Clase 7 ondas electromagneticas

Tensor
Ondas Electromagnéticas
Clase 7
Ondas Electromagnéticas
 Se estableció que un campo eléctrico que varía con el tiempo 𝐸(𝑡) produce un
campo magnético que varía con el tiempo 𝐻(𝑡) y, a la inversa, un campo
magnético que varía con el tiempo produce un campo eléctrico. Este patrón cíclico
genera ondas electromagnéticas (EM) capaces de propagarse a través del espacio
libre y en medios materiales. Cuando su propagación sigue el curso de una
estructura material, como una línea de transmisión, se dice que la onda EM viaja en
un medio guiado.
Ondas Electromagnéticas
 La superficie terrestre y la ionosfera constituyen límites paralelos de una estructura
natural de guía para la propagación de transmisiones de radio de onda corta en la
banda 𝐻𝐹 (3 𝑎 30 𝑀𝐻𝑧); la ionosfera es un buen reflector a estas frecuencias, lo
que permite que las ondas vayan en zigzag entre los dos límites.
Ondas Electromagnéticas
Ondas Electromagnéticas
 Las ondas EM también pueden viajar en medios sin fronteras; las ondas luminosas
que emite el sol y las transmisiones de radio emitidas por antenas son ejemplos
típicos
Ondas Electromagnéticas
 La atención se enfocará en la propagación de ondas en un medio sin fronteras. Se
considerarán tanto medios con pérdidas como sin ellas. La propagación de ondas
en un medio sin pérdidas (dieléctrico perfecto, como el aire) es similar a aquella a
través de una línea de transmisión sin pérdidas. En un medio con pérdidas
caracterizado por una conductividad diferente de cero, como el agua, una parte de
la potencia transportada por la onda electromagnética se convierte en calor,
exactamente como lo que le sucede a una onda que se propaga a través de una
línea de transmisión con pérdidas.
Ondas Electromagnéticas
 Cuando una fuente (como una antena) emite energía, ésta se expande hacia fuera
de la fuente en la forma de ondas esféricas, como se ilustra en la figura.
 Aun cuando la antena puede irradiar más energía a lo largo de algunas direcciones
que a lo largo de otras, las ondas esféricas viajan con la misma rapidez en todas las
direcciones y, por lo tanto, se expanden a la misma tasa
Ondas Electromagnéticas
Ondas irradiadas por una fuente EM, como una bombilla
de luz o una antena, tienen frentes de onda esféricos
Ondas Electromagnéticas
 Para un observador alejado de la fuente, el frente de las ondas esféricas aparece
aproximadamente plano, como si fuera una parte de una onda plana uniforme con
propiedades uniformes en todos los puntos del plano tangente al frente de ondas.
La propagación de ondas planas puede describirse mediante coordenadas
cartesianas con las que es más fácil trabajar matemáticamente que con las
coordenadas esféricas requeridas para describir la propagación de una onda
esférica
Ondas Electromagnéticas
Sin embargo, para un observador distante, el frente de
onda que atraviesa la abertura del observador parece
aproximadamente plano
Ondas Electromagnéticas
 Campos armónicos
 En el caso de variación con el tiempo, los campos eléctricos y magnéticos E, D, B y
H, y sus fuentes, la densidad de carga 𝜌 𝑣 y la densidad de corriente 𝐽, son (cada
uno y en general) una función de las coordenadas espaciales (𝑥, 𝑦, 𝑧) y la variable
de tiempo 𝑡.
 Si su variación con el tiempo es una función sinusoidal con frecuencia angular 𝜔,
cada una de estas cantidades se representa por un fasor independiente del tiempo
que depende sólo de (𝑥, 𝑦, 𝑧).
Ondas Electromagnéticas
 Por lo tanto, el fasor vectorial 𝐸 𝑥, 𝑦, 𝑧 correspondiente al campo instantáneo
𝐸(𝑥, 𝑦, 𝑧; 𝑡) se define de acuerdo con
 𝐸 𝑥, 𝑦, 𝑧: 𝑡 = 𝑅𝑒 𝐸 𝑥, 𝑦, 𝑧 𝑒 𝑗𝜔𝑡
 Y definiciones similares son aplicables a los demás campos y a 𝜌 𝑉 y 𝐽. Para un
medio lineal, isotrópico y homogéneo caracterizado por la permitividad eléctrica𝜀,
permeabilidad magnética 𝜇 y conductividad 𝜎, se recuerda que la diferenciación en
el dominio del tiempo corresponde a multiplicar por 𝑗𝜔 en el dominio fasorial.
