SlideShare a Scribd company logo
1 of 28
INTERPOLATION
INTERPOLATION FOR UNEQUAL INTERVALS
 LAGRANGE’S INTERPOLATING
FORMULA
 Let y = f(x) be the given function
 Let 𝑦0, 𝑦1, … 𝑦𝑛 be the (𝑛 + 1) points of the
given function corresponding to 𝑥0, 𝑥1, … 𝑥 𝑛
 The polynomial 𝑦 = 𝑓 𝑥 can be written as
 𝑓 𝑥 =
𝑥−𝑥1 𝑥−𝑥2 ··· 𝑥−𝑥 𝑛
𝑥0−𝑥1 𝑥0−𝑥2 ··· 𝑥0−𝑥 𝑛
𝑦0 +
𝑥 − 𝑥0 𝑥 − 𝑥2 ··· 𝑥 − 𝑥 𝑛
𝑥1 − 𝑥0 𝑥1 − 𝑥2 ··· 𝑥1 − 𝑥 𝑛
𝑦1 +
𝑥 − 𝑥0 𝑥 − 𝑥1 ··· 𝑥 − 𝑥 𝑛
𝑥2 − 𝑥0 𝑥2 − 𝑥1 ··· 𝑥2 − 𝑥 𝑛
𝑦2
+ ⋯ +
𝑥−𝑥0 𝑥−𝑥1 ··· 𝑥−𝑥 𝑛−1
𝑥 𝑛−𝑥0 𝑥 𝑛−𝑥1 ··· 𝑥 𝑛−𝑥 𝑛−1
𝑦 𝑛
INVERSE INTERPOLATION
 It is the process of finding a value of x
for the corresponding value of y and
we use Lagrange’s interpolation
formula by taking the independent
variable as y and the dependent
variable as x. It is the inverse process
of direct interpolation in which we find
the values of y corresponding to a
value of x, not present in the table.
INVERSE INTERPOLATION BY LAGRANGE’S
 𝑥 =
𝑦−𝑦1 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛
𝑦0−𝑦1 𝑦0−𝑦2 ··· 𝑦0−𝑦 𝑛
𝑥0 +
𝑦−𝑦0 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛
𝑦1−𝑦0 𝑦1−𝑦2 ··· 𝑦1−𝑦 𝑛
𝑥1 +
⋯
+
𝑦−𝑦0 𝑦−𝑦1 ··· 𝑦−𝑦 𝑛−1
𝑦 𝑛−𝑦 𝑦 𝑛−𝑦1 ··· 𝑦 𝑛−𝑦 𝑛−1
𝑥 𝑛
USE OF LAGRANGIAN
INTERPOLATION
 It is a process of computing
intermediate values of a function from
a given set of tabular values of the
function.
DIVIDED DIFFERENCE
 Let 𝑦 = 𝑓(𝑥) be the given function
which takes the values
f(𝑥0), 𝑓(𝑥1) … 𝑓(𝑥 𝑛) corresponding to
the arguments 𝑥0, 𝑥1, … 𝑥 𝑛
respectively, where the intervals
𝑥1 – 𝑥0 , 𝑥2 − 𝑥1 , … 𝑥 𝑛 – 𝑥 𝑛−1 need not
equal
REPRESENTATION BY DIVIDED DIFFERENCE
TABLE
𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡
𝑥
𝐸𝑛𝑡𝑟𝑦
𝑓(𝑥)
𝐹𝑖𝑟𝑠𝑡 𝐷. 𝐷
Δ1 𝑓(𝑥)
𝑆𝑒𝑐𝑜𝑛𝑑 𝐷. 𝐷
Δ1
2
𝑓(𝑥)
𝑇ℎ𝑖𝑟𝑑 𝐷. 𝐷
Δ1
3
𝑓(𝑥)
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑓(𝑥0)
𝑓 𝑥1
𝑓 𝑥2
𝑓 𝑥3
𝑓(𝑥4)
𝑓 𝑥1 –𝑓 𝑥0
𝑥1 –𝑥0
= 𝑓 𝑥0, 𝑥1
𝑓 𝑥2 –𝑓 𝑥1
𝑥2 –𝑥1
= 𝑓 𝑥1, 𝑥2
𝑓 𝑥3 –𝑓 𝑥2
𝑥3 –𝑥2
= 𝑓 𝑥2, 𝑥3
𝑓 𝑥4 –𝑓 𝑥3
𝑥4 –𝑥3
= 𝑓 𝑥3, 𝑥4
𝑓 𝑥1,𝑥2 −𝑓 𝑥0,𝑥1
𝑥2−𝑥0
=
𝑓(𝑥0, 𝑥1, 𝑥2)
𝑓 𝑥2,𝑥3 −𝑓 𝑥1,𝑥2
𝑥3−𝑥1
=
𝑓(𝑥1, 𝑥2, 𝑥3)
𝑓 𝑥3,𝑥4 −𝑓 𝑥2,𝑥3
𝑥4−𝑥2
=
𝑓(𝑥2, 𝑥3, 𝑥4)
𝑓 𝑥1,𝑥2,𝑥3 −𝑓 𝑥0,𝑥1,𝑥2
x3−𝑥0
=
𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3)
𝑓 𝑥2,𝑥3,𝑥4 −𝑓 𝑥1,𝑥2,𝑥3
𝑥4−𝑥1
=
𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)
PROPERTIES OF DIVIDED DIFFERENCES
 1. The divided differences are
symmetrical in all their arguments, that
is, the value of any difference is
independent of the order of the
arguments.
 2. The divided difference of the product
