SlideShare a Scribd company logo
1 of 63
Follow me @ : http://sriramemarose.blogspot.in/
&
linkedin/sriramemarose
Every technology comes from Nature:
 Eye - Sensor to acquire photons
 Brain - Processor to process photoelectric signals from eye
Step 1. Light(white light) falling on
objects
Step 2. Eye lens focuses the light on
retina
Step 3. Image formation on retina, and
Step 4. Developing electric potential on
retina (Photoelectric effect)
Step 5. Optical nerves transmitting
developed potentials to brain
(Processor)
Optic nerves – Transmission medium
Hey, I got
potentials of X
values
(Temporal lobe)
Yes, I know what
does it mean
(Frontal lobe)
To frontal lobe,
From Temporal
lobe
 Different species absorbs different spectral wavelength
 Which implies different sensors(eye) have different reception abilities
 Color of the images depends on the type photo receptors
 Primary color images – RGB
 Photoreceptor – Cones
 Gray scale images (commonly known as black and white )
 Photoreceptor - Rods
 Man made technology that mimics operation of an eye
 Array of photoreceptors and film (to act as retina - cones and rods)
 Lens to focus light from surrounding/objects on the photoreceptors (mimics Iris
and eye lens)
)1,1()1,1()0,1(
)1,1()1,1()0,1(
)1,0()1,0()0,0(
),(
NMfMfMf
Nfff
Nfff
yxf
Gray line – Continuous analog
signals from sensors
Dotted lines – Sampling time
Red line – Quantized signal
Digital representation
of image obtained
from the quantized
signal
Different types of images often used,
 Color – RGB -> remember cones in eyes?
 R –> 0-255
 G –> 0-255
 B –> 0-255
 Grayscale -> remember rods in eyes?
 0 – Pure black/white
 1-254 – Shades of black and white(gray)
 255 – Pure black/white
 Boolean
 0- Pure black/white
 1- Pure white/black
Single pixel with respective
RGB values
RGB Image
Combination of RGB values
of each pixel contributing to
form an image
Pure black->0
Shades of black&white -> 1-254
White-> 255
Things to keep in mind,
 Image -> 2 dimensional matrix of size(mxn)
 Image processing -> Manipulating the values of each element of the matrix
)1,1()1,1()0,1(
)1,1()1,1()0,1(
)1,0()1,0()0,0(
),(
NMfMfMf
Nfff
Nfff
yxf
 From the above representation,
 f is an image
 f(0,0) -> single pixel of an image (similarly for all values of f(x,y)
 f(0,0) = 0-255 for grayscale
0/1 for binary
0-255 for each of R,G and B
From the image given below, how specific color(say blue) can be extracted?
Algorithm:
 Load an RGB image
 Get the size(mxn) of the image
 Create a new matrix of zeros of size mxn
 Read the values of R,G,B in each pixel while traversing through every
pixels of the image
 Restore pixels with required color to 1 and rest to 0 to the newly created
matrix
 Display the newly created matrix and the resultant image would be
the filtered image of specific color
Input image:
Output image(Extracted blue objects):
Snippet:
c=imread('F:matlab sample images1.png');
[m,n,t]=size(c);
tmp=zeros(m,n);
for i=1:m
for j=1:n
if(c(i,j,1)==0 && c(i,j,2)==0 && c(i,j,3)==255)
tmp(i,j)=1;
end
end
end
imshow(tmp);
From the image, count number of red objects,
Algorithm:
 Load the image
 Get the size of the image
 Find appropriate threshold level for red color
 Traverse through every pixel,
 Replace pixels with red threshold to 1 and remaining pixels to 0
 Find the objects with enclosed boundaries in the new image
 Count the boundaries to know number of objects
Input image:
Output image(Extracted red objects):
Snippet:
c=imread('F:matlab sample
images1.png');
[m,n,t]=size(c);
tmp=zeros(m,n);
for i=1:m
for j=1:n
if(c(i,j,1)==255 && c(i,j,2)==0 &&
c(i,j,3)==0)
tmp(i,j)=1;
end
end
end
imshow(tmp);
ss=bwboundaries(tmp);
num=length(ss);
Output: num = 3
 Thresholding is used to segment an image by setting all pixels whose intensity
values are above a threshold to a foreground value and all the remaining pixels to
a background value.
 The pixels are partitioned depending on their intensity value
 Global Thresholding,
g(x,y) = 0, if f(x,y)<=T
g(x,y) = 1, if f(x,y)>T
g(x,y) = a, if f(x,y)>T2
g(x,y) = b, if T1<f(x,y)<=T2
g(x,y) = c, if f(x,y)<=T1
 Multiple thresholding,
From the given image, Find the total number of objects present?
Algorithm:
 Load the image
 Convert the image into grayscale(incase of an RGB image)
 Fix a certain threshold level to be applied to the image
 Convert the image into binary by applying the threshold level
 Count the boundaries to count the number of objects