Ondas Electromagnéticas
 Como la mayoría de las regiones de interés son libres de carga, se supone que 𝜌 =
0. Por otro lado, hay que suponer, materiales lineales isotrópicos de tal manera que
𝐷 = 𝜖𝐸, 𝐵 = 𝜇𝐻 𝑦 𝐽 𝐶 = 𝜎𝐸.
 Isotrópico quiere decir que no depende de la elección de los ejes. no importa para
que lado estés midiendo cierta propiedad o magnitud física siempre va a medir lo
mismo.
 Un ejemplo sencillo, se asume al espacio isotrópico, es decir, medir un metro hacia
arriba, es lo mismo que medirlo de lado, diagonal, etc. Un ejemplo en donde no se
cumple la isotropía, si tu tienes un material, y es mas difícil estirarlo de izquierda a
derecha que de arriba abajo, pues se dice que dicha propiedad de estirarlo
(rigidez) es anisotropía.
Ondas Electromagnéticas
 En electromagnetismo algunas de las propiedades que puedes medir son:
conductividad, susceptibilidad magnética, susceptibilidad eléctrica, resistividad, etc.
Si esas propiedades no dependen de la dirección (u orientación de los ejes) se dice
que el cuerpo es isotrópico.
 Por ejemplo si tu cuerpo tiene igual valor de conductividad cuando la corriente lo
atraviesa de arriba a abajo, que de izquierda a derecha (y en general de todas las
posibles direcciones) se dice que ese es un cuerpo isotrópico con respecto a la
conductividad.
Ecuaciones de Onda
 Con base en los principios anteriores y suponiendo que tanto 𝐸 𝑐𝑜𝑚𝑜 𝐻 son
dependientes del tiempo 𝑒 𝑗𝜔𝑡, las ecuaciones de Maxwell se transforman en:
 Ahora aplicamos la identidad vectorial
𝛻 × 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝐸 1
𝛻 × 𝐸 = −𝑗𝜔𝜇𝐻 2
𝛻 ∙ 𝐸 = 0 3
𝛻 ∙ 𝐻 = 0 (4)
𝛻 × 𝛻 × 𝐴 ≡ 𝛻 𝛻 ∙ 𝐴 − 𝛻2
𝐴
Ecuaciones de Onda
 Donde, tan solo en coordenadas cartesianas
 Tomando el rotacional de (1) y (2), y utilizando (3) y (4)
 Ahora sustituyendo 𝛻 × 𝐸 𝑦 𝛻 × 𝐻 de (2) y (1), se obtienen las ecuaciones
vectoriales
𝛻2 𝐴 = 𝛻2 𝐴 𝑥 𝑎 𝑥 + 𝛻2 𝐴 𝑦 𝑎 𝑦+ 𝛻2 𝐴 𝑧 𝑎 𝑧
𝛻2
𝐻 = 𝛾2
𝐻 𝛻2
𝐸 = 𝛾2
𝐸
−𝛻2 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝛻 × 𝐸
−𝛻2
𝐸 = −𝑗𝜔𝜇 𝛻 × 𝐻
Ecuaciones de Onda
 Donde 𝛾2
= 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 . La constante de propagación, 𝛾, es la raíz cuadrada de
𝛾2 cuyas partes real e imaginaria son positivas:
 con
γ = 𝛼 + 𝑗𝐵
𝛼 = 𝜔
𝜇𝜖
2
1 +
𝜎
𝜔𝜖
2
− 1
𝛽 = 𝜔
𝜇𝜖
2
1 +
𝜎
𝜔𝜖
2
+ 1
Ecuaciones de Onda
 La constante 𝛼 se llama factor de atenuación y 𝛽 se llama constante de crecimiento
de fase. 𝛾 (Gamma) tiene unidades 𝑚−1 , sin embargo, es costumbre dar
𝛼 𝑦 𝛽 𝑒𝑛
𝑁𝑝
𝑚
𝑦
𝑟𝑎𝑑
𝑚
, respectivamente, donde el neper (Np) es una unidad
adimensional como el radián.
Soluciones en Coordenadas Cartesianas
 La familiar ecuación escalar de onda en una dimensión
 Tiene soluciones de la forma 𝐹 = 𝑓 𝑧 − 𝑈𝑡 𝑦 𝐹 = 𝑔 𝑧 + 𝑈𝑡 , donde 𝑓 𝑦 𝑔 son
funciones arbitrarias. Estas representan ondas que viajan con velocidad 𝑈 en las
direcciones +𝑧 𝑦 − 𝑧, respectivamente, de acuerdo a la siguiente figura.
𝜕2 𝐹
𝜕𝑧2
=
1
𝑈2
𝜕2 𝐹
𝜕𝑡2
Soluciones en Coordenadas Cartesianas
𝑓 𝑧 𝑜
𝑈𝑡1
𝑓 𝑧1 − 𝑈1 𝑡1
𝑡 = 𝑡1𝑡 = 0
Soluciones en Coordenadas Cartesianas
 En particular, si se supone una variación armónica de tiempo 𝑒 𝑗𝜔𝑡
, la ecuación de
onda se convierte en
 Con soluciones (incluyendo el factor temporal) de la forma
 O en las partes real o imaginaria de estas.
𝜕2 𝐹
𝜕𝑧2
= −𝛽2
𝐹 𝛽 =
𝜔
𝑈
𝐹 = 𝐶𝑒 𝑗 𝜔𝑡−𝛽𝑧
𝐹 = 𝐷𝑒 𝑗 𝜔𝑡+𝛽𝑧
Soluciones en Coordenadas Cartesianas
𝐶
𝑡 = 0
𝑡 =
𝜋
2𝜔
𝑑
𝐹
𝑧
𝐹𝑖𝑔𝑢𝑟𝑎 2
Soluciones en Coordenadas Cartesianas
 La figura 2 muestra una de estas soluciones, 𝐹 = 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 , 𝑒𝑛 𝑡 = 0 𝑦 𝑒𝑛 𝑡 =
𝜋
2𝜔
;
durante este intervalo de tiempo la onda se ha movido una distancia 𝑑 =
𝑈
𝜋
2𝜔
= 𝜋/2𝛽 a
la derecha. Para cualquier 𝑡 fijo, la forma de onda se repite cuando 𝑧 cambia a 2𝜋/𝛽. La
distancia
 Se llama longitud de onda. De esta manera en la figura 2, la onda avanzado un cuarto
de longitud de onda a la derecha. La longitud de onda y la frecuencia 𝑓 = 𝜔/2𝜋,
guardan entre si la relación conocida
 También, 𝜆 = 𝑇𝑈 donde 𝑇 =