of a constant and a function is equal to
the product of the constant and the
divided difference of the function.
 3. The operator Δ1 is linear
 4. The 𝑛 𝑡ℎ
divided difference of a
polynomial of degree 𝑛 is a constant
NEWTON DIVIDED DIFFERENCE INTERPOLATION
 If 𝑓(𝑥) is a polynomial of degree𝑛, and
𝑓(𝑥0), 𝑓(𝑥1), … 𝑓(𝑥 𝑛) are the
corresponding values of arguments
𝑥0, 𝑥1, … . 𝑥 𝑛 respectively, not
necessarly equally spaced.
 Then 𝑓 𝑥 = 𝑓 𝑥0 + ( 𝑥 −
INTERPOLATION WITH EQUAL INTERVALS
 FORWARD DIFFERENCE
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥)
corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 ,
where 𝑥1 − 𝑥0 , 𝑥2 − 𝑥1, … 𝑥 𝑛 − 𝑥 𝑛−1 are equal
 𝑖. 𝑒 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2 … 𝑛
 Define Δ𝑦0 = 𝑦1 − 𝑦0 , Δ𝑦1 = 𝑦2 − 𝑦1 … . Δ𝑦 𝑛−1 =
𝑦𝑛 − 𝑦 𝑛−1
 And Δ2
𝑦0 = Δ𝑦1 − Δ𝑦0 , Δ2
𝑦1 = Δ𝑦2 −
Δ𝑦1 … . Δ2
𝑦 𝑛−1 = Δ𝑦𝑛 − Δ𝑦 𝑛−1
 And so on
 Here Δ is called Newton’s forward difference
operator
 NEWTON’S FORWARD
DIFFERENCE FORMULA
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 =
𝑓(𝑥) corresponding to the arguments
𝑥0, 𝑥1, … 𝑥 𝑛
 Then y = 𝑦0 + 𝑝∆𝑦0 +
𝑝 𝑝−1
2!
∆2
𝑦0 +
𝑝 𝑝−1 𝑝−2
3!
∆3
𝑦0 + ⋯
 Where 𝑝 =
𝑥−𝑥0
ℎ
.
FORWARD DIFFERENCE
TABLE
𝑥 𝑦 Δ Δ2
Δ3
Δ4
Δ5
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
Δ𝑦0
Δ𝑦1
Δ𝑦2
Δ𝑦3
Δ𝑦4
Δ2
𝑦0
Δ2
𝑦1
Δ2
𝑦2
Δ2
𝑦3
Δ3
𝑦0
Δ3
𝑦1
Δ3
𝑦2
Δ4
𝑦0
Δ4
𝑦1
Δ5
𝑦0
BACKWARD DIFFERENCE
 The differences 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, … . 𝑦𝑛 −
𝑦 𝑛−1 are called first backward differences
and denoted by
 𝛻𝑦1 = 𝑦1 − 𝑦0, 𝛻𝑦2 = 𝑦2 − 𝑦1, … .
𝛻𝑦𝑛 = 𝑦𝑛 − 𝑦 𝑛−1
 And 𝛻2
𝑦1 = 𝛻𝑦1 − 𝛻𝑦0,
𝛻2
𝑦2 = 𝛻𝑦2 − 𝛻𝑦1, … .
𝛻2
𝑦𝑛 = 𝛻𝑦𝑛 − 𝛻𝑦 𝑛−1
and so on
NEWTON’S BACKWARD DIFFERENCE FORMULA
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 =
𝑓(𝑥) corresponding to the arguments
𝑥0, 𝑥1, … 𝑥 𝑛
 Then 𝑦 = 𝑦𝑛 + 𝑝𝛻𝑦𝑛 +
𝑝 𝑝+1
2!
𝛻2
𝑦𝑛 +
𝑝 𝑝+1 𝑝+2
3!
𝛻3
𝑦𝑛 + ⋯
 Where 𝑝 =
𝑥−𝑥 𝑛
ℎ
.
BACKWARD DIFFERENCE
TABLE
𝑥 𝑦 𝛻 𝛻2
𝛻3
𝛻4
𝛻5
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝛻𝑦1
𝛻𝑦2
𝛻𝑦3
𝛻𝑦4
𝛻𝑦5
𝛻2
𝑦2
𝛻2
𝑦3
𝛻2
𝑦4
𝛻2
𝑦5
𝛻3
𝑦3
𝛻3
𝑦4
𝛻3
𝑦5
𝛻4
𝑦4
𝛻4
𝑦5
𝛻5
𝑦5
NUMERICAL
DIFFERENTIATION
DERIVATIVES USING DIVIDED DIFFERENCE
 Procedure
 Step 1. By using Newton’s divided
difference formula find 𝑓(𝑥) in terms of
x
 Step 2. Find the derivatives of 𝑓(𝑥)
DERIVATIVE - USING NEWTON’S FORWARD DIFFERENCE
FORMULA
 The first derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ (near beginning of the data)
is
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑝
𝑑𝑝
𝑑𝑥

