SlideShare una empresa de Scribd logo
1 de 85
Descargar para leer sin conexión
Thoracic Spine
Trauma
Sunil Jeph MBBS, MD
Biomechanics
Stabilizing anatomy of thoracolumbar spine
Mechanism of injury
Intervertebral disks in load bearing and force
distribution during axial compression.
Normal anatomic configuration of the PLC
(Posterior ligament complex)
Anteriorly displaced center of gravity that creates a compressive force (dotted arrow) on
the spinal vertebrae similar to the force on the crane lifting arm. The resulting baseline
flexion force (solid arrow) on the PLC is similar to the tension on the crane’s lifting
cable
Critical factor for treatment decision making
Mechanical stability
Integrity of bone and ligamentous components.
Objective of treatment:
Prevent the development of neurologic injury
Prevent the development of progressive
deformity in response to physiologic loading and
a normal range of movement.
Thoracolumbar spine classification for clinical and surgical treatment.
Thoracolumbar spine classification for clinical and
surgical treatment.
Denis three-column classification system
Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification
Thoracolumbar Injury Classification and Severity Score (TLICS)
Thoracolumbar spine classification for clinical and
surgical treatment.
Denis three-column classification system
Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification
Thoracolumbar Injury Classification and Severity Score (TLICS)
Based on Anatomic structures or proposed injury mechanism.
Denis three-column classification system:
This model is used to predict the soft tissue injury from bone
injury
Denis three-column classification system
Denis three-column classification system: Emphasis on the fracture involvement of the
“middle column,” (posterior half of the vertebral body and intervertebral disk and the
posterior longitudinal ligament)
Denis three-column classification system:
Spinal stability is dependent on at least two intact columns.
When two of the three columns are disrupted, it will allow
abnormal segmental motion, i.e. instability.
So a simple anterior wedge fracture or just sprain of the
posterior ligaments is a stable injury.
A wedge fracture with rupture of the interspinous ligaments
is unstable, because the anterior and the posterior column
are disrupted.
A burst fracture is always unstable because at least the
anterior and middle column are disrupted.
Criteria to predict soft-tissue injury from bony injury
are:
Angulation greater than 20 degrees.
Translation of 3.5 mm or more.
Major injuries
• Compression fracture
• Burst fracture
• Seat belt injury
• Fracture-dislocation
Minor injuries:
• Transverse process
fracture
• articular process fracture
• pars interarticularis
fracture
• spinous process fracture
Denis three-column classification system
Injury to the middle column renders the spine mechanically unstable
Modifications of the Denis classification:
Intact posterior ligamentous complex (PLC), two-column
unstable injuries can be successfully treated nonsurgically -
Unstable Stable.
All based on the premise that a fracture caused by forward
flexion should be treated by undoing the flexion by
positioning the patient in an extension brace, or by surgical
intervention correcting the spinal column in extension.
Some of the injuries thought to be due to extension
mechanisms, however, turn out to be due to flexion and vice
versa. These descriptions may thus be misleading.
Denis classification, Cons:
Does not provide prognostic information or consider the
patient’s neurologic status, and therefore it cannot adequately
guide surgical intervention.
Since it uses the terms stable and unstable. In many cases,
however, there is no good correlation with the necessity for
surgery
Stability
Ambiguous and may refer to:
Direct osseous stability
Neurological stability
Long-term (ligamentous) stability.
Thoracolumbar spine classification for clinical and
surgical treatment.
Denis three-column classification system
Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification
Thoracolumbar Injury Classification and Severity Score (TLICS)
Arbeitsgemeinschaft für Osteosynthesefragen (AO)
classification
Types (9 subtypes in each)
Group A: vertebral body compression
Group B: anterior and posterior element injuries with
distraction. Transverse disruption either anteriorly or posteriorly.
Group C: anterior and posterior element injuries with rotation.
axial torque.
Arbeitsgemeinschaft für Osteosynthesefragen (AO)
classification
Pros:
• Highly detailed subclassifications, the AO system has shown
limited inter-observer variability.
Cons:
• Difficult to use.
• Does not incorporate the patient’s neurologic status.
Thoracolumbar spine classification for clinical and
surgical treatment.
Denis three-column classification system
Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification
Thoracolumbar Injury Classification and Severity Score (TLICS)
Thoracolumbar Injury Classification and Severity Score
(TLICS) is a scoring and classification system developed
by the Spine Trauma Study Group .
• Scoring and classification system.
• Decide surgery vs no surgery
• Based on 3 components:
• Injury morphology (not mechanism).
• Integrity of the posterior ligamentous complex.
• Neurologic status of the patient.
Injury Morphology
If more than one injury morphology exists, the single injury with the largest score is used.
If multiple levels of injury are involved, each injury is assessed independently
PLC Integrity
SIGNS OF PLC DISRUPTION:
• Widening of the interspinous space.
• Avulsion fracture of the superior or inferior aspects of contiguous spinous processes,
• Facet joints: widening, empty (“naked”), perched or dislocated.
• Vertebral body translation or rotation.
Normal PLC anatomy
MR imaging is the standard of reference for detecting PLC injury.
• Except, vertebral body translation or interspinous widening, osseous
findings such as a loss of vertebral body height and kyphosis have been
found to be unreliable in assessing PLC integrity because of the inverse
relationship between osseous destruction and ligamentous injury.
• Patients with severe osseous destruction may have less risk for PLC injury
because the vertebral injury dissipates energy, thereby sparing adjacent soft