1
𝑓
= 2𝜋/𝜔 es el periodo
𝜆 =
2𝜋
𝛽
𝜆𝑓 = 𝑈
Soluciones en Coordenadas Cartesianas
 Las ecuaciones vectoriales de onda tienen soluciones similares a las ya discutidas
anteriormente. Como los vectores unidad 𝑎 𝑥, 𝑎 𝑦 𝑦 𝑎 𝑧 en coordenadas cartesianas
tienen direcciones fijas, la ecuación de onda para 𝐻 puede reescribirse bajo la
forma
 De especial interés son las soluciones (ondas planas) que dependen solo de una
coordenada espacial, digamos 𝑧.
𝜕2
𝐻
𝜕𝑥2
+
𝜕2
𝐻
𝜕𝑦2
+
𝜕2
𝐻
𝜕𝑧2
= 𝛾2 𝐻
Soluciones en Coordenadas Cartesianas
 La ecuación se convierte entonces en
 Dando
 Las soluciones correspondientes para el campo eléctrico son
𝑑2
𝐻
𝑑𝑧2
= 𝛾2 𝐻
𝐻 = 𝐻 𝑜 𝑒±𝑦𝑧
𝑎 𝐻 ó 𝐻 𝑧, 𝑡 = 𝐻 𝑜 𝑒±𝑦𝑧
𝑒 𝑗𝜔𝑡
𝑎 𝐻
𝐸 = 𝐸 𝑜 𝑒±𝑦𝑧
𝑎 𝐸 ó 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒±𝑦𝑧
𝑒 𝑗𝜔𝑡
𝑎 𝐸
Soluciones en Coordenadas Cartesianas
 Aquí 𝑎 𝐻 𝑦 𝑎 𝐸 son vectores unitarios. La cantidad compleja 𝛾 se definió anteriormente
 Se demuestra que
 Es decir que ningún campo tienen componente en la dirección de propagación.
 Siendo esto así se pueden rotar siempre los ejes para colocar uno de los campos,
digamos 𝐸 a lo largo del eje 𝑥. Entonces se demuestra que 𝐻 yace a lo largo del eje 𝑦.
 La solución de onda plana que se acaba de obtener depende, vía 𝛾, de las propiedades
del medio 𝜇, 𝜖 𝑦 𝜎
𝑎 𝐻 ∙ 𝑎 𝑧 = 𝑎 𝐸 ∙ 𝑎 𝑧 = 0
Soluciones para medios parcialmente
conductores
 Para una región de poca conductividad (ej.: suelo húmedo, agua de mar), la
solución de la ecuación de onda E es
 La razón 𝐸/𝐻 es característica del medio (también dependen de la frecuencia). Mas
específicamente, para ondas 𝐸 = 𝐸 𝑥 𝑎 𝑥 , 𝐻 = 𝐻 𝑦 𝑎 𝑦 que se propaga en la dirección
+ 𝑧, la impedancia intrínseca, 𝜂, del medio se define por:
 De esta manera
𝐸 = 𝐸 𝑜 𝑒−𝛾𝑧
𝑎 𝑥
𝜂 =
𝐸 𝑥
𝐻 𝑦
𝜂 =
𝑗𝜔𝜇
𝜎 + 𝑗𝜔𝜖
Soluciones para medios parcialmente
conductores
 Donde la raíz cuadrada puede escribirse en forma polar 𝜂 ∠𝜃 con
 (Si la onda se propaga en la dirección −𝑧,
𝐸 𝑥
𝐻 𝑦
= −𝜂. En efecto, 𝛾 se reemplaza por
− 𝛾 y se usa la otra raíz cuadrada).
𝜂 =
𝜇/𝜖
4
1 +
𝜎
𝜔𝜖
2
𝑡𝑎𝑛2𝜃 =
𝜎
𝜔𝜖
𝑦 0 𝑜
< 𝜃 < 45 𝑜
Soluciones para medios parcialmente
conductores
 Al introducer el factor tiempo 𝑒 𝑗𝜔𝑡
y al escribir 𝛾 = 𝛼 + 𝑗𝛽 se obtiene las siguientes
ecuaciones para campos en una región parcialmente conductora:
 El factor 𝑒−𝛼𝑧
atenúa las magnitudes de 𝐸 𝑦 𝐻 cuando se propagan en dirección +𝑧. La
expresión para 𝛼,esto demuestra que existe atenuación a menos que la conductividad 𝜎
sea cero, lo que solo es el caso de dieléctricos perfectos o de espacio vacío.
𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒−𝛼𝑧 𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃 𝑎 𝑥 o 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥
𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑒−𝛼𝑧
𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃
𝑎 𝑦 o 𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦
Soluciones para medios parcialmente
conductores
 De la misma manera, la diferencia de fase temporal 𝜃, 𝑒𝑛𝑡𝑟𝑒 𝐸 𝑧, 𝑡 𝑦 𝐻(𝑧, 𝑡)
desaparece solo cuando 𝜎 es cero. La velocidad de propagación y la longitud de
onda están dadas por:
 Si se conoce la velocidad de propagación 𝜆𝑓 = 𝑈 puede usarse para determinar la
longitud de onda 𝜆.
𝑈 =
𝜔
𝛽
=
1
𝜇𝜖
2
1 +
𝜎
𝜔𝜖
2
+ 1
𝜆 =
2𝜋
𝛽
=
2𝜋
𝜔 1 +
𝜎
𝜔𝜖
2
+ 1
Soluciones para medios parcialmente
conductores
 El termino 𝜎/𝜔𝜖 2
reduce tanto el valor de la velocidad como el de la longitud de
onda, de lo que serían en el espacio vacío o dieléctricos perfectos, donde 𝜎 = 0.
Obsérvese que el medio es dispersivo, es decir, ondas con frecuencias diferentes 𝜔
tienen diferentes velocidades 𝑈.
Problemas
 Problema 1
 Una onda viajera está descrita por 𝑦 = 10𝑠𝑒𝑛 𝛽𝑧 − 𝜔𝑡 . Dibuje en 𝑡 = 0 𝑦 𝑒𝑛 𝑡 = 𝑡1
cuando ha avanzado
𝜆
8
, si la velocidad es de 3 × 108 𝑚/𝑠 y la frecuencia angular es
𝜔 = 106 𝑟𝑎𝑑
𝑠
, 𝑏)𝜔 = 2 × 106 𝑟𝑎𝑑/𝑠 y el mismo 𝑡1
Problemas
 Solución Inciso a
 La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que
 𝑡1 =
𝑇
8
=
2𝜋/𝜔
8
=
𝜋
4𝜔