𝑑𝑦
𝑑𝑥
=
1
ℎ
∆𝑦0 +
2𝑝−1
2!
∆2 𝑦0 +
3𝑝2−6𝑝+2
3!
∆3 𝑦0 + ⋯
 The second derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ is
𝑑2 𝑦
𝑑𝑥2 =
𝑑2 𝑦
𝑑𝑝2
𝑑𝑝
𝑑𝑥
2

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 ∆2
𝑦0 + (𝑝 − 1)∆3
𝑦0 +
6𝑝2−18𝑝+11
12
∆4
𝑦0 + ⋯
 The third derivative y at 𝑥 = 𝑥0 + 𝑝ℎ

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 ∆3
𝑦0 +
12𝑝−18
12
∆4
𝑦0+. .
 For tabular values, at 𝑥 = 𝑥0, (𝑝 = 0)

𝑑𝑦
𝑑𝑥
=
1
ℎ
∆𝑦0 −
∆2 𝑦0
2
+
∆3 𝑦0
3
−
∆4 𝑦0
4
+ ⋯

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 ∆2
𝑦0 − ∆3
𝑦0 +
11
12
∆4
𝑦0 − ⋯

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 ∆3 𝑦0 −
3
2
∆4 𝑦0+. .
DERIVATIVE - USING NEWTON’S BACKWARD DIFFERENCE
FORMULA
 The first derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ (near end of the data) is
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑝
𝑑𝑝
𝑑𝑥

𝑑𝑦
𝑑𝑥
=
1
ℎ
𝛻𝑦 𝑛 +
2𝑝+1
2!
𝛻2 𝑦 𝑛 +
3𝑝2+6𝑝+2
3!
𝛻3 𝑦 𝑛 + ⋯
 The second derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ is
𝑑2 𝑦
𝑑𝑥2 =
𝑑2 𝑦
𝑑𝑝2
𝑑𝑝
𝑑𝑥
2

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 𝛻2
𝑦 𝑛 + (𝑝 + 1)𝛻3
𝑦 𝑛 +
6𝑝2+18𝑝+11
12
𝛻4
𝑦0 + ⋯
 The third derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 𝛻3
𝑦 𝑛 +
12𝑝+18
12
𝛻4
𝑦0+. .
 For tabular values, at 𝑥 = 𝑥 𝑛, (𝑝 = 0)

𝑑𝑦
𝑑𝑥
=
1
ℎ
𝛻𝑦 𝑛 +
𝛻2 𝑦 𝑛
2
+
𝛻3 𝑦 𝑛
3
+ ⋯

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 𝛻2
𝑦 𝑛 + 𝛻3
𝑦 𝑛 +
11
12
𝛻4
𝑦0 + ⋯

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 𝛻3 𝑦 𝑛 +
3
2
𝛻4 𝑦0+. .
NUMERICAL INTEGRATION
SINGLE (LINEAR) INTEGRATION
1. TRAPEZOIDAL RULE
2. SIMPSON’S
𝟏
𝟑
RULE
TRAPEZOIDAL RULE