tissues.
• Conversely, patients with a significant translation or rotation injury and less
vertebral fragmentation may have a higher risk for PLC injury.
• PLC must be directly assessed at MR imaging regardless of the severity of
vertebral body injury seen at CT
PLC injury scenarios
PLC injury scenario: 1
Axial compression with mild flexion, which results in nearly asymmetric height loss of
the anterior and middle columns and minimizes the risk of distraction injury to the PLC
PLC injury scenario: 2
Flexion-distraction mechanism and PLC
injury should also be suspected if a
superior or inferior posterior endplate
fracture is seen because this likely reflects
an avulsion fracture from the
comparatively strong annulus fibrosus of
the intervertebral disk.
PLC injuries can occur in this setting
with minimal kyphosis or vertebral body
height loss, a fact that further underscores
the importance of MR imaging in
PLC injury scenario: 3
Posterior endplate fracture with flexion-distraction
mechanism and PLC injury.
Neurologic Status
Although clinical neurologic
status cannot be directly
determined at imaging, a cord or
nerve root injury identified on
MR images should be included in
the imaging report with the
percentage of spinal canal
narrowing .
Axial compression with significant burst fracture of the vertebral body, bone
retropulsion into the spinal canal, and resultant risk of neurologic injury.
• Anterior vertebral body compression percentage: percentage of anterior
vertebral body compression with respect to the average height of the anterior
vertebral bodies immediately cephalad and caudad to the injury level .
• Retropulsion: distance of a line drawn between the posterior margins of the
adjacent vertebral bodies and the most posterior margin of the bone fragment.
• Sagittal canal diameter: distance between the posterior canal border and the
anterior canal border.
• Posterior canal border: convergence of the superior margins of the left and
right laminae at the midline of the spinous process.
• Anterior canal border: posterior extent of the retropulsed midvertebral body.
Treatment
TLICS addresses three different categories of spine stability:
Immediate mechanical stability, suggested by injury morphology
Long-term stability, indicated by PLC status
Neurologic stability, indicated by the presence or absence of a neurologic deficit
Burst fracture, in the absence of a neurologic deficit is controversial
Osseous retropulsion alone does not imply neurologic injury or indicate a
need for surgical decompression.
Thoracic spine injury with retropulsion may cause significant neurologic
injury because the spinal canal in the thoracic area is narrow and blood
supply to the cord is sparse.
Lumbar spine fracture may result in marked displacement of the cauda
equina but no neurologic deficit because of the wider canal and cord
termination near L1
Highly comminuted vertebral body fracture is more likely to deform under
physiologic loading and may require short-segment posterior fixation and
anterior fusion or long-segment posterior fixation. In the absence of a
neurologic deficit, PLC integrity should be confirmed at MR imaging,
especially if conservative management of burst fracture is planned
TLICS can help guide the surgical approach
Case 1
31 years old man: Trauma
Jumper's fracture
Case 2
21-year-old female who presented after sustaining a seatbelt type injury. She had
an exploratory laparotomy for repair of a ruptured duodenum.
There was no neurologic deficit.
Chance fracture
Mechanism of chance fracture
first described by G. Q. Chance in 1948
most common site: thoracolumbar junction (T12-L2)
"seat belt injury" due to sudden forward flexion in a
head-on automobile collision while being restrained
by a lap belt.
advent of both lap and shoulder belts in the 1980s,
Chance fractures have become less common
Chance variant
Case 3
31 year old male. He was working on a roof, fell
approximately 5 meters landing on his feet. He complained of
pain in left lower extremity and lower back.
Case 4
21-year-old woman presented with back pain after a motor vehicle
collision in which she was an unrestrained passenger in the
middle seat. CT and MR imaging findings are shown.
Injury morphology (burst) = 2
PLC integrity (indeterminate) = 2
Neurologic status (normal) = 0
TOTAL=4
(Burst fracture
PLC integrity indeterminate)
Injury morphology (burst) = 2
PLC integrity (indeterminate) = 2
Neurologic status (normal) = 0
TOTAL=4
(Burst fracture
PLC integrity indeterminate)
Case 5
21-year-old man presented with multiple injuries
and lower extremity paralysis after a high-speed
motor vehicle collision in which he was an
unrestrained driver.
Injury morphology (translation) = 3
PLC (disrupted) = 3, and
Neurologic status (cord injury) = 3
TOTAL = 9
Injury morphology (translation) = 3
PLC (disrupted) = 3, and
Neurologic status (cord injury) = 3
TOTAL = 9
Case 6
29-year-old man presented with complete paralysis after he
collided with a telephone pole while driving a motorcycle.
Injury morphology (distraction) = 4
PLC (disrupted) = 3
Neurologic status (paralysis) = 2
Total = 9
Injury morphology (distraction) = 4
PLC (disrupted) = 3
Neurologic status (paralysis) = 2
Total = 9
Case 7
17-year-old girl presented with right-sided
radiculopathy after a motor vehicle collision in
which she was an unrestrained backseat passenger.
Injury morphology (translation) = 3
PLC (disrupted) = 3
Neurologic status (nerve root injury)
= 2.
TOTAL = 8
Injury morphology (translation) = 3
PLC (disrupted) = 3
Neurologic status (nerve root injury)
= 2.
TOTAL = 8
Checklist for Reporting Spine Injury: CT
Indirect findings
Checklist for Reporting Spine Injury: MR
Radiology report may include the TLICS total score
if there is clear imaging evidence of neurologic injury.
Generally the report will not include the total score if
the patient’s clinical neurologic status is unknown.
References:
• Khurana B, Sheehan SE, Sodickson A, Bono CM, Harris MB.
Traumatic thoracolumbar spine injuries: what the spine surgeon
wants to know. Radiographics. 2013 Nov-Dec.
• Radiology assistant
• A Magerl F1, Aebi M, Gertzbein SD, Harms J, Nazarian S.
comprehensive classification of thoracic and lumbar injuries. Eur
Spine J. 1994;
• Google images