At 0.25 threshold At 0.5 threshold
At 0.6 thresholdAt 0.75 threshold
Snippet:
img=imread('F:matlab sample imagescolor.png');
img1=rgb2gray(img);
Thresholdvalue=0.75;
img2=im2bw(img1,Thresholdvalue);
figure,imshow(img2);
% to detect num of objects
B=bwboundaries(img2);
num=length(B);
Snippet:
img=imread('F:matlab sample imagescolor.png');
img1=rgb2gray(img);
Thresholdvalue=0.75;
img2=im2bw(img1,Thresholdvalue);
figure,imshow(img2);
% to detect num of objects
B=bwboundaries(img2);
num=length(B);
% to draw bow over objects
figure,imshow(img2);
hold on;
for k=1:length(B),
boundary = B{k};
plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
end
 Given an image of English alphabets, segment each and every alphabets
 Perform basic morphological operations on the letters
 Detect edges
 Filter the noises if any
 Replace the pixel with maximum value found in the defined pixel set (dilate)
 Fill the holes in the images
 Label every blob in the image
 Draw the bounding box over each detected blob
Snippet:
a=imread('F:matlab sample imagesMYWORDS.png');
im=rgb2gray(a);
c=edge(im);
se = strel('square',8);
I= imdilate(c, se);
img=imfill(I,'holes');
figure,imshow(img);
[Ilabel num] = bwlabel(img);
disp(num);
Iprops = regionprops(Ilabel);
Ibox = [Iprops.BoundingBox];
Ibox = reshape(Ibox,[4 num]);
imshow(I)
hold on;
for cnt = 1:num
rectangle('position',Ibox(:,cnt),'edgecolor','r');
end
1. Write a program that solves the given equations calibration and
measurement
Hint: for manual calculation, to get values of x1,x2,y1 and y2 use imtool in
matlab
Algorithm:
 Load two images to be matched
 Detect edges of both images
 Traverse through each pixel and count number of black and white
points in one image (total value)
 Compare value of each pixels of both the images (matched value)
 Find the match percentage,
 Match percentage= ((matched value)/total value)*100)
 if match percentage exceeds certain threshold(say 90%), display, ‘image
matches’
Input Image:
Output Image after edge detection:
Note: This method works for identical
images and can be used for finger
print and IRIS matching
From the given image, find the nuts and washers based on its features
Algorithm:
 Analyze the image
 Look for detectable features of nuts/washers
 Preprocess the image to enhance the detectable feature
 Hint - Use morphological operations
 Create a detector to detect the feature
 Mark the detected results
Mathematical operation on two functions f and g, producing a third function that is a
modified version of one of the original functions
Example:
• Feature detection
Creating a convolution kernel for detecting edges:
• Analyze the logic to detect edges
• Choose a kernel with appropriate values to detect the lines
• Create a sliding window for the convolution kernel
• Slide the window through every pixel of the image
Input image Output image
After convolution
Algorithm:
• Load an image
• Create a kernel to detect horizontal edges
• Eg:
• Find the transpose of the kernel to obtain the vertical edges
• Apply the kernels to the image to filter the horizontal and vertical
components
Resultant image after applying horizontal filter kernel
Resultant image after applying vertical filter kernel
Snippet:
Using convolution:
rgb = imread('F:matlab sample images2.png');
I = rgb2gray(rgb);
imshow(I)
hy = fspecial('sobel');
hx = hy';
hrFilt=conv2(I,hy);
vrFilt=conv2(I,hx);
Using Fiters:
rgb = imread('F:matlab sample images2.png');
I = rgb2gray(rgb);
hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');
Ix = imfilter(double(I), hx, 'replicate');
Often includes,
 Image color conversion
 Histogram equalization
 Edge detection
 Morphological operations
 Erode
 Dilate
 Open
 Close
To detect the required feature in an image,
• First subtract the unwanted features
• Enhance the required feature
• Create a detector to detect the feature
Gray scale
Histogram equalization
Edge detection:
Morphological close:
Image dilation:
Detect the feature in the preprocessed image
• Fusion: putting information together coming from different sources/data
• Registration: computing the geometrical transformation between two data
Applications:
• Medical Imaging
• Remote sensing
• Augmented Reality etc
Courtesy: G. Malandain, PhD, Senior Scientist, INRA
Courtesy: G. Malandain, PhD, Senior Scientist, INRA
PET scan of Brain MRI scan of Brain
+ =
Output of multimodal
registration( Different scanners)