𝑥0
𝑥1
𝑓(𝑥) 𝑑𝑥 =
ℎ
2
𝑦0 + 𝑦𝑛 + 2( 𝑦1 + 𝑦2 +
SIMPSON’S
𝟏
𝟑
𝒓𝒅 RULE

𝑥0
𝑥1
𝑓(𝑥) 𝑑𝑥 =
ℎ
3
𝑦0 + 𝑦𝑛 + 4 𝑦1 + 𝑦3 + 𝑦5 + ⋯ + 2(𝑦2 + 𝑦4 + 𝑦6+. . )
=
ℎ
3
𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡 + 4 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠 +
2 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑡𝑒𝑟𝑚𝑠 ]
 ℎ =
𝑥1−𝑥0
𝑛
, 𝑛 − 𝑖𝑠 𝑡ℎ𝑒 𝒆𝒗𝒆𝒏 𝑛𝑜 𝑜𝑓 𝑠𝑢𝑏 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑥0 𝑥1
 Condition for applying the Simpson’s rule – Number
of subintervals must be even
NUMERICAL DOUBLE
INTEGRATION
 1. 𝐓𝐑𝐀𝐏𝐄𝐙𝐎𝐈𝐃𝐀𝐋 𝐑𝐔𝐋𝐄
 2. 𝐒𝐈𝐌𝐏𝐒𝐎𝐍’𝐒 𝐑𝐔𝐋𝐄
TRAPEZOIDAL RULE

𝑎
𝑏
𝑐
𝑑
𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 =
ℎ𝑘
4
𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 +
2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 4𝑓5]
 =
ℎ𝑘
4
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
2 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
4(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
y x 𝑥0 𝑥1 𝑥2 𝑥3
𝑦0 𝑓(𝑥0, 𝑦0) 𝑓(𝑥1, 𝑦0) 𝑓(𝑥2, 𝑦0) 𝑓(𝑥3, 𝑦0)
𝑦1 𝑓(𝑥0, 𝑦1) 𝑓(𝑥1, 𝑦1) 𝑓(𝑥2, 𝑦1) 𝑓(𝑥3, 𝑦1)
𝑦2 𝑓(𝑥0, 𝑦2) 𝑓(𝑥1, 𝑦2) 𝑓(𝑥2, 𝑦2) 𝑓(𝑥3, 𝑦2)
𝑦3 𝑓(𝑥0, 𝑦3) 𝑓(𝑥1, 𝑦3) 𝑓(𝑥2, 𝑦3) 𝑓(𝑥3, 𝑦3)
For example, if x takes the values 𝑥0, 𝑥1, 𝑥2, 𝑥3 and y takes values
𝑦0, 𝑦1, 𝑦2, 𝑦3
Red indicates – corner values
Blue indicates – boundary values
Black indicates – interior values
𝑺𝑰𝑴𝑷𝑺𝑶𝑵’𝑺 𝑹𝑼𝑳𝑬

𝑎
𝑏
𝑐
𝑑
𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 =
ℎ𝑘
9
𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 +
2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 16𝑓5]
 =
ℎ𝑘
9
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
4 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
16(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
Errors in Trapezoidal rule of numerical
integration.
 When evaluating 𝑎
𝑏
𝑓 𝑥 𝑑𝑥, the error
in the trapezoidal rule is
 <
𝑏−𝑎 2
12
ℎ2
𝑀, where ℎ =
𝑏−𝑎
𝑛
, n is the
number of subintervals of (a, b),
 And 𝑀 = 𝑚𝑎𝑥{|𝑦0
′′
|, |𝑦1
′′
|,· · ·
, |𝑦 𝑛−1
′′
|}, 𝑦𝑟′′ = 𝑓′′(𝑥 𝑟)
 Error in Trapezoidal rule is of order
𝒉 𝟐
Errors in Simpson’s rule of numerical
integration
 The error in Simpson’s rule is <
𝑏−𝑎
180
ℎ4
𝑀
 where ℎ =
𝑏−𝑎
2𝑛
, 2n is the number of
subintervals of (a, b),
 𝑀 = 𝑚𝑎𝑥 𝑦0
1
, 𝑦1
4
,· · ·

More Related Content

What's hot

Langrange Interpolation Polynomials
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation PolynomialsSohaib H. Khan
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equationJUGAL BORAH
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex VariablesSolo Hermelin
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integrationTarun Gehlot
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examplesSajjad Hossain
 
Finite difference method
Finite difference methodFinite difference method
Finite difference methodDivyansh Verma
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equationsRifat Rahamatullah
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Asad Ali
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equationsZunAib Ali
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson methodBijay Mishra
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integralsonendra Gupta
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem Manthan Chavda
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsMeenakshisundaram N
 

What's hot (20)

Langrange Interpolation Polynomials
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation Polynomials
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
 
Taylors series
Taylors series Taylors series
Taylors series
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examples
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equations
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equations
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integral
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Metric space
Metric spaceMetric space
Metric space
 