𝜆
8
= 𝑐𝑡1 = 3 × 108 𝜋
4 106 = 236m
𝑡 = 0
𝑡 = 𝑡1
10
𝜔 = 106
𝑧
𝑦
𝜆/2 𝜆
236𝑚
Problemas
 Solución inciso b
 La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que
 𝑡1 =
𝑇
8
=
2𝜋/𝜔
8
=
𝜋
4𝜔

𝜆
8
= 𝑐𝑡1 = 3 × 108 𝜋
4 2×106 = 118m
𝑡 = 0
𝑡 = 𝑡1
10
𝜔 = 2 × 106
𝑧
𝑦
𝜆/2 𝜆
118𝑚
Soluciones para dieléctricos perfectos
 Para un dieléctrico perfecto, 𝜎 = 0 y así
 Como ∝= 0 no hay atenuación de las ondas 𝐸 𝑦 𝐻. El angula cero sobre 𝜂 produce
un 𝐻 que esta en fase temporal con 𝐸 en cada localización fija. Suponiendo 𝐸 en
𝑎 𝑥 y la propagación en 𝑎 𝑧, las ecuaciones de campo pueden obtenerse como
limites, como se denota a continuación:
𝛼 = 0 𝛽 = 𝜔 𝜇𝜖 𝜂 =
𝜇
𝜖
∠00
𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒 𝑗(𝜔𝑡−𝛽𝑧)
𝑎 𝑥
𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑒 𝑗(𝜔𝑡−𝛽𝑧)
𝑎 𝑦
Soluciones para dieléctricos perfectos
 La velocidad de la onda y la longitud de la onda son:
 Para espacio vacío
𝑈 =
𝜔
𝛽
= 4𝜋 × 10−7
𝐻
𝑚
𝜖 = 𝜖 𝑜 = 8.854 ×
10−12
𝐹
𝑚
≈
10−9
36𝜋
𝐹/𝑚
𝜂 = 𝜂 𝑜 ≈ 120𝜋 Ω 𝑦 𝑈 = 𝑐 ≈ 3 × 108
𝑚/𝑠
Problemas
 Problema 2
 En el espacio vacío, 𝐸 𝑧, 𝑡 = 103
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Obtenga 𝐻(𝑧, 𝑡)
Problemas
 Solución
 Un examen de la fase, 𝜔𝑡 − 𝛽𝑧, revela que la dirección de la propagación es +𝑧, 𝐻
debe tener dirección −𝑎 𝑥. Por tanto
𝐸 𝑦
−𝐻𝑧
= 𝜂 𝑜 = 120𝜋 Ω ó 𝐻 𝑥 = −
103
120𝜋
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚
𝑦 𝐻𝑧 𝑧, 𝑡 = −
103
120𝜋
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚
Problemas
 Problema 3
 Sea la onda, en el espacio vacío, 𝐸 𝑧, 𝑡 = 103
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Determine la
constante de propagación 𝛾 sabiendo que la frecuencia es que la frecuencia es 𝑓 =
95.5𝑀ℎ𝑧
Problemas
 Solucion
 En general, 𝛾 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 En el espacio vacío, 𝜎 = 0, así que:
 𝛾 = 𝑗𝜔 𝜇0 𝜖0 = 𝑗 2𝜋𝑓/𝑐 = 𝑗
2𝜋 95.5×106
3×108 = −𝑗2𝑚−1
 Obsérvese que este resultado demuestra que el factor de atenuación es 𝛼 = 0 y la
constante de defasaje es 𝛽 = 2 𝑟𝑎𝑑/𝑚
Problemas
 Problema 4
 El campo eléctrico de una onda plana de 1MHz que viaja en la dirección +𝑧 en aire
apunta en la dirección 𝑥. Si el valor pico de 𝐸 es de 1.2𝜋
𝑚𝑉
𝑚
y 𝐸 es máximo
cuando 𝑡 = 0 𝑦 𝑧 = 50𝑚, obtenga expresiones para 𝐸 𝑧, 𝑡 𝑦 𝐻 𝑧, 𝑡 y luego trace
una grafica de estas variaciones en función de 𝑧 𝑐𝑜𝑛 𝑡 = 0.
Problemas
 Solución
 Con 𝑓 = 1𝑀𝐻𝑧, la longitud de onda en el aire es:
 𝜆 =
𝑐
𝑓
=
3×108
1×106 = 300 𝑚
 Y el numero de onda correspondiente es 𝛽 =
2𝜋
𝜆
=
2𝜋
300
𝑟𝑎𝑑/𝑚. La expresión general
para un campo eléctrico dirigido hacia 𝑥 que viaja en la dirección de +𝑧 aparece en
la ecuación como
 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥 ⇒ 𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 −
2𝜋
300
𝑧 + 𝜃 𝑎 𝑥
𝑚𝑉
𝑚
 El campo 𝐸 𝑧, 𝑡 es máximo cuando el argumento de la función coseno es igual a
cero o a múltiplos de 2𝜋. Con 𝑡 = 0 𝑦 𝑧 = 50𝑚, esta condición es
Problemas
 Solución
 −
2𝜋×50
300
+ 𝜃 = 0 𝑜 𝜃 =
𝜋
3
 𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 −
2𝜋
300
𝑧 +
𝜋
3
𝑎 𝑥
𝑚𝑉
𝑚
 Y de acuerdo con
 𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦 ⟹
 𝐻 𝑧, 𝑡 =
1.2𝜋×10−3
120𝜋
𝑐𝑜𝑠 2𝜋 × 106
𝑡 −
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑦 𝜇𝐴/𝑚
 𝐻 𝑧, 𝑡 = 10𝑐𝑜𝑠 2𝜋 × 106
𝑡 −
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑦 𝜇𝐴/𝑚
 Donde se utilizo la aproximación 𝜂 𝑜 ≈ 120𝜋 Ω 𝑐𝑜𝑛 𝑡 = 0 tenemos que
Problemas
 Solución
 𝐸 𝑧, 0 = 1.2𝜋𝑐𝑜𝑠
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑥 𝑚𝑉/𝑚
 𝐻 𝑧, 0 = 10𝑐𝑜𝑠
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑦 𝑚𝑉/𝑚
Variaciones espaciales de
𝐸 𝑦 𝐻 𝑐𝑜𝑛 𝑡 = 0 para la onda
Plana del ejemplo
1 de 44