Más contenido relacionado

La actualidad más candente

Acetabular Fracture Radiology: Xrays, CT scan & 3D printing
Acetabular Fracture Radiology: Xrays, CT scan & 3D printingAcetabular Fracture Radiology: Xrays, CT scan & 3D printing
Acetabular Fracture Radiology: Xrays, CT scan & 3D printingVaibhav Bagaria
 
Calcaneal fractures
Calcaneal fracturesCalcaneal fractures
Calcaneal fracturesRohit Vikas
 
Radiographic assessment of pediatric foot alignment
Radiographic assessment of pediatric foot alignmentRadiographic assessment of pediatric foot alignment
Radiographic assessment of pediatric foot alignmentAmeen Rageh
 
Leg Calve Perthes disease
Leg Calve Perthes disease Leg Calve Perthes disease
Leg Calve Perthes disease darshanck89
 
Approaches to Acetabulum- Dr Sharan
Approaches to Acetabulum- Dr SharanApproaches to Acetabulum- Dr Sharan
Approaches to Acetabulum- Dr SharanT Sharan Achar
 
Knee dislocation
Knee dislocationKnee dislocation
Knee dislocationshyam gopal
 
Understanding disorders of the spine| anatomy of the spine | chronic back pain
Understanding disorders of the spine| anatomy of the spine | chronic back painUnderstanding disorders of the spine| anatomy of the spine | chronic back pain
Understanding disorders of the spine| anatomy of the spine | chronic back painDr. Donald Corenman, M.D., D.C.
 
Avascular necrosis Radiology
Avascular necrosis RadiologyAvascular necrosis Radiology
Avascular necrosis Radiologyrajss007
 
Avascular necrosis of scaphoid
Avascular necrosis of scaphoidAvascular necrosis of scaphoid
Avascular necrosis of scaphoidDr. Anshu Sharma
 
CTEV Imaging, Classification, Pirani scoring system, conservative management
CTEV Imaging, Classification, Pirani scoring system, conservative managementCTEV Imaging, Classification, Pirani scoring system, conservative management
CTEV Imaging, Classification, Pirani scoring system, conservative managementDr Gandhi Kota
 
CURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANI
CURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANICURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANI
CURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANIGirish Motwani
 
PVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIES
PVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIESPVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIES
PVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIESdarshanck89
 
Shoulder instability (anatomy,types, management )
Shoulder instability (anatomy,types, management )Shoulder instability (anatomy,types, management )
Shoulder instability (anatomy,types, management )DrHarpreet Bhatia
 

La actualidad más candente (20)

Acetabular Fracture Radiology: Xrays, CT scan & 3D printing
Acetabular Fracture Radiology: Xrays, CT scan & 3D printingAcetabular Fracture Radiology: Xrays, CT scan & 3D printing
Acetabular Fracture Radiology: Xrays, CT scan & 3D printing
 
Calcaneal fractures
Calcaneal fracturesCalcaneal fractures
Calcaneal fractures
 
Potts spine
Potts spinePotts spine
Potts spine
 
Radiographic assessment of pediatric foot alignment
Radiographic assessment of pediatric foot alignmentRadiographic assessment of pediatric foot alignment
Radiographic assessment of pediatric foot alignment
 
Leg Calve Perthes disease
Leg Calve Perthes disease Leg Calve Perthes disease
Leg Calve Perthes disease
 
Approaches to Acetabulum- Dr Sharan
Approaches to Acetabulum- Dr SharanApproaches to Acetabulum- Dr Sharan
Approaches to Acetabulum- Dr Sharan
 
Knee dislocation
Knee dislocationKnee dislocation
Knee dislocation
 
Understanding disorders of the spine| anatomy of the spine | chronic back pain
Understanding disorders of the spine| anatomy of the spine | chronic back painUnderstanding disorders of the spine| anatomy of the spine | chronic back pain
Understanding disorders of the spine| anatomy of the spine | chronic back pain
 
Spondylolithesis (1)
Spondylolithesis (1)Spondylolithesis (1)
Spondylolithesis (1)
 
Cervical spine trauma
Cervical spine traumaCervical spine trauma
Cervical spine trauma
 
Avascular necrosis Radiology
Avascular necrosis RadiologyAvascular necrosis Radiology
Avascular necrosis Radiology
 
Perthes disease
Perthes diseasePerthes disease
Perthes disease
 
Interpretation of Musculoskeletal X-Ray
Interpretation of Musculoskeletal X-RayInterpretation of Musculoskeletal X-Ray
Interpretation of Musculoskeletal X-Ray
 
Avascular necrosis of scaphoid
Avascular necrosis of scaphoidAvascular necrosis of scaphoid
Avascular necrosis of scaphoid
 
CTEV Imaging, Classification, Pirani scoring system, conservative management
CTEV Imaging, Classification, Pirani scoring system, conservative managementCTEV Imaging, Classification, Pirani scoring system, conservative management
CTEV Imaging, Classification, Pirani scoring system, conservative management
 
CURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANI
CURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANICURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANI
CURRENT TRENDS IN MANAGEMENT OF PERTHES DISEASE BY DR.GIRISH MOTWANI
 
Hip dislocation class
Hip dislocation classHip dislocation class
Hip dislocation class
 
PVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIES
PVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIESPVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIES
PVNS,SYNOVIAL CHONDROMATOSIS & LOOSE BODIES
 
Shoulder instability (anatomy,types, management )
Shoulder instability (anatomy,types, management )Shoulder instability (anatomy,types, management )
Shoulder instability (anatomy,types, management )
 
Giant cell tumor
Giant cell tumorGiant cell tumor
Giant cell tumor
 

Destacado

Spine clearance in trauma
Spine clearance in traumaSpine clearance in trauma
Spine clearance in traumaSohail Bajammal
 
Cervical Spine Trauma Imaging
Cervical Spine Trauma ImagingCervical Spine Trauma Imaging
Cervical Spine Trauma ImagingSCGH ED CME
 
Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...
Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...
Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...Dr. Donald Corenman, M.D., D.C.
 
