of 9997.but from 99 of 9997. • And 03 is a deficiency fromAnd 03 is a deficiency from 10,000 so we can’t subtract it10,000 so we can’t subtract it from 98,because it’s a basefrom 98,because it’s a base of 100of 100 • Mulply 98 by 100 andMulply 98 by 100 and subtract 3 also give the anssubtract 3 also give the ans • 9997 ×9997 × 98 = 97970698 = 979706
  • 34. Practice 7Practice 7 999 × 80999 × 80= ?= ? 9987 × 989987 × 98 = ?= ? 99995 × 99899995 × 998 = ?= ? 96 × 896 × 8 = ?= ? 10004 × 10810004 × 108 = ?= ? 9985 × 9969985 × 996 = ?= ? 98889 × 9998889 × 99 = ?= ?  Ans :Ans :  ??
  • 35. 10,20,… As a Base10,20,… As a Base  We can use 10 as a baseWe can use 10 as a base for single digit numbers.for single digit numbers.  Ex: 7Ex: 7 × 8=?× 8=?  7-37-3 8-28-2 5/65/6  77 × 8=56× 8=56  We can use 20 as a baseWe can use 20 as a base for single digit numbers.for single digit numbers.  Ex: 25 × 24=?Ex: 25 × 24=?  25 + 0525 + 05 24 + 0424 + 04 29/2029/20  Now Multiply 29 by 2, weNow Multiply 29 by 2, we get 58 again multiply byget 58 again multiply by 10,we get 580.10,we get 580.  Add 580 with (5 × 4)=20Add 580 with (5 × 4)=20  25 × 24=60025 × 24=600
  • 36. Practice 8Practice 8  88 × 9× 9 =?=?  2222 × 23 =?× 23 =?  1818 × 24 =?× 24 =?  2929 × 34 =?× 34 =?  5454 × 56 =?× 56 =?  3838 × 39 =?× 39 =?  4545 × 42 =?× 42 =?  99 × 5× 5 =?=?  Ans:Ans:  ??
  • 37. ALL FROM 9 AND LAST FROMALL FROM 9 AND LAST FROM 1010  Subtraction From aSubtraction From a Base:Base:  If we apply the formulaIf we apply the formula to 854 we get 146to 854 we get 146 because 8 and 5 arebecause 8 and 5 are taken from 9 and 4 istaken from 9 and 4 is taken from 10.taken from 10.  1000 – 46 = ?1000 – 46 = ?  1000 -1000 - 046046 954954  Subtract the unitsSubtract the units digit from 10, thendigit from 10, then each successive digiteach successive digit from 9, then subtractfrom 9, then subtract 1 from the digit on the1 from the digit on the left.left.  60000 – 34843 = ?60000 – 34843 = ?  60000 -60000 - 3484334843 2515725157
  • 38. SQUARINGSQUARING Digits ends with five and zeroDigits ends with five and zero Two digit numbers (aTwo digit numbers (a22 +2ab+b+2ab+b22 ) form) form
  • 39. DIGITS ENDS WITHDIGITS ENDS WITH FIVEFIVE ANDAND ZEROZERO 75 × 75 =?75 × 75 =? Normal FormNormal Form  75 × 7575 × 75 375375 525525 56255625
  • 40. Vedic FormVedic Form 75 × 75 =?75 × 75 =? Here we use n(n+1)/25 formulaHere we use n(n+1)/25 formula Let n= 7Let n= 7  n+1= 8n+1= 8  n(n+1) = 7n(n+1) = 7 × 8 = 56× 8 = 56 Therefore 75 × 75 =5625Therefore 75 × 75 =5625
  • 41. 3,4,… digits ends with 53,4,… digits ends with 5 135 × 135 = ?135 × 135 = ? Let n=13Let n=13 n(n+1)=13(14)n(n+1)=13(14) 169+13=182169+13=182 135 × 135 =18225135 × 135 =18225 PracticePractice 151522 ,25,2522 ,etc..,etc..  169+13=?169+13=?  169169 1313  11 0 70 7 1212 182182
  • 42. DIGITS ENDS WITHDIGITS ENDS WITH ZEROZERO  101022 =?, 100=?, 100  202022 =?=? 22 × 2 = 4 and put 00× 2 = 4 and put 00 We get 400We get 400  1250125022 =?=?  125/0125/0  125=12/5125=12/5  12*13/5*5=156/2512*13/5*5=156/25  1250125022 = 1562500= 1562500
  • 43. TWO DIGIT NUMBERSTWO DIGIT NUMBERS (A(A22 +2AB+B+2AB+B22 )) FORMFORM  36 × 36 =?36 × 36 =?  A=3 & B=6A=3 & B=6  3322 = 9= 9  2*3*6 = 362*3*6 = 36  6622 = 36= 36  Therefore 9,36,36Therefore 9,36,36 12961296  Left to RightLeft to Right Calculation:Calculation:  9+3=129+3=12  6+3= 096+3= 09  66 = 06= 06 12961296
  • 44. Practice 9Practice 9  89 × 8989 × 89 =?=?  26 × 2626 × 26 =?=?  93 × 9393 × 93 =?=?  78 × 7878 × 78 =?=?  61 × 6161 × 61 =?=?  92 × 9292 × 92 =?=?  44 × 4444 × 44 =?=?  55 × 5555 × 55 =?=?  Ans:Ans:  ??
  • 45. Left Side Same Digit and Addition ofLeft Side Same Digit and Addition of Right Digit is 10Right Digit is 10 82 × 88 =?82 × 88 =? Normal FormNormal Form  88 × 8288 × 82 176176 704704 72167216
  • 46. Vedic FormVedic Form Here we are going to use n(n+1) formulaHere we are going to use n(n+1) formula i.e, we take n=8 and get 8(8+1)=8(9)=72i.e, we take n=8 and get 8(8+1)=8(9)=72 and 2 × 8=16and 2 × 8=16  Therefore 82 × 88 = 7216Therefore 82 × 88 = 7216
  • 47. Practice 10Practice 10  89 × 81 =?89 × 81 =?  26 × 24 =?26 × 24 =?  93 × 97 =?93 × 97 =?  78 × 72 =?78 × 72 =?  61 × 69 =?61 × 69 =?  92 × 98 =?92 × 98 =?  44 × 46 =?44 × 46 =?  Ans:Ans:
  • 48. Doubt?Doubt? Keep Practice you will clear yourselfKeep Practice you will clear yourself Contact:Contact: R.SankarR.Sankar 98658176239865817623