Complex integration
Complex integrationComplex integration
Complex integration
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
 
Numerical method
Numerical methodNumerical method
Numerical method
 

Similar to Lagrange Interpolation Formula Explained

Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxPratik P Chougule
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptxSoyaMathew1
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions iosrjce
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORsumanmathews
 

Similar to Lagrange Interpolation Formula Explained (20)

HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
S1230109
S1230109S1230109
S1230109
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 

More from Santhanam Krishnan (18)

Matrices
MatricesMatrices
Matrices
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Differential calculus
Differential calculus  Differential calculus
Differential calculus
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Fourier series
Fourier series Fourier series
Fourier series
 
Solution to second order pde
Solution to second order pdeSolution to second order pde
Solution to second order pde
 
Solution to pde
Solution to pdeSolution to pde
Solution to pde
 
Pde lagrangian
Pde lagrangianPde lagrangian
Pde lagrangian
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Analytic function
Analytic functionAnalytic function
Analytic function
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Design of experiments
Design of experimentsDesign of experiments
Design of experiments
 
Numerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsNumerical solution of ordinary differential equations
Numerical solution of ordinary differential equations
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 
Testing of hypothesis
Testing of hypothesisTesting of hypothesis
Testing of hypothesis
 

Recently uploaded

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 

Recently uploaded (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 

Lagrange Interpolation Formula Explained

  • 2. INTERPOLATION FOR UNEQUAL INTERVALS  LAGRANGE’S INTERPOLATING FORMULA  Let y = f(x) be the given function  Let 𝑦0, 𝑦1, … 𝑦𝑛 be the (𝑛 + 1) points of the given function corresponding to 𝑥0, 𝑥1, … 𝑥 𝑛  The polynomial 𝑦 = 𝑓 𝑥 can be written as  𝑓 𝑥 = 𝑥−𝑥1 𝑥−𝑥2 ··· 𝑥−𝑥 𝑛 𝑥0−𝑥1 𝑥0−𝑥2 ··· 𝑥0−𝑥 𝑛 𝑦0 + 𝑥 − 𝑥0 𝑥 − 𝑥2 ··· 𝑥 − 𝑥 𝑛 𝑥1 − 𝑥0 𝑥1 − 𝑥2 ··· 𝑥1 − 𝑥 𝑛 𝑦1 + 𝑥 − 𝑥0 𝑥 − 𝑥1 ··· 𝑥 − 𝑥 𝑛 𝑥2 − 𝑥0 𝑥2 − 𝑥1 ··· 𝑥2 − 𝑥 𝑛 𝑦2 + ⋯ + 𝑥−𝑥0 𝑥−𝑥1 ··· 𝑥−𝑥 𝑛−1 𝑥 𝑛−𝑥0 𝑥 𝑛−𝑥1 ··· 𝑥 𝑛−𝑥 𝑛−1 𝑦 𝑛