Recomendados

Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadasTensor
491 vistas48 diapositivas
Ondas electromagneticasOndas electromagneticas
Ondas electromagneticasMarco1624
297 vistas13 diapositivas
Clase 6 ecuaciones de maxwellClase 6 ecuaciones de maxwell
Clase 6 ecuaciones de maxwellTensor
807 vistas48 diapositivas
Ley de gauss clase 2Ley de gauss clase 2
Ley de gauss clase 2Tensor
1.2K vistas26 diapositivas
Clase 4 inducción electromagnéticaClase 4 inducción electromagnética
Clase 4 inducción electromagnéticaTensor
2.9K vistas26 diapositivas

Más contenido relacionado

La actualidad más candente

Clase 8 IEClase 8 IE
Clase 8 IETensor
219 vistas26 diapositivas
Clase 10 ley de biot savart TEClase 10 ley de biot savart TE
Clase 10 ley de biot savart TETensor
5.1K vistas33 diapositivas
Clase 14ORClase 14OR
Clase 14ORTensor
2.2K vistas48 diapositivas
Clase 12 ondas electromagneticas TEClase 12 ondas electromagneticas TE
Clase 12 ondas electromagneticas TETensor
734 vistas44 diapositivas

La actualidad más candente(19)

Clase 8 IEClase 8 IE
Clase 8 IE
Tensor219 vistas
Clase 10 ley de biot savart TEClase 10 ley de biot savart TE
Clase 10 ley de biot savart TE
Tensor5.1K vistas
Clase 14ORClase 14OR
Clase 14OR
Tensor2.2K vistas
El Electromagnetismo - Fisica 5to Año El Electromagnetismo - Fisica 5to Año
El Electromagnetismo - Fisica 5to Año
Cybernautic.2.9K vistas
Electromagnetismo-Fisica IIElectromagnetismo-Fisica II
Electromagnetismo-Fisica II
shanirarc6.6K vistas
Clase 10LBSClase 10LBS
Clase 10LBS
Tensor13.7K vistas
Funcion de ondaFuncion de onda
Funcion de onda
Diana Yamile Cajas20K vistas
4.5 a 4.8 ley de biot savart4.5 a 4.8 ley de biot savart
4.5 a 4.8 ley de biot savart
franklivargas2.2K vistas
Colección de problemasColección de problemas
Colección de problemas
José Miranda2.5K vistas
7. inducción electromagnética7. inducción electromagnética
7. inducción electromagnética
Álvaro Pascual Sanz7.4K vistas
Problemas de magnetismoProblemas de magnetismo
Problemas de magnetismo
Edwin Alexis SemiNArio Beltran2.4K vistas
Clase 11 ecuaciones de maxwellClase 11 ecuaciones de maxwell
Clase 11 ecuaciones de maxwell
Tensor2.3K vistas
Teoria electromagnetica - MagnetoestaticaTeoria electromagnetica - Magnetoestatica
Teoria electromagnetica - Magnetoestatica
Universidad Nacional de Loja535 vistas

Similar a Clase 7 ondas electromagneticas

Clase 12 OEClase 12 OE
Clase 12 OETensor
397 vistas33 diapositivas
Clase 14 ondas reflejadas TEClase 14 ondas reflejadas TE
Clase 14 ondas reflejadas TETensor
704 vistas48 diapositivas
Trabajo teoria electromagnetica507Trabajo teoria electromagnetica507
Trabajo teoria electromagnetica507claram89
154 vistas37 diapositivas
Clase 11 EDMClase 11 EDM
Clase 11 EDMTensor
375 vistas48 diapositivas

Similar a Clase 7 ondas electromagneticas(20)

Clase 12 OEClase 12 OE
Clase 12 OE
Tensor397 vistas
Clase 14 ondas reflejadas TEClase 14 ondas reflejadas TE
Clase 14 ondas reflejadas TE
Tensor704 vistas
Teoría Electromagnetismo.pdfTeoría Electromagnetismo.pdf
Teoría Electromagnetismo.pdf
JeanPaulAtaullucoUap46 vistas
Clase 11 EDMClase 11 EDM
Clase 11 EDM
Tensor375 vistas
6.3 Propagacion de onda en el espacio libre6.3 Propagacion de onda en el espacio libre
6.3 Propagacion de onda en el espacio libre
Edison Coimbra G.54.1K vistas
Ondas electromagnéticasOndas electromagnéticas
Ondas electromagnéticas
juan nolorbe29.5K vistas
Radiacion y propagacionRadiacion y propagacion
Radiacion y propagacion
brayer sanchez1.3K vistas
Ecuaciones  de maxwell y Ondas EMEcuaciones  de maxwell y Ondas EM
Ecuaciones de maxwell y Ondas EM
Guss Bender15.3K vistas
Ondas mecánicasOndas mecánicas
Ondas mecánicas
Jesús Vázquez1K vistas
radiacion electromagneticaradiacion electromagnetica
radiacion electromagnetica
Wilson Aponte Huamantinco550 vistas
Tema 7: Ecuaciones de MaxwellTema 7: Ecuaciones de Maxwell
Tema 7: Ecuaciones de Maxwell
Francisco Sandoval 3.5K vistas
CaracterizacionCaracterizacion
Caracterizacion
Patricia Perez Luna110 vistas
Práctico numero 8Práctico numero 8
Práctico numero 8
Fabricio Fernandez Marquez344 vistas

Más de Tensor

LibertadLibertad
LibertadTensor
6K vistas2 diapositivas
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisecciónTensor
1.1K vistas31 diapositivas
Transito vehicularTransito vehicular
Transito vehicularTensor
805 vistas45 diapositivas
Teoria de colasTeoria de colas
Teoria de colasTensor
727 vistas7 diapositivas
Practica 7 2016Practica 7 2016
Practica 7 2016Tensor
828 vistas11 diapositivas

Más de Tensor(20)

LibertadLibertad
Libertad
Tensor6K vistas
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisección
Tensor1.1K vistas
Transito vehicularTransito vehicular
Transito vehicular
Tensor805 vistas
Teoria de colasTeoria de colas
Teoria de colas
Tensor727 vistas
Practica 7 2016Practica 7 2016
Practica 7 2016
Tensor828 vistas
Practica 6 2016Practica 6 2016
Practica 6 2016
Tensor479 vistas
Game makerGame maker
Game maker
Tensor688 vistas
Practica 5 2016Practica 5 2016
Practica 5 2016
Tensor250 vistas
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivos
Tensor325 vistas
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadena
Tensor1.8K vistas
Reduccion de ordenReduccion de orden
Reduccion de orden
Tensor1.3K vistas
Variación+de+parametrosVariación+de+parametros
Variación+de+parametros
Tensor979 vistas
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricatti
Tensor1.3K vistas
Practicas 8 2016Practicas 8 2016
Practicas 8 2016
Tensor479 vistas
Tipos de datos okTipos de datos ok
Tipos de datos ok
Tensor1.2K vistas