More Related Content

What's hot

Image enhancement
Image enhancementImage enhancement
Image enhancementAyaelshiwi
 
Digital image processing
Digital image processingDigital image processing
Digital image processingAvisek Roy
 
Image processing SaltPepper Noise
Image processing SaltPepper NoiseImage processing SaltPepper Noise
Image processing SaltPepper NoiseAnkush Srivastava
 
Introduction to Image Compression
Introduction to Image CompressionIntroduction to Image Compression
Introduction to Image CompressionKalyan Acharjya
 
Interpixel redundancy
Interpixel redundancyInterpixel redundancy
Interpixel redundancyNaveen Kumar
 
Image restoration and degradation model
Image restoration and degradation modelImage restoration and degradation model
Image restoration and degradation modelAnupriyaDurai
 
Introduction to digital image processing
Introduction to digital image processingIntroduction to digital image processing
Introduction to digital image processingHossain Md Shakhawat
 
Image enhancement techniques
Image enhancement techniques Image enhancement techniques
Image enhancement techniques Arshad khan
 
Edge Detection and Segmentation
Edge Detection and SegmentationEdge Detection and Segmentation
Edge Detection and SegmentationA B Shinde
 
Introduction to image contrast and enhancement method
Introduction to image contrast and enhancement methodIntroduction to image contrast and enhancement method
Introduction to image contrast and enhancement methodAbhishekvb
 
Digital Image Processing_ ch2 enhancement spatial-domain
Digital Image Processing_ ch2 enhancement spatial-domainDigital Image Processing_ ch2 enhancement spatial-domain
Digital Image Processing_ ch2 enhancement spatial-domainMalik obeisat
 
Image enhancement techniques
Image enhancement techniquesImage enhancement techniques
Image enhancement techniquesBulbul Agrawal
 
Frequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement TechniquesFrequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement TechniquesDiwaker Pant
 
Histogram Processing
Histogram ProcessingHistogram Processing
Histogram ProcessingAmnaakhaan
 

What's hot (20)

Image enhancement
Image enhancementImage enhancement
Image enhancement
 
Histogram processing
Histogram processingHistogram processing
Histogram processing
 
Spatial domain and filtering
Spatial domain and filteringSpatial domain and filtering
Spatial domain and filtering
 
Segmentation
SegmentationSegmentation
Segmentation
 
Digital image processing
Digital image processingDigital image processing
Digital image processing
 
Image processing SaltPepper Noise
Image processing SaltPepper NoiseImage processing SaltPepper Noise
Image processing SaltPepper Noise
 
Introduction to Image Compression
Introduction to Image CompressionIntroduction to Image Compression
Introduction to Image Compression
 
Interpixel redundancy
Interpixel redundancyInterpixel redundancy
Interpixel redundancy
 
Image restoration and degradation model
Image restoration and degradation modelImage restoration and degradation model
Image restoration and degradation model
 