  • 3. INVERSE INTERPOLATION  It is the process of finding a value of x for the corresponding value of y and we use Lagrange’s interpolation formula by taking the independent variable as y and the dependent variable as x. It is the inverse process of direct interpolation in which we find the values of y corresponding to a value of x, not present in the table.
  • 4. INVERSE INTERPOLATION BY LAGRANGE’S  𝑥 = 𝑦−𝑦1 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛 𝑦0−𝑦1 𝑦0−𝑦2 ··· 𝑦0−𝑦 𝑛 𝑥0 + 𝑦−𝑦0 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛 𝑦1−𝑦0 𝑦1−𝑦2 ··· 𝑦1−𝑦 𝑛 𝑥1 + ⋯ + 𝑦−𝑦0 𝑦−𝑦1 ··· 𝑦−𝑦 𝑛−1 𝑦 𝑛−𝑦 𝑦 𝑛−𝑦1 ··· 𝑦 𝑛−𝑦 𝑛−1 𝑥 𝑛
  • 5. USE OF LAGRANGIAN INTERPOLATION  It is a process of computing intermediate values of a function from a given set of tabular values of the function.
  • 6. DIVIDED DIFFERENCE  Let 𝑦 = 𝑓(𝑥) be the given function which takes the values f(𝑥0), 𝑓(𝑥1) … 𝑓(𝑥 𝑛) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 respectively, where the intervals 𝑥1 – 𝑥0 , 𝑥2 − 𝑥1 , … 𝑥 𝑛 – 𝑥 𝑛−1 need not equal
  • 7. REPRESENTATION BY DIVIDED DIFFERENCE TABLE 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑥 𝐸𝑛𝑡𝑟𝑦 𝑓(𝑥) 𝐹𝑖𝑟𝑠𝑡 𝐷. 𝐷 Δ1 𝑓(𝑥) 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷. 𝐷 Δ1 2 𝑓(𝑥) 𝑇ℎ𝑖𝑟𝑑 𝐷. 𝐷 Δ1 3 𝑓(𝑥) 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑓(𝑥0) 𝑓 𝑥1 𝑓 𝑥2 𝑓 𝑥3 𝑓(𝑥4) 𝑓 𝑥1 –𝑓 𝑥0 𝑥1 –𝑥0 = 𝑓 𝑥0, 𝑥1 𝑓 𝑥2 –𝑓 𝑥1 𝑥2 –𝑥1 = 𝑓 𝑥1, 𝑥2 𝑓 𝑥3 –𝑓 𝑥2 𝑥3 –𝑥2 = 𝑓 𝑥2, 𝑥3 𝑓 𝑥4 –𝑓 𝑥3 𝑥4 –𝑥3 = 𝑓 𝑥3, 𝑥4 𝑓 𝑥1,𝑥2 −𝑓 𝑥0,𝑥1 𝑥2−𝑥0 = 𝑓(𝑥0, 𝑥1, 𝑥2) 𝑓 𝑥2,𝑥3 −𝑓 𝑥1,𝑥2 𝑥3−𝑥1 = 𝑓(𝑥1, 𝑥2, 𝑥3) 𝑓 𝑥3,𝑥4 −𝑓 𝑥2,𝑥3 𝑥4−𝑥2 = 𝑓(𝑥2, 𝑥3, 𝑥4) 𝑓 𝑥1,𝑥2,𝑥3 −𝑓 𝑥0,𝑥1,𝑥2 x3−𝑥0 = 𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3) 𝑓 𝑥2,𝑥3,𝑥4 −𝑓 𝑥1,𝑥2,𝑥3 𝑥4−𝑥1 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)
  • 8. PROPERTIES OF DIVIDED DIFFERENCES  1. The divided differences are symmetrical in all their arguments, that is, the value of any difference is independent of the order of the arguments.  2. The divided difference of the product of a constant and a function is equal to the product of the constant and the divided difference of the function.  3. The operator Δ1 is linear  4. The 𝑛 𝑡ℎ divided difference of a polynomial of degree 𝑛 is a constant
  • 9. NEWTON DIVIDED DIFFERENCE INTERPOLATION  If 𝑓(𝑥) is a polynomial of degree𝑛, and 𝑓(𝑥0), 𝑓(𝑥1), … 𝑓(𝑥 𝑛) are the corresponding values of arguments 𝑥0, 𝑥1, … . 𝑥 𝑛 respectively, not necessarly equally spaced.  Then 𝑓 𝑥 = 𝑓 𝑥0 + ( 𝑥 −
  • 10. INTERPOLATION WITH EQUAL INTERVALS  FORWARD DIFFERENCE  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 , where 𝑥1 − 𝑥0 , 𝑥2 − 𝑥1, … 𝑥 𝑛 − 𝑥 𝑛−1 are equal  𝑖. 𝑒 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2 … 𝑛  Define Δ𝑦0 = 𝑦1 − 𝑦0 , Δ𝑦1 = 𝑦2 − 𝑦1 … . Δ𝑦 𝑛−1 = 𝑦𝑛 − 𝑦 𝑛−1  And Δ2 𝑦0 = Δ𝑦1 − Δ𝑦0 , Δ2 𝑦1 = Δ𝑦2 − Δ𝑦1 … . Δ2 𝑦 𝑛−1 = Δ𝑦𝑛 − Δ𝑦 𝑛−1  And so on  Here Δ is called Newton’s forward difference operator