Último(20)

Contenidos y PDA 6° Grado.docxContenidos y PDA 6° Grado.docx
Contenidos y PDA 6° Grado.docx
Norberto Millán Muñoz49 vistas
Contenidos y PDA 1°.docxContenidos y PDA 1°.docx
Contenidos y PDA 1°.docx
Norberto Millán Muñoz48 vistas
Plan analítico en la NEM (2).pptxPlan analítico en la NEM (2).pptx
Plan analítico en la NEM (2).pptx
Norberto Millán Muñoz179 vistas
Recreos musicales.pdfRecreos musicales.pdf
Recreos musicales.pdf
arribaletur123 vistas
Misión en favor de los necesitados.pdfMisión en favor de los necesitados.pdf
Misión en favor de los necesitados.pdf
Alejandrino Halire Ccahuana56 vistas
Misión en favor de los necesitadosMisión en favor de los necesitados
Misión en favor de los necesitados
https://gramadal.wordpress.com/218 vistas
Teoria y Practica de Mercado 2023.docxTeoria y Practica de Mercado 2023.docx
Teoria y Practica de Mercado 2023.docx
Maribel Cordero49 vistas
La  Función de Tutoría   TOE1   Ccesa007.pdfLa  Función de Tutoría   TOE1   Ccesa007.pdf
La Función de Tutoría TOE1 Ccesa007.pdf
Demetrio Ccesa Rayme325 vistas
Contenidos y PDA 5°.docxContenidos y PDA 5°.docx
Contenidos y PDA 5°.docx
Norberto Millán Muñoz25 vistas
semana 2semana 2
semana 2
ValdezsalvadorMayleM63 vistas
Semana 3.pdfSemana 3.pdf
Semana 3.pdf
ValdezsalvadorMayleM74 vistas
DESERCIÓN ESCOLAR.pptxDESERCIÓN ESCOLAR.pptx
DESERCIÓN ESCOLAR.pptx
recwebleta43 vistas
SESIÓN LANZAMIENTO DE BALA.pdfSESIÓN LANZAMIENTO DE BALA.pdf
SESIÓN LANZAMIENTO DE BALA.pdf
ELIDALOPEZFERNANDEZ37 vistas