Clinical spinal anatomy for students v2
Clinical spinal anatomy for students v2Clinical spinal anatomy for students v2
Clinical spinal anatomy for students v2ess_online
 
Radiographic artifacts
Radiographic artifactsRadiographic artifacts
Radiographic artifactsRad Tech
 
Radiographic errors and artifacts
Radiographic errors and artifactsRadiographic errors and artifacts
Radiographic errors and artifactsWAlid Salem
 

Destacado (11)

Spine clearance in trauma
Spine clearance in traumaSpine clearance in trauma
Spine clearance in trauma
 
Spinetrauma 2
Spinetrauma 2Spinetrauma 2
Spinetrauma 2
 
Cervical Spine Trauma Imaging
Cervical Spine Trauma ImagingCervical Spine Trauma Imaging
Cervical Spine Trauma Imaging
 
Orthopedics 5th year, 3rd lecture (Dr. Hamid)
Orthopedics 5th year, 3rd lecture (Dr. Hamid)Orthopedics 5th year, 3rd lecture (Dr. Hamid)
Orthopedics 5th year, 3rd lecture (Dr. Hamid)
 
Spine Trauma
Spine TraumaSpine Trauma
Spine Trauma
 
Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...
Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...
Spinal cord injuries | spine fracture | thoracolumbar fracture | colorado spi...
 
Clinical spinal anatomy for students v2
Clinical spinal anatomy for students v2Clinical spinal anatomy for students v2
Clinical spinal anatomy for students v2
 
Radiographic artifacts
Radiographic artifactsRadiographic artifacts
Radiographic artifacts
 
X-ray spine
X-ray spineX-ray spine
X-ray spine
 
Radiographic errors and artifacts
Radiographic errors and artifactsRadiographic errors and artifacts
Radiographic errors and artifacts
 
Trauma Radiography
Trauma RadiographyTrauma Radiography
Trauma Radiography
 

Similar a Imaging of thoracic spine Trauma

THORACOLUMBAR SPINE INJURIES
THORACOLUMBAR SPINE INJURIESTHORACOLUMBAR SPINE INJURIES
THORACOLUMBAR SPINE INJURIESSuman Subedi
 
cervical Trauma classification
  cervical Trauma  classification  cervical Trauma  classification
cervical Trauma classificationspine spine
 
Thoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.pptThoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.pptyiminli12
 
Thoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.pptThoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.pptDR KHALID FIYAZ M
 
thoracolumbar spinal trauma
 thoracolumbar spinal trauma thoracolumbar spinal trauma
thoracolumbar spinal traumaRishi Poudel
 
U01 clavicle ac_sc_joints1
U01 clavicle ac_sc_joints1U01 clavicle ac_sc_joints1
U01 clavicle ac_sc_joints1drthuraikumar
 
Arthroscopic pcl reconstruction
Arthroscopic pcl reconstructionArthroscopic pcl reconstruction
Arthroscopic pcl reconstructionzohaib nadeem
 
Unstable Pelvic Fracture Presentation
Unstable Pelvic Fracture PresentationUnstable Pelvic Fracture Presentation
Unstable Pelvic Fracture PresentationPashupati Yadav
 
Elbow dislocations
Elbow dislocationsElbow dislocations
Elbow dislocationsAjith John
 
CME SPINAL INJURY.pptx
CME SPINAL INJURY.pptxCME SPINAL INJURY.pptx
CME SPINAL INJURY.pptxmieyoi
 
Posterior Cruciate Ligament Injury
Posterior Cruciate Ligament InjuryPosterior Cruciate Ligament Injury
Posterior Cruciate Ligament InjuryArslan Luqman
 
Spine injury -halim.pptx
Spine injury -halim.pptxSpine injury -halim.pptx
Spine injury -halim.pptxezrys54ety5
 
subaxial cervical fx VI.pptx
subaxial cervical fx VI.pptxsubaxial cervical fx VI.pptx
subaxial cervical fx VI.pptxwilliamvicky174
 

Similar a Imaging of thoracic spine Trauma (20)

THORACOLUMBAR SPINE INJURIES
THORACOLUMBAR SPINE INJURIESTHORACOLUMBAR SPINE INJURIES
THORACOLUMBAR SPINE INJURIES
 
cervical Trauma classification
  cervical Trauma  classification  cervical Trauma  classification
cervical Trauma classification
 
CME Orthopedic.pptx
CME Orthopedic.pptxCME Orthopedic.pptx
CME Orthopedic.pptx
 
SPINE FRACTURES.pptx
SPINE FRACTURES.pptxSPINE FRACTURES.pptx
SPINE FRACTURES.pptx
 
Thoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.pptThoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.ppt
 
Thoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.pptThoracolumbar-spine-fracture-.ppt
Thoracolumbar-spine-fracture-.ppt
 
thoracolumbar spinal trauma
 thoracolumbar spinal trauma thoracolumbar spinal trauma
thoracolumbar spinal trauma
 
U01 clavicle ac_sc_joints1
U01 clavicle ac_sc_joints1U01 clavicle ac_sc_joints1
U01 clavicle ac_sc_joints1
 
Acromioclavicular.pptx
Acromioclavicular.pptxAcromioclavicular.pptx
Acromioclavicular.pptx
 
Arthroscopic pcl reconstruction
Arthroscopic pcl reconstructionArthroscopic pcl reconstruction
Arthroscopic pcl reconstruction
 
Unstable Pelvic Fracture Presentation
Unstable Pelvic Fracture PresentationUnstable Pelvic Fracture Presentation
Unstable Pelvic Fracture Presentation
 
Knee
KneeKnee
Knee
 
پلاتو.pptx
پلاتو.pptxپلاتو.pptx
پلاتو.pptx
 
Elbow dislocations
Elbow dislocationsElbow dislocations
Elbow dislocations
 
CME SPINAL INJURY.pptx
CME SPINAL INJURY.pptxCME SPINAL INJURY.pptx
CME SPINAL INJURY.pptx
 