  • 11.  NEWTON’S FORWARD DIFFERENCE FORMULA  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛  Then y = 𝑦0 + 𝑝∆𝑦0 + 𝑝 𝑝−1 2! ∆2 𝑦0 + 𝑝 𝑝−1 𝑝−2 3! ∆3 𝑦0 + ⋯  Where 𝑝 = 𝑥−𝑥0 ℎ .
  • 12. FORWARD DIFFERENCE TABLE 𝑥 𝑦 Δ Δ2 Δ3 Δ4 Δ5 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 Δ𝑦0 Δ𝑦1 Δ𝑦2 Δ𝑦3 Δ𝑦4 Δ2 𝑦0 Δ2 𝑦1 Δ2 𝑦2 Δ2 𝑦3 Δ3 𝑦0 Δ3 𝑦1 Δ3 𝑦2 Δ4 𝑦0 Δ4 𝑦1 Δ5 𝑦0
  • 13. BACKWARD DIFFERENCE  The differences 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, … . 𝑦𝑛 − 𝑦 𝑛−1 are called first backward differences and denoted by  𝛻𝑦1 = 𝑦1 − 𝑦0, 𝛻𝑦2 = 𝑦2 − 𝑦1, … . 𝛻𝑦𝑛 = 𝑦𝑛 − 𝑦 𝑛−1  And 𝛻2 𝑦1 = 𝛻𝑦1 − 𝛻𝑦0, 𝛻2 𝑦2 = 𝛻𝑦2 − 𝛻𝑦1, … . 𝛻2 𝑦𝑛 = 𝛻𝑦𝑛 − 𝛻𝑦 𝑛−1 and so on
  • 14. NEWTON’S BACKWARD DIFFERENCE FORMULA  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛  Then 𝑦 = 𝑦𝑛 + 𝑝𝛻𝑦𝑛 + 𝑝 𝑝+1 2! 𝛻2 𝑦𝑛 + 𝑝 𝑝+1 𝑝+2 3! 𝛻3 𝑦𝑛 + ⋯  Where 𝑝 = 𝑥−𝑥 𝑛 ℎ .
  • 15. BACKWARD DIFFERENCE TABLE 𝑥 𝑦 𝛻 𝛻2 𝛻3 𝛻4 𝛻5 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝛻𝑦1 𝛻𝑦2 𝛻𝑦3 𝛻𝑦4 𝛻𝑦5 𝛻2 𝑦2 𝛻2 𝑦3 𝛻2 𝑦4 𝛻2 𝑦5 𝛻3 𝑦3 𝛻3 𝑦4 𝛻3 𝑦5 𝛻4 𝑦4 𝛻4 𝑦5 𝛻5 𝑦5
  • 17. DERIVATIVES USING DIVIDED DIFFERENCE  Procedure  Step 1. By using Newton’s divided difference formula find 𝑓(𝑥) in terms of x  Step 2. Find the derivatives of 𝑓(𝑥)
  • 18. DERIVATIVE - USING NEWTON’S FORWARD DIFFERENCE FORMULA  The first derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ (near beginning of the data) is 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑝 𝑑𝑝 𝑑𝑥  𝑑𝑦 𝑑𝑥 = 1 ℎ ∆𝑦0 + 2𝑝−1 2! ∆2 𝑦0 + 3𝑝2−6𝑝+2 3! ∆3 𝑦0 + ⋯  The second derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ is 𝑑2 𝑦 𝑑𝑥2 = 𝑑2 𝑦 𝑑𝑝2 𝑑𝑝 𝑑𝑥 2  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 ∆2 𝑦0 + (𝑝 − 1)∆3 𝑦0 + 6𝑝2−18𝑝+11 12 ∆4 𝑦0 + ⋯  The third derivative y at 𝑥 = 𝑥0 + 𝑝ℎ  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 ∆3 𝑦0 + 12𝑝−18 12 ∆4 𝑦0+. .  For tabular values, at 𝑥 = 𝑥0, (𝑝 = 0)  𝑑𝑦 𝑑𝑥 = 1 ℎ ∆𝑦0 − ∆2 𝑦0 2 + ∆3 𝑦0 3 − ∆4 𝑦0 4 + ⋯  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 ∆2 𝑦0 − ∆3 𝑦0 + 11 12 ∆4 𝑦0 − ⋯  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 ∆3 𝑦0 − 3 2 ∆4 𝑦0+. .
  • 19. DERIVATIVE - USING NEWTON’S BACKWARD DIFFERENCE FORMULA  The first derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ (near end of the data) is 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑝 𝑑𝑝 𝑑𝑥  𝑑𝑦 𝑑𝑥 = 1 ℎ 𝛻𝑦 𝑛 + 2𝑝+1 2! 𝛻2 𝑦 𝑛 + 3𝑝2+6𝑝+2 3! 𝛻3 𝑦 𝑛 + ⋯  The second derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ is 𝑑2 𝑦 𝑑𝑥2 = 𝑑2 𝑦 𝑑𝑝2 𝑑𝑝 𝑑𝑥 2  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 𝛻2 𝑦 𝑛 + (𝑝 + 1)𝛻3 𝑦 𝑛 + 6𝑝2+18𝑝+11 12 𝛻4 𝑦0 + ⋯  The third derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 𝛻3 𝑦 𝑛 + 12𝑝+18 12 𝛻4 𝑦0+. .  For tabular values, at 𝑥 = 𝑥 𝑛, (𝑝 = 0)  𝑑𝑦 𝑑𝑥 = 1 ℎ 𝛻𝑦 𝑛 + 𝛻2 𝑦 𝑛 2 + 𝛻3 𝑦 𝑛 3 + ⋯  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 𝛻2 𝑦 𝑛 + 𝛻3 𝑦 𝑛 + 11 12 𝛻4 𝑦0 + ⋯  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 𝛻3 𝑦 𝑛 + 3 2 𝛻4 𝑦0+. .