Clase 7 ondas electromagneticas

  • 2. Ondas Electromagnéticas  Se estableció que un campo eléctrico que varía con el tiempo 𝐸(𝑡) produce un campo magnético que varía con el tiempo 𝐻(𝑡) y, a la inversa, un campo magnético que varía con el tiempo produce un campo eléctrico. Este patrón cíclico genera ondas electromagnéticas (EM) capaces de propagarse a través del espacio libre y en medios materiales. Cuando su propagación sigue el curso de una estructura material, como una línea de transmisión, se dice que la onda EM viaja en un medio guiado.
  • 3. Ondas Electromagnéticas  La superficie terrestre y la ionosfera constituyen límites paralelos de una estructura natural de guía para la propagación de transmisiones de radio de onda corta en la banda 𝐻𝐹 (3 𝑎 30 𝑀𝐻𝑧); la ionosfera es un buen reflector a estas frecuencias, lo que permite que las ondas vayan en zigzag entre los dos límites.
  • 5. Ondas Electromagnéticas  Las ondas EM también pueden viajar en medios sin fronteras; las ondas luminosas que emite el sol y las transmisiones de radio emitidas por antenas son ejemplos típicos
  • 6. Ondas Electromagnéticas  La atención se enfocará en la propagación de ondas en un medio sin fronteras. Se considerarán tanto medios con pérdidas como sin ellas. La propagación de ondas en un medio sin pérdidas (dieléctrico perfecto, como el aire) es similar a aquella a través de una línea de transmisión sin pérdidas. En un medio con pérdidas caracterizado por una conductividad diferente de cero, como el agua, una parte de la potencia transportada por la onda electromagnética se convierte en calor, exactamente como lo que le sucede a una onda que se propaga a través de una línea de transmisión con pérdidas.
  • 7. Ondas Electromagnéticas  Cuando una fuente (como una antena) emite energía, ésta se expande hacia fuera de la fuente en la forma de ondas esféricas, como se ilustra en la figura.  Aun cuando la antena puede irradiar más energía a lo largo de algunas direcciones que a lo largo de otras, las ondas esféricas viajan con la misma rapidez en todas las direcciones y, por lo tanto, se expanden a la misma tasa
  • 8. Ondas Electromagnéticas Ondas irradiadas por una fuente EM, como una bombilla de luz o una antena, tienen frentes de onda esféricos
  • 9. Ondas Electromagnéticas  Para un observador alejado de la fuente, el frente de las ondas esféricas aparece aproximadamente plano, como si fuera una parte de una onda plana uniforme con propiedades uniformes en todos los puntos del plano tangente al frente de ondas. La propagación de ondas planas puede describirse mediante coordenadas cartesianas con las que es más fácil trabajar matemáticamente que con las coordenadas esféricas requeridas para describir la propagación de una onda esférica
  • 10. Ondas Electromagnéticas Sin embargo, para un observador distante, el frente de onda que atraviesa la abertura del observador parece aproximadamente plano