Introduction to digital image processing
Introduction to digital image processingIntroduction to digital image processing
Introduction to digital image processing
 
Image enhancement techniques
Image enhancement techniques Image enhancement techniques
Image enhancement techniques
 
Edge Detection and Segmentation
Edge Detection and SegmentationEdge Detection and Segmentation
Edge Detection and Segmentation
 
Introduction to image contrast and enhancement method
Introduction to image contrast and enhancement methodIntroduction to image contrast and enhancement method
Introduction to image contrast and enhancement method
 
Digital Image Processing_ ch2 enhancement spatial-domain
Digital Image Processing_ ch2 enhancement spatial-domainDigital Image Processing_ ch2 enhancement spatial-domain
Digital Image Processing_ ch2 enhancement spatial-domain
 
Matlab Working With Images
Matlab Working With ImagesMatlab Working With Images
Matlab Working With Images
 
Image enhancement techniques
Image enhancement techniquesImage enhancement techniques
Image enhancement techniques
 
Data Redundacy
Data RedundacyData Redundacy
Data Redundacy
 
Frequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement TechniquesFrequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement Techniques
 
Hit and-miss transform
Hit and-miss transformHit and-miss transform
Hit and-miss transform
 
Histogram Processing
Histogram ProcessingHistogram Processing
Histogram Processing
 

Viewers also liked

Image proceesing with matlab
Image proceesing with matlabImage proceesing with matlab
Image proceesing with matlabAshutosh Shahi
 
Introduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLABIntroduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLABRay Phan
 
Matlab Working With Images
Matlab Working With ImagesMatlab Working With Images
Matlab Working With Imagesmatlab Content
 
Image feature extraction
Image feature extractionImage feature extraction
Image feature extractionRushin Shah
 
Matlab Feature Extraction Using Segmentation And Edge Detection
Matlab Feature Extraction Using Segmentation And Edge DetectionMatlab Feature Extraction Using Segmentation And Edge Detection
Matlab Feature Extraction Using Segmentation And Edge DetectionDataminingTools Inc
 
Introduction in Image Processing Matlab Toolbox
Introduction in Image Processing Matlab ToolboxIntroduction in Image Processing Matlab Toolbox
Introduction in Image Processing Matlab ToolboxShahriar Yazdipour
 
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...Majd Khaleel
 
K10990 GUDDU ALI RAC ME 6TH SEM
K10990 GUDDU ALI RAC ME 6TH SEMK10990 GUDDU ALI RAC ME 6TH SEM
K10990 GUDDU ALI RAC ME 6TH SEMGuddu Ali
 
SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...
SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...
SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...IAEME Publication
 
K10854 Experimental evaluation of cascade refrigeration plant
K10854 Experimental evaluation of cascade refrigeration plantK10854 Experimental evaluation of cascade refrigeration plant
K10854 Experimental evaluation of cascade refrigeration plantShraddhey Bhandari
 
Machine Vision applications development in MatLab
Machine Vision applications development in MatLabMachine Vision applications development in MatLab
Machine Vision applications development in MatLabSriram Emarose
 
Presentation of Refrigeration Simulation
Presentation of Refrigeration SimulationPresentation of Refrigeration Simulation
Presentation of Refrigeration SimulationShafiul Munir
 
SVM-based CBIR of breast masses on mammograms
SVM-based CBIR of breast masses on mammogramsSVM-based CBIR of breast masses on mammograms
SVM-based CBIR of breast masses on mammogramsLazaros Tsochatzidis
 
Morfología de las imágenes Matlab
Morfología de las imágenes MatlabMorfología de las imágenes Matlab
Morfología de las imágenes Matlabjhonbri25
 
Digital Image Processing Notes - Akshansh
Digital Image Processing Notes - AkshanshDigital Image Processing Notes - Akshansh
Digital Image Processing Notes - AkshanshAkshansh Chaudhary
 

Viewers also liked (20)

Image proceesing with matlab
Image proceesing with matlabImage proceesing with matlab
Image proceesing with matlab
 