  • 20. NUMERICAL INTEGRATION SINGLE (LINEAR) INTEGRATION 1. TRAPEZOIDAL RULE 2. SIMPSON’S 𝟏 𝟑 RULE
  • 21. TRAPEZOIDAL RULE  𝑥0 𝑥1 𝑓(𝑥) 𝑑𝑥 = ℎ 2 𝑦0 + 𝑦𝑛 + 2( 𝑦1 + 𝑦2 +
  • 22. SIMPSON’S 𝟏 𝟑 𝒓𝒅 RULE  𝑥0 𝑥1 𝑓(𝑥) 𝑑𝑥 = ℎ 3 𝑦0 + 𝑦𝑛 + 4 𝑦1 + 𝑦3 + 𝑦5 + ⋯ + 2(𝑦2 + 𝑦4 + 𝑦6+. . ) = ℎ 3 𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡 + 4 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠 + 2 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑡𝑒𝑟𝑚𝑠 ]  ℎ = 𝑥1−𝑥0 𝑛 , 𝑛 − 𝑖𝑠 𝑡ℎ𝑒 𝒆𝒗𝒆𝒏 𝑛𝑜 𝑜𝑓 𝑠𝑢𝑏 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑥0 𝑥1  Condition for applying the Simpson’s rule – Number of subintervals must be even
  • 23. NUMERICAL DOUBLE INTEGRATION  1. 𝐓𝐑𝐀𝐏𝐄𝐙𝐎𝐈𝐃𝐀𝐋 𝐑𝐔𝐋𝐄  2. 𝐒𝐈𝐌𝐏𝐒𝐎𝐍’𝐒 𝐑𝐔𝐋𝐄
  • 24. TRAPEZOIDAL RULE  𝑎 𝑏 𝑐 𝑑 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = ℎ𝑘 4 𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 + 2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 4𝑓5]  = ℎ𝑘 4 𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 2 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 4(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
  • 25. y x 𝑥0 𝑥1 𝑥2 𝑥3 𝑦0 𝑓(𝑥0, 𝑦0) 𝑓(𝑥1, 𝑦0) 𝑓(𝑥2, 𝑦0) 𝑓(𝑥3, 𝑦0) 𝑦1 𝑓(𝑥0, 𝑦1) 𝑓(𝑥1, 𝑦1) 𝑓(𝑥2, 𝑦1) 𝑓(𝑥3, 𝑦1) 𝑦2 𝑓(𝑥0, 𝑦2) 𝑓(𝑥1, 𝑦2) 𝑓(𝑥2, 𝑦2) 𝑓(𝑥3, 𝑦2) 𝑦3 𝑓(𝑥0, 𝑦3) 𝑓(𝑥1, 𝑦3) 𝑓(𝑥2, 𝑦3) 𝑓(𝑥3, 𝑦3) For example, if x takes the values 𝑥0, 𝑥1, 𝑥2, 𝑥3 and y takes values 𝑦0, 𝑦1, 𝑦2, 𝑦3 Red indicates – corner values Blue indicates – boundary values Black indicates – interior values
  • 26. 𝑺𝑰𝑴𝑷𝑺𝑶𝑵’𝑺 𝑹𝑼𝑳𝑬  𝑎 𝑏 𝑐 𝑑 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = ℎ𝑘 9 𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 + 2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 16𝑓5]  = ℎ𝑘 9 𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 4 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 16(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
  • 27. Errors in Trapezoidal rule of numerical integration.  When evaluating 𝑎 𝑏 𝑓 𝑥 𝑑𝑥, the error in the trapezoidal rule is  < 𝑏−𝑎 2 12 ℎ2 𝑀, where ℎ = 𝑏−𝑎 𝑛 , n is the number of subintervals of (a, b),  And 𝑀 = 𝑚𝑎𝑥{|𝑦0 ′′ |, |𝑦1 ′′ |,· · · , |𝑦 𝑛−1 ′′ |}, 𝑦𝑟′′ = 𝑓′′(𝑥 𝑟)  Error in Trapezoidal rule is of order 𝒉 𝟐
  • 28. Errors in Simpson’s rule of numerical integration  The error in Simpson’s rule is < 𝑏−𝑎 180 ℎ4 𝑀  where ℎ = 𝑏−𝑎 2𝑛 , 2n is the number of subintervals of (a, b),  𝑀 = 𝑚𝑎𝑥 𝑦0 1 , 𝑦1 4 ,· · ·