Thoracolumbar fracture cme
Thoracolumbar fracture cmeThoracolumbar fracture cme
Thoracolumbar fracture cme
 
319 thoracolumbar trauma
319 thoracolumbar trauma319 thoracolumbar trauma
319 thoracolumbar trauma
 
Posterior Cruciate Ligament Injury
Posterior Cruciate Ligament InjuryPosterior Cruciate Ligament Injury
Posterior Cruciate Ligament Injury
 
Spine injury -halim.pptx
Spine injury -halim.pptxSpine injury -halim.pptx
Spine injury -halim.pptx
 
subaxial cervical fx VI.pptx
subaxial cervical fx VI.pptxsubaxial cervical fx VI.pptx
subaxial cervical fx VI.pptx
 

Último

Employablity presentation and Future Career Plan.pptx
Employablity presentation and Future Career Plan.pptxEmployablity presentation and Future Career Plan.pptx
Employablity presentation and Future Career Plan.pptxryandux83rd
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptxAneriPatwari
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Comparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptxComparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptxAvaniJani1
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...Osopher
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...HetalPathak10
 
Objectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxObjectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxMadhavi Dharankar
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...Nguyen Thanh Tu Collection
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesVijayaLaxmi84
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 

Último (20)

Employablity presentation and Future Career Plan.pptx
Employablity presentation and Future Career Plan.pptxEmployablity presentation and Future Career Plan.pptx
Employablity presentation and Future Career Plan.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptx
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Comparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptxComparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptx
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
Mattingly "AI & Prompt Design" - Introduction to Machine Learning"
Mattingly "AI & Prompt Design" - Introduction to Machine Learning"Mattingly "AI & Prompt Design" - Introduction to Machine Learning"
Mattingly "AI & Prompt Design" - Introduction to Machine Learning"
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
 
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
 
Objectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxObjectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their uses
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 