Getting started with image processing using Matlab
Getting started with image processing using MatlabGetting started with image processing using Matlab
Getting started with image processing using Matlab
 
Introduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLABIntroduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLAB
 
Image Processing Using MATLAB
Image Processing Using MATLABImage Processing Using MATLAB
Image Processing Using MATLAB
 
Matlab Working With Images
Matlab Working With ImagesMatlab Working With Images
Matlab Working With Images
 
Image feature extraction
Image feature extractionImage feature extraction
Image feature extraction
 
Matlab Feature Extraction Using Segmentation And Edge Detection
Matlab Feature Extraction Using Segmentation And Edge DetectionMatlab Feature Extraction Using Segmentation And Edge Detection
Matlab Feature Extraction Using Segmentation And Edge Detection
 
Introduction in Image Processing Matlab Toolbox
Introduction in Image Processing Matlab ToolboxIntroduction in Image Processing Matlab Toolbox
Introduction in Image Processing Matlab Toolbox
 
Medical Informatics
Medical InformaticsMedical Informatics
Medical Informatics
 
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
 
K10990 GUDDU ALI RAC ME 6TH SEM
K10990 GUDDU ALI RAC ME 6TH SEMK10990 GUDDU ALI RAC ME 6TH SEM
K10990 GUDDU ALI RAC ME 6TH SEM
 
Matlab GUI
Matlab GUIMatlab GUI
Matlab GUI
 
SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...
SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...
SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALT...
 
K10854 Experimental evaluation of cascade refrigeration plant
K10854 Experimental evaluation of cascade refrigeration plantK10854 Experimental evaluation of cascade refrigeration plant
K10854 Experimental evaluation of cascade refrigeration plant
 
Machine Vision applications development in MatLab
Machine Vision applications development in MatLabMachine Vision applications development in MatLab
Machine Vision applications development in MatLab
 
Presentation of Refrigeration Simulation
Presentation of Refrigeration SimulationPresentation of Refrigeration Simulation
Presentation of Refrigeration Simulation
 
SVM-based CBIR of breast masses on mammograms
SVM-based CBIR of breast masses on mammogramsSVM-based CBIR of breast masses on mammograms
SVM-based CBIR of breast masses on mammograms
 
Morfología de las imágenes Matlab
Morfología de las imágenes MatlabMorfología de las imágenes Matlab
Morfología de las imágenes Matlab
 
Digital Image Processing Notes - Akshansh
Digital Image Processing Notes - AkshanshDigital Image Processing Notes - Akshansh
Digital Image Processing Notes - Akshansh
 
Iris feature extraction
Iris feature extractionIris feature extraction
Iris feature extraction
 

Similar to Nature-Inspired Image Processing Techniques

ImageProcessingWithMatlab(HasithaEdiriweera)
ImageProcessingWithMatlab(HasithaEdiriweera)ImageProcessingWithMatlab(HasithaEdiriweera)
ImageProcessingWithMatlab(HasithaEdiriweera)Hasitha Ediriweera
 
Writeup advanced lane_lines_project
Writeup advanced lane_lines_projectWriteup advanced lane_lines_project
Writeup advanced lane_lines_projectManish Jauhari
 
Image processing with matlab
Image processing with matlabImage processing with matlab
Image processing with matlabAman Gupta
 
Lec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdfLec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdfnagwaAboElenein
 
Matlab intro
Matlab introMatlab intro
Matlab introfvijayami
 
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docxmercysuttle
 
Working with images in matlab graphics
Working with images in matlab graphicsWorking with images in matlab graphics
Working with images in matlab graphicsmustafa_92
 
Ip fundamentals(3)-edit7
Ip fundamentals(3)-edit7Ip fundamentals(3)-edit7
Ip fundamentals(3)-edit7Emily Kapoor
 
IP_Fundamentals.ppt
IP_Fundamentals.pptIP_Fundamentals.ppt
IP_Fundamentals.pptKARTHICKT41
 
Using the code below- I need help with creating code for the following.pdf
Using the code below- I need help with creating code for the following.pdfUsing the code below- I need help with creating code for the following.pdf
Using the code below- I need help with creating code for the following.pdfacteleshoppe
 
ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2zukun
 
Coin recognition using matlab
Coin recognition using matlabCoin recognition using matlab
Coin recognition using matlabslmnsvn
 
Image_Processing_LECTURE_c#_programming.ppt
Image_Processing_LECTURE_c#_programming.pptImage_Processing_LECTURE_c#_programming.ppt
Image_Processing_LECTURE_c#_programming.pptLOUISSEVERINOROMANO
 
Image Texture Analysis
Image Texture AnalysisImage Texture Analysis
Image Texture Analysislalitxp
 

Similar to Nature-Inspired Image Processing Techniques (20)

ImageProcessingWithMatlab(HasithaEdiriweera)
ImageProcessingWithMatlab(HasithaEdiriweera)ImageProcessingWithMatlab(HasithaEdiriweera)
ImageProcessingWithMatlab(HasithaEdiriweera)
 
Report
ReportReport
Report
 
Writeup advanced lane_lines_project
Writeup advanced lane_lines_projectWriteup advanced lane_lines_project
Writeup advanced lane_lines_project
 
Image processing with matlab
Image processing with matlabImage processing with matlab
Image processing with matlab
 
Lec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdfLec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdf
 
Matlab intro
Matlab introMatlab intro
Matlab intro
 
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
 
Working with images in matlab graphics
Working with images in matlab graphicsWorking with images in matlab graphics
Working with images in matlab graphics
 
Ip fundamentals(3)-edit7
Ip fundamentals(3)-edit7Ip fundamentals(3)-edit7
Ip fundamentals(3)-edit7
 
IP_Fundamentals.ppt
IP_Fundamentals.pptIP_Fundamentals.ppt
IP_Fundamentals.ppt
 
IP_Fundamentals.ppt
IP_Fundamentals.pptIP_Fundamentals.ppt
IP_Fundamentals.ppt
 
Using the code below- I need help with creating code for the following.pdf
Using the code below- I need help with creating code for the following.pdfUsing the code below- I need help with creating code for the following.pdf
Using the code below- I need help with creating code for the following.pdf
 
Ec section
Ec section Ec section
Ec section
 
Image processing
Image processingImage processing
Image processing
 
Image processing
Image processingImage processing
Image processing
 
Dip 2
Dip 2Dip 2
Dip 2
 
ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2
 
Coin recognition using matlab
Coin recognition using matlabCoin recognition using matlab
Coin recognition using matlab
 
Image_Processing_LECTURE_c#_programming.ppt
Image_Processing_LECTURE_c#_programming.pptImage_Processing_LECTURE_c#_programming.ppt
Image_Processing_LECTURE_c#_programming.ppt
 
Image Texture Analysis
Image Texture AnalysisImage Texture Analysis
Image Texture Analysis
 

Recently uploaded

A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Alkin Tezuysal
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...AliaaTarek5
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 

Recently uploaded (20)