Imaging of thoracic spine Trauma

  • 3. Stabilizing anatomy of thoracolumbar spine
  • 4.
  • 6. Intervertebral disks in load bearing and force distribution during axial compression.
  • 7. Normal anatomic configuration of the PLC (Posterior ligament complex)
  • 8. Anteriorly displaced center of gravity that creates a compressive force (dotted arrow) on the spinal vertebrae similar to the force on the crane lifting arm. The resulting baseline flexion force (solid arrow) on the PLC is similar to the tension on the crane’s lifting cable
  • 9. Critical factor for treatment decision making Mechanical stability Integrity of bone and ligamentous components. Objective of treatment: Prevent the development of neurologic injury Prevent the development of progressive deformity in response to physiologic loading and a normal range of movement.
  • 10. Thoracolumbar spine classification for clinical and surgical treatment.
  • 11. Thoracolumbar spine classification for clinical and surgical treatment. Denis three-column classification system Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification Thoracolumbar Injury Classification and Severity Score (TLICS)
  • 12. Thoracolumbar spine classification for clinical and surgical treatment. Denis three-column classification system Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification Thoracolumbar Injury Classification and Severity Score (TLICS)
  • 13. Based on Anatomic structures or proposed injury mechanism. Denis three-column classification system: This model is used to predict the soft tissue injury from bone injury Denis three-column classification system
  • 14. Denis three-column classification system: Emphasis on the fracture involvement of the “middle column,” (posterior half of the vertebral body and intervertebral disk and the posterior longitudinal ligament)
  • 15. Denis three-column classification system: Spinal stability is dependent on at least two intact columns. When two of the three columns are disrupted, it will allow abnormal segmental motion, i.e. instability. So a simple anterior wedge fracture or just sprain of the posterior ligaments is a stable injury. A wedge fracture with rupture of the interspinous ligaments is unstable, because the anterior and the posterior column are disrupted. A burst fracture is always unstable because at least the anterior and middle column are disrupted.
  • 16. Criteria to predict soft-tissue injury from bony injury are: Angulation greater than 20 degrees. Translation of 3.5 mm or more.
  • 17. Major injuries • Compression fracture • Burst fracture • Seat belt injury • Fracture-dislocation Minor injuries: • Transverse process fracture • articular process fracture • pars interarticularis fracture • spinous process fracture Denis three-column classification system Injury to the middle column renders the spine mechanically unstable
  • 18. Modifications of the Denis classification: Intact posterior ligamentous complex (PLC), two-column unstable injuries can be successfully treated nonsurgically - Unstable Stable. All based on the premise that a fracture caused by forward flexion should be treated by undoing the flexion by positioning the patient in an extension brace, or by surgical intervention correcting the spinal column in extension. Some of the injuries thought to be due to extension mechanisms, however, turn out to be due to flexion and vice versa. These descriptions may thus be misleading.
  • 19. Denis classification, Cons: Does not provide prognostic information or consider the patient’s neurologic status, and therefore it cannot adequately guide surgical intervention. Since it uses the terms stable and unstable. In many cases, however, there is no good correlation with the necessity for surgery
  • 20. Stability Ambiguous and may refer to: Direct osseous stability Neurological stability Long-term (ligamentous) stability.
  • 21. Thoracolumbar spine classification for clinical and surgical treatment. Denis three-column classification system Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification Thoracolumbar Injury Classification and Severity Score (TLICS)
  • 22. Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification Types (9 subtypes in each) Group A: vertebral body compression Group B: anterior and posterior element injuries with distraction. Transverse disruption either anteriorly or posteriorly. Group C: anterior and posterior element injuries with rotation. axial torque.
  • 23. Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification Pros: • Highly detailed subclassifications, the AO system has shown limited inter-observer variability. Cons: • Difficult to use. • Does not incorporate the patient’s neurologic status.
  • 24. Thoracolumbar spine classification for clinical and surgical treatment. Denis three-column classification system Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification Thoracolumbar Injury Classification and Severity Score (TLICS)
  • 25. Thoracolumbar Injury Classification and Severity Score (TLICS) is a scoring and classification system developed by the Spine Trauma Study Group . • Scoring and classification system. • Decide surgery vs no surgery • Based on 3 components: • Injury morphology (not mechanism). • Integrity of the posterior ligamentous complex. • Neurologic status of the patient.
  • 26.
  • 27. Injury Morphology If more than one injury morphology exists, the single injury with the largest score is used. If multiple levels of injury are involved, each injury is assessed independently
  • 28. PLC Integrity SIGNS OF PLC DISRUPTION: • Widening of the interspinous space. • Avulsion fracture of the superior or inferior aspects of contiguous spinous processes, • Facet joints: widening, empty (“naked”), perched or dislocated. • Vertebral body translation or rotation.
  • 29. Normal PLC anatomy MR imaging is the standard of reference for detecting PLC injury.
  • 30. • Except, vertebral body translation or interspinous widening, osseous findings such as a loss of vertebral body height and kyphosis have been found to be unreliable in assessing PLC integrity because of the inverse relationship between osseous destruction and ligamentous injury. • Patients with severe osseous destruction may have less risk for PLC injury because the vertebral injury dissipates energy, thereby sparing adjacent soft tissues. • Conversely, patients with a significant translation or rotation injury and less vertebral fragmentation may have a higher risk for PLC injury. • PLC must be directly assessed at MR imaging regardless of the severity of vertebral body injury seen at CT
  • 33. Axial compression with mild flexion, which results in nearly asymmetric height loss of the anterior and middle columns and minimizes the risk of distraction injury to the PLC
  • 34.
  • 36.
  • 37. Flexion-distraction mechanism and PLC injury should also be suspected if a superior or inferior posterior endplate fracture is seen because this likely reflects an avulsion fracture from the comparatively strong annulus fibrosus of the intervertebral disk. PLC injuries can occur in this setting with minimal kyphosis or vertebral body height loss, a fact that further underscores the importance of MR imaging in
  • 39. Posterior endplate fracture with flexion-distraction mechanism and PLC injury.
  • 40.
  • 41.
  • 42. Neurologic Status Although clinical neurologic status cannot be directly determined at imaging, a cord or nerve root injury identified on MR images should be included in the imaging report with the percentage of spinal canal narrowing .
  • 43. Axial compression with significant burst fracture of the vertebral body, bone retropulsion into the spinal canal, and resultant risk of neurologic injury.
  • 44. • Anterior vertebral body compression percentage: percentage of anterior vertebral body compression with respect to the average height of the anterior vertebral bodies immediately cephalad and caudad to the injury level . • Retropulsion: distance of a line drawn between the posterior margins of the adjacent vertebral bodies and the most posterior margin of the bone fragment. • Sagittal canal diameter: distance between the posterior canal border and the anterior canal border. • Posterior canal border: convergence of the superior margins of the left and right laminae at the midline of the spinous process. • Anterior canal border: posterior extent of the retropulsed midvertebral body.
  • 45. Treatment TLICS addresses three different categories of spine stability: Immediate mechanical stability, suggested by injury morphology Long-term stability, indicated by PLC status Neurologic stability, indicated by the presence or absence of a neurologic deficit
  • 46. Burst fracture, in the absence of a neurologic deficit is controversial Osseous retropulsion alone does not imply neurologic injury or indicate a need for surgical decompression. Thoracic spine injury with retropulsion may cause significant neurologic injury because the spinal canal in the thoracic area is narrow and blood supply to the cord is sparse. Lumbar spine fracture may result in marked displacement of the cauda equina but no neurologic deficit because of the wider canal and cord termination near L1 Highly comminuted vertebral body fracture is more likely to deform under physiologic loading and may require short-segment posterior fixation and anterior fusion or long-segment posterior fixation. In the absence of a neurologic deficit, PLC integrity should be confirmed at MR imaging, especially if conservative management of burst fracture is planned
  • 47. TLICS can help guide the surgical approach
  • 48.
  • 50. 31 years old man: Trauma
  • 53. 21-year-old female who presented after sustaining a seatbelt type injury. She had an exploratory laparotomy for repair of a ruptured duodenum. There was no neurologic deficit.
  • 55.
  • 56.
  • 58. first described by G. Q. Chance in 1948 most common site: thoracolumbar junction (T12-L2) "seat belt injury" due to sudden forward flexion in a head-on automobile collision while being restrained by a lap belt. advent of both lap and shoulder belts in the 1980s, Chance fractures have become less common
  • 61. 31 year old male. He was working on a roof, fell approximately 5 meters landing on his feet. He complained of pain in left lower extremity and lower back.
  • 62.
  • 63.
  • 64.
  • 65.
  • 67. 21-year-old woman presented with back pain after a motor vehicle collision in which she was an unrestrained passenger in the middle seat. CT and MR imaging findings are shown.
  • 68. Injury morphology (burst) = 2 PLC integrity (indeterminate) = 2 Neurologic status (normal) = 0 TOTAL=4 (Burst fracture PLC integrity indeterminate)
  • 69. Injury morphology (burst) = 2 PLC integrity (indeterminate) = 2 Neurologic status (normal) = 0 TOTAL=4 (Burst fracture PLC integrity indeterminate)
  • 71. 21-year-old man presented with multiple injuries and lower extremity paralysis after a high-speed motor vehicle collision in which he was an unrestrained driver.
  • 72. Injury morphology (translation) = 3 PLC (disrupted) = 3, and Neurologic status (cord injury) = 3 TOTAL = 9
  • 73. Injury morphology (translation) = 3 PLC (disrupted) = 3, and Neurologic status (cord injury) = 3 TOTAL = 9
  • 75. 29-year-old man presented with complete paralysis after he collided with a telephone pole while driving a motorcycle.
  • 76. Injury morphology (distraction) = 4 PLC (disrupted) = 3 Neurologic status (paralysis) = 2 Total = 9
  • 77. Injury morphology (distraction) = 4 PLC (disrupted) = 3 Neurologic status (paralysis) = 2 Total = 9
  • 79. 17-year-old girl presented with right-sided radiculopathy after a motor vehicle collision in which she was an unrestrained backseat passenger.
  • 80. Injury morphology (translation) = 3 PLC (disrupted) = 3 Neurologic status (nerve root injury) = 2. TOTAL = 8
  • 81. Injury morphology (translation) = 3 PLC (disrupted) = 3 Neurologic status (nerve root injury) = 2. TOTAL = 8
  • 82. Checklist for Reporting Spine Injury: CT Indirect findings
  • 83. Checklist for Reporting Spine Injury: MR
  • 84. Radiology report may include the TLICS total score if there is clear imaging evidence of neurologic injury. Generally the report will not include the total score if the patient’s clinical neurologic status is unknown.
  • 85. References: • Khurana B, Sheehan SE, Sodickson A, Bono CM, Harris MB. Traumatic thoracolumbar spine injuries: what the spine surgeon wants to know. Radiographics. 2013 Nov-Dec. • Radiology assistant • A Magerl F1, Aebi M, Gertzbein SD, Harms J, Nazarian S. comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994; • Google images