A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 

Nature-Inspired Image Processing Techniques

  • 1. Follow me @ : http://sriramemarose.blogspot.in/ & linkedin/sriramemarose
  • 2. Every technology comes from Nature:  Eye - Sensor to acquire photons  Brain - Processor to process photoelectric signals from eye
  • 3. Step 1. Light(white light) falling on objects Step 2. Eye lens focuses the light on retina Step 3. Image formation on retina, and Step 4. Developing electric potential on retina (Photoelectric effect) Step 5. Optical nerves transmitting developed potentials to brain (Processor)
  • 4. Optic nerves – Transmission medium Hey, I got potentials of X values (Temporal lobe) Yes, I know what does it mean (Frontal lobe) To frontal lobe, From Temporal lobe
  • 5.
  • 6.  Different species absorbs different spectral wavelength  Which implies different sensors(eye) have different reception abilities
  • 7.  Color of the images depends on the type photo receptors  Primary color images – RGB  Photoreceptor – Cones  Gray scale images (commonly known as black and white )  Photoreceptor - Rods
  • 8.
  • 9.  Man made technology that mimics operation of an eye  Array of photoreceptors and film (to act as retina - cones and rods)  Lens to focus light from surrounding/objects on the photoreceptors (mimics Iris and eye lens)
  • 10.
  • 11.
  • 12. )1,1()1,1()0,1( )1,1()1,1()0,1( )1,0()1,0()0,0( ),( NMfMfMf Nfff Nfff yxf Gray line – Continuous analog signals from sensors Dotted lines – Sampling time Red line – Quantized signal Digital representation of image obtained from the quantized signal
  • 13. Different types of images often used,  Color – RGB -> remember cones in eyes?  R –> 0-255  G –> 0-255  B –> 0-255  Grayscale -> remember rods in eyes?  0 – Pure black/white  1-254 – Shades of black and white(gray)  255 – Pure black/white  Boolean  0- Pure black/white  1- Pure white/black
  • 14. Single pixel with respective RGB values RGB Image
  • 15. Combination of RGB values of each pixel contributing to form an image
  • 16. Pure black->0 Shades of black&white -> 1-254 White-> 255
  • 17.
  • 18.
  • 19.
  • 20. Things to keep in mind,  Image -> 2 dimensional matrix of size(mxn)  Image processing -> Manipulating the values of each element of the matrix )1,1()1,1()0,1( )1,1()1,1()0,1( )1,0()1,0()0,0( ),( NMfMfMf Nfff Nfff yxf  From the above representation,  f is an image  f(0,0) -> single pixel of an image (similarly for all values of f(x,y)  f(0,0) = 0-255 for grayscale 0/1 for binary 0-255 for each of R,G and B
  • 21. From the image given below, how specific color(say blue) can be extracted?
  • 22. Algorithm:  Load an RGB image  Get the size(mxn) of the image  Create a new matrix of zeros of size mxn  Read the values of R,G,B in each pixel while traversing through every pixels of the image  Restore pixels with required color to 1 and rest to 0 to the newly created matrix  Display the newly created matrix and the resultant image would be the filtered image of specific color
  • 23. Input image: Output image(Extracted blue objects): Snippet: c=imread('F:matlab sample images1.png'); [m,n,t]=size(c); tmp=zeros(m,n); for i=1:m for j=1:n if(c(i,j,1)==0 && c(i,j,2)==0 && c(i,j,3)==255) tmp(i,j)=1; end end end imshow(tmp);
  • 24. From the image, count number of red objects,
  • 25. Algorithm:  Load the image  Get the size of the image  Find appropriate threshold level for red color  Traverse through every pixel,  Replace pixels with red threshold to 1 and remaining pixels to 0  Find the objects with enclosed boundaries in the new image  Count the boundaries to know number of objects
  • 26. Input image: Output image(Extracted red objects): Snippet: c=imread('F:matlab sample images1.png'); [m,n,t]=size(c); tmp=zeros(m,n); for i=1:m for j=1:n if(c(i,j,1)==255 && c(i,j,2)==0 && c(i,j,3)==0) tmp(i,j)=1; end end end imshow(tmp); ss=bwboundaries(tmp); num=length(ss); Output: num = 3
  • 27.  Thresholding is used to segment an image by setting all pixels whose intensity values are above a threshold to a foreground value and all the remaining pixels to a background value.  The pixels are partitioned depending on their intensity value  Global Thresholding, g(x,y) = 0, if f(x,y)<=T g(x,y) = 1, if f(x,y)>T g(x,y) = a, if f(x,y)>T2 g(x,y) = b, if T1<f(x,y)<=T2 g(x,y) = c, if f(x,y)<=T1  Multiple thresholding,
  • 28. From the given image, Find the total number of objects present?
  • 29. Algorithm:  Load the image  Convert the image into grayscale(incase of an RGB image)  Fix a certain threshold level to be applied to the image  Convert the image into binary by applying the threshold level  Count the boundaries to count the number of objects
  • 30. At 0.25 threshold At 0.5 threshold At 0.6 thresholdAt 0.75 threshold
  • 32.
  • 33. Snippet: img=imread('F:matlab sample imagescolor.png'); img1=rgb2gray(img); Thresholdvalue=0.75; img2=im2bw(img1,Thresholdvalue); figure,imshow(img2); % to detect num of objects B=bwboundaries(img2); num=length(B); % to draw bow over objects figure,imshow(img2); hold on; for k=1:length(B), boundary = B{k}; plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2); end
  • 34.  Given an image of English alphabets, segment each and every alphabets  Perform basic morphological operations on the letters  Detect edges  Filter the noises if any  Replace the pixel with maximum value found in the defined pixel set (dilate)  Fill the holes in the images  Label every blob in the image  Draw the bounding box over each detected blob
  • 35.
  • 36. Snippet: a=imread('F:matlab sample imagesMYWORDS.png'); im=rgb2gray(a); c=edge(im); se = strel('square',8); I= imdilate(c, se); img=imfill(I,'holes'); figure,imshow(img); [Ilabel num] = bwlabel(img); disp(num); Iprops = regionprops(Ilabel); Ibox = [Iprops.BoundingBox]; Ibox = reshape(Ibox,[4 num]); imshow(I) hold on; for cnt = 1:num rectangle('position',Ibox(:,cnt),'edgecolor','r'); end
  • 37.
  • 38.
  • 39.
  • 40. 1. Write a program that solves the given equations calibration and measurement Hint: for manual calculation, to get values of x1,x2,y1 and y2 use imtool in matlab
  • 41. Algorithm:  Load two images to be matched  Detect edges of both images  Traverse through each pixel and count number of black and white points in one image (total value)  Compare value of each pixels of both the images (matched value)  Find the match percentage,  Match percentage= ((matched value)/total value)*100)  if match percentage exceeds certain threshold(say 90%), display, ‘image matches’
  • 42. Input Image: Output Image after edge detection: Note: This method works for identical images and can be used for finger print and IRIS matching
  • 43. From the given image, find the nuts and washers based on its features
  • 44. Algorithm:  Analyze the image  Look for detectable features of nuts/washers  Preprocess the image to enhance the detectable feature  Hint - Use morphological operations  Create a detector to detect the feature  Mark the detected results
  • 45.
  • 46. Mathematical operation on two functions f and g, producing a third function that is a modified version of one of the original functions Example: • Feature detection Creating a convolution kernel for detecting edges: • Analyze the logic to detect edges • Choose a kernel with appropriate values to detect the lines • Create a sliding window for the convolution kernel • Slide the window through every pixel of the image
  • 47. Input image Output image After convolution
  • 48.
  • 49. Algorithm: • Load an image • Create a kernel to detect horizontal edges • Eg: • Find the transpose of the kernel to obtain the vertical edges • Apply the kernels to the image to filter the horizontal and vertical components
  • 50. Resultant image after applying horizontal filter kernel
  • 51. Resultant image after applying vertical filter kernel
  • 52. Snippet: Using convolution: rgb = imread('F:matlab sample images2.png'); I = rgb2gray(rgb); imshow(I) hy = fspecial('sobel'); hx = hy'; hrFilt=conv2(I,hy); vrFilt=conv2(I,hx); Using Fiters: rgb = imread('F:matlab sample images2.png'); I = rgb2gray(rgb); hy = fspecial('sobel'); hx = hy'; Iy = imfilter(double(I), hy, 'replicate'); Ix = imfilter(double(I), hx, 'replicate');
  • 53. Often includes,  Image color conversion  Histogram equalization  Edge detection  Morphological operations  Erode  Dilate  Open  Close
  • 54. To detect the required feature in an image, • First subtract the unwanted features • Enhance the required feature • Create a detector to detect the feature
  • 59. Detect the feature in the preprocessed image
  • 60. • Fusion: putting information together coming from different sources/data • Registration: computing the geometrical transformation between two data Applications: • Medical Imaging • Remote sensing • Augmented Reality etc
  • 61. Courtesy: G. Malandain, PhD, Senior Scientist, INRA
  • 62. Courtesy: G. Malandain, PhD, Senior Scientist, INRA
  • 63. PET scan of Brain MRI scan of Brain + = Output of multimodal registration( Different scanners)