Notas del editor

  1. 1. The upper thoracic region (T1-T8) is rigid due to the ribcage which provides stability. 2. The transition zone T9-L2 is the transition between the rigid and kyphotic upper thoracic part and the flexible lordotic lumbar spine. This is where most injuries occur. 3. Finally we have the L3-Sacrum zone which is flexible and this is the region where axial loading injuries occur.
  2. coronal orientation of the thoracic facet joints minimizes extension but allows rotation. sagittal oblique orientation of the lumbar articular facets minimizes rotation
  3. 1. The anterior portion of the functional unit contains two aligned vertebral bodies, the intervertebral disk, and the anterior and posterior longitudinal ligaments. 2. The posterior portion consists of the vertebral arches, facet joints, and posterior elements.
  4. 1. Upper thoracic spine: center of gravity is anterior to the spine. Axial loading will result in compressive forces anteriorly and tensile forces posteriorly. This will result in flexion-type of injuries. 2. lumbar spine due to the lordosis, the center of gravity is posteriorly. Flexion type of injuries will straigthen the lumbar spine and result in axial loading. In this area we will see burst fractures.
  5. The vertebral bodies resist compressive loading. The intervertebral disks contain a central nucleus pulposus that absorbs and hydrostatically distributes compressive loading and an annulus fibrosus that resists the resulting circumferential tensile stress
  6. In axial compression injury, PLC, plays a critical stabilizing role. PLC: supraspinous ligament- strong cordlike ligament that connects the tips of the spinous processes from C7 to the sacrum. high collagen content, and their high tensile strength limits flexion of the spine interspinous ligaments - weaker, thin, membranous structures that connect the adjacent spinous processes. high collagen content, and their high tensile strength limits flexion of the spine articular facet capsules - ligamentum flavum - thick broad structure that connects the laminae of the adjacent vertebrae. high elastin content and exerts a contractile force on the vertebral arches when it is elongated during flexion
  7. has strong emphasis on stability. But stability is ambiguous
  8. Group A through C represent a continuum of progressively increasing injury severity and instability, with a concomitant increasing likelihood of the need for surgical stabilization
  9. The need for a reliable, reproducible, clinically relevant, prognostic classification system with an optimal balance of ease of use and detail of injury description led to the development of Thoracolumbar Injury Classification and Severity Score. Pattern-based approach for efficient imaging interpretation and communication with spine surgeons
  10. (a) compression fracture (1 point) - loss of vertebral body height or disruption of the vertebral endplate. (b) Compression with burst fracture (2 points) - involve the posterior vertebral body with retropulsion. (c) translation or rotation injury (3 points) - horizontal displacement or rotation of one vertebral body with respect to another. (d) distraction injury (4 points) - anatomic dissociation along the vertical axis and can occur through the anterior and posterior supporting ligaments, the anterior and posterior osseous elements, or a combination of both
  11. protects the spine from excessive flexion, rotation, translation, and distraction. If disrupted, the injured segment of the PLC usually requires surgical intervention because of its poor healing potential. Without surgery, an injured PLC can result in kyphotic progression and subsequent vertebral collapse
  12. Mild superior endplate compression fracture of T12 with an intact PLC. Sagittal T1 and axial T2. white arrow: supraspinous ligament black arrow: interspinous ligament arrowhead: ligamentum flavum
  13. Greater flexion component increases the risk for a destabilizing PLC injury.
  14. 17-year-old woman after a mechanical fall. (a) Sagittal CT image shows a compression fracture with predominant involvement of the anterior column (arrow), resultant kyphotic curvature (dotted line), and mild fanning of the spinous processes at the level of injury. (b) Sagittal CT image of the lateral vertebral bodies shows facet perching (arrow) with articular facet fracture, findings suggestive of a significant flexion component to the injury. (c, d) Sagittal T1-weighted (c) and STIR (d) MR images at the same level as a and b show disruption of the supraspinous ligament (black arrow) and ligamentum flavum (white arrow). Edema (arrowhead in d) in the posterior soft tissues and interspinous ligament is better visualized on the STIR image and illustrates the severity of the PLC injury.
  15. Increased flexion component of the injury mechanism, which results in asymmetric height loss with increased anterior wedging. Relative height maintenance of the middle column exacerbates the distraction force on the PLC and results in a destabilizing injury.
  16. Flexion injury of L1. (a, b) Sagittal T1-weighted (a) and STIR (b) MR images show avulsion of the posterior margin of the inferior endplate (arrowhead) and minimal anterior column compression (* in a). Fanning of the spinous processes (bracket in a) and disruption of the dark lines of the supraspinous ligament (black arrows in a) and ligamentum flavum (white arrows) are seen. Complete disruption of the interspinous ligament is shown (black arrow in b). (c) Axial T2-weighted MR image at the same level as a and b shows hemorrhage and edema throughout the PLC and no identifiable ligamentum flavum in the expected location (arrow), a finding indicative of disruption with retraction.
  17. Incomplete spinal cord injury or cauda equina syndrome is assigned 3 points because patients with this type of injury may receive greater potential benefit from surgical decompression than patients with complete spinal cord injury or no initial neurologic injury
  18. Thoracolumbar spine injury in a 38-year-old man. (a) Sagittal CT image shows a burst fracture of L1 (arrow) with fragment retropulsion into the spinal canal. (b, c) Sagittal (b) and axial (c) T2-weighted MR images show bone retropulsion with near-complete obliteration of the spinal canal (white arrow) and associated signal intensity change within the cord at a level superior to the injury (arrowhead in b). Disruption of the ligamentum flavum (black arrow) is also seen, a finding indicative of severe PLC injury.
  19. based primarily on the patient’s neurologic status and the integrity of the PLC
  20. Compression fracture of L1. (a) In one patient, sagittal T1-weighted MR image (a) shows vertebral body compression and fragment retropulsion into the spinal canal but no clear PLC disruption. Postoperative lateral radiograph (d) shows the anterior (anterolateral) surgical approach used. (b, c) In another patient, sagittal T1-weighted MR image (c) shows complete disruption of the PLC but minimal vertebral body compression and no significant retropulsion. Lateral radiograph (e) shows the posterior surgical approach used. (c) In a third patient, sagittal T1-weighted MR image (e) shows significant vertebral body compression, fragment retropulsion, and PLC disruption. Lateral radiograph (f) shows the combined anterior and posterior surgical approach used. The anterior approach included a vertebral body implant cage, lateral body plate, and screw fusion.
  21. fracture of the calcaneus and a lumbar spine fracture. it is clear that we are looking at an unstable fracture, because this is a burst fracture. Both the anterior and the middle column are disrupted. In addition there is edema in the posterior soft tissues indicating that there is also involvement of the posterior column. Notice also the marrow edema in the adjacent bodies due to the severe axial loading.
  22. classic example of a chance fracture, which is a three column injury with a horizontal orientation of the fracture.
  23. What is unique about the Chance fracture is the horizontal orientation, which is nicely demonstrated on the sagittal reconstructions
  24. coronal reconstructions we can see the horizontal orientation of the fracture.
  25. This is a pure ligamentous injury, which is analogous to bilateral interfacet dislocation, which is also a pure ligamentous injury. There is rupture of the interspinous ligament, dislocation of the facet joints and a horizontal rupture of the disc. Pure ligamentous and combined osseous / ligamentous variants have an increased risk of instability compared to the osseus type. It is imperative to look for a split of the posterior elements, disc widening or widening of the spinous processes and facets.
  26. hyperflexion injury of L1 with involvement of the anterior column and possible involvement of the middle column.
  27. Posterior part of the vertebral body is of normal height, but there is some involvement of the posterior part of the vertebral body. If you are aggressive you could call this a two column injury, which would require stabilizing surgery. If you are conservative you could call this an injury with only minor involvement of the middle column.
  28. coronal reconstruction and an axial image at the level of the fracture. Next step- Continue with the MR.
  29. MR images show bone marrow edema in the involved vertebral body, but no additional soft tissue injury. Since, MR did not show any additional findings, this patient was treated as having a single column injury. Consultation with orthopedic surgery recommended conservative management with a TLSO brace. There is a tendency to treat these thoracolumbar injuries conservatively, even if there is slight involvement of the middle column.
  30. Compression burst fracture. (a–c) Sagittal CT image (a) and sagittal T2-weighted (b) and STIR (c) MR images show a fracture of L1 (white arrow) with significant fragment retropulsion but no cord or conus medullaris signal intensity abnormality. There is mild soft-tissue edema (arrowhead in c) and edema in the supraspinous and interspinous ligaments (black arrow in b and c) without definite ligament disruption. The ligamentum flavum appears intact. (d) Axial T2-weighted MR image shows a mild degree of impression on the thecal sac at the level of injury (arrow). The injury was classified as a burst fracture with indeterminate PLC status, and a posterior surgical approach was chosen because of clinical instability. At surgery, the interspinous ligament was found to be injured
  31. Anterior translation injury. Sagittal CT (a) and T2-weighted MR (b) images show a translation injury of T12 and L1 with secondary flexion. There is prominent widening of the interspinous space (bracket in a) and an annulus avulsion fracture of the inferior endplate of T12 (white arrow). Severe cord compression with signal intensity change (black arrow in b) and disruption of the supraspinous ligament (black arrowhead in b) and ligamentum flavum (white arrowhead in b) are seen. The patient underwent posterior-approach open reduction and stabilization.
  32. Patient underwent posterior-approach open reduction and stabilization.
  33. Distraction injury. Sagittal CT image (a) and sagittal STIR (b) and axial T2-weighted (c) MR images show a distraction injury of T10 (white arrow in a) with fracture line extension through the middle and posterior columns and subsequent distraction of the posterior element fracture fragments. Disruption of the ligamentum flavum (arrowhead in b), interspinous ligament (white arrow in b and c), and supraspinous ligament (black arrow in b and c) is seen. The patient underwent posterior-approach surgical repair
  34. Thoracic spine lateral translation injury. Coronal CT image (a) and sagittal T2(b) and axial (c) T2-weighted MR images show a lateral translation injury of T11 and T12 with lateral vertebral body overlap and marginal fractures (arrows in a), lateral canal compression with T11 nerve root injury (white arrow in b and c), and ligamentum flavum disruption (black arrow in b and c). The patient underwent posterior-approach surgical repair