  • 11. Ondas Electromagnéticas  Campos armónicos  En el caso de variación con el tiempo, los campos eléctricos y magnéticos E, D, B y H, y sus fuentes, la densidad de carga 𝜌 𝑣 y la densidad de corriente 𝐽, son (cada uno y en general) una función de las coordenadas espaciales (𝑥, 𝑦, 𝑧) y la variable de tiempo 𝑡.  Si su variación con el tiempo es una función sinusoidal con frecuencia angular 𝜔, cada una de estas cantidades se representa por un fasor independiente del tiempo que depende sólo de (𝑥, 𝑦, 𝑧).
  • 12. Ondas Electromagnéticas  Por lo tanto, el fasor vectorial 𝐸 𝑥, 𝑦, 𝑧 correspondiente al campo instantáneo 𝐸(𝑥, 𝑦, 𝑧; 𝑡) se define de acuerdo con  𝐸 𝑥, 𝑦, 𝑧: 𝑡 = 𝑅𝑒 𝐸 𝑥, 𝑦, 𝑧 𝑒 𝑗𝜔𝑡  Y definiciones similares son aplicables a los demás campos y a 𝜌 𝑉 y 𝐽. Para un medio lineal, isotrópico y homogéneo caracterizado por la permitividad eléctrica𝜀, permeabilidad magnética 𝜇 y conductividad 𝜎, se recuerda que la diferenciación en el dominio del tiempo corresponde a multiplicar por 𝑗𝜔 en el dominio fasorial.
  • 13. Ondas Electromagnéticas  Como la mayoría de las regiones de interés son libres de carga, se supone que 𝜌 = 0. Por otro lado, hay que suponer, materiales lineales isotrópicos de tal manera que 𝐷 = 𝜖𝐸, 𝐵 = 𝜇𝐻 𝑦 𝐽 𝐶 = 𝜎𝐸.  Isotrópico quiere decir que no depende de la elección de los ejes. no importa para que lado estés midiendo cierta propiedad o magnitud física siempre va a medir lo mismo.  Un ejemplo sencillo, se asume al espacio isotrópico, es decir, medir un metro hacia arriba, es lo mismo que medirlo de lado, diagonal, etc. Un ejemplo en donde no se cumple la isotropía, si tu tienes un material, y es mas difícil estirarlo de izquierda a derecha que de arriba abajo, pues se dice que dicha propiedad de estirarlo (rigidez) es anisotropía.
  • 14. Ondas Electromagnéticas  En electromagnetismo algunas de las propiedades que puedes medir son: conductividad, susceptibilidad magnética, susceptibilidad eléctrica, resistividad, etc. Si esas propiedades no dependen de la dirección (u orientación de los ejes) se dice que el cuerpo es isotrópico.  Por ejemplo si tu cuerpo tiene igual valor de conductividad cuando la corriente lo atraviesa de arriba a abajo, que de izquierda a derecha (y en general de todas las posibles direcciones) se dice que ese es un cuerpo isotrópico con respecto a la conductividad.
  • 15. Ecuaciones de Onda  Con base en los principios anteriores y suponiendo que tanto 𝐸 𝑐𝑜𝑚𝑜 𝐻 son dependientes del tiempo 𝑒 𝑗𝜔𝑡, las ecuaciones de Maxwell se transforman en:  Ahora aplicamos la identidad vectorial 𝛻 × 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝐸 1 𝛻 × 𝐸 = −𝑗𝜔𝜇𝐻 2 𝛻 ∙ 𝐸 = 0 3 𝛻 ∙ 𝐻 = 0 (4) 𝛻 × 𝛻 × 𝐴 ≡ 𝛻 𝛻 ∙ 𝐴 − 𝛻2 𝐴
  • 16. Ecuaciones de Onda  Donde, tan solo en coordenadas cartesianas  Tomando el rotacional de (1) y (2), y utilizando (3) y (4)  Ahora sustituyendo 𝛻 × 𝐸 𝑦 𝛻 × 𝐻 de (2) y (1), se obtienen las ecuaciones vectoriales 𝛻2 𝐴 = 𝛻2 𝐴 𝑥 𝑎 𝑥 + 𝛻2 𝐴 𝑦 𝑎 𝑦+ 𝛻2 𝐴 𝑧 𝑎 𝑧 𝛻2 𝐻 = 𝛾2 𝐻 𝛻2 𝐸 = 𝛾2 𝐸 −𝛻2 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝛻 × 𝐸 −𝛻2 𝐸 = −𝑗𝜔𝜇 𝛻 × 𝐻
  • 17. Ecuaciones de Onda  Donde 𝛾2 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 . La constante de propagación, 𝛾, es la raíz cuadrada de 𝛾2 cuyas partes real e imaginaria son positivas:  con γ = 𝛼 + 𝑗𝐵 𝛼 = 𝜔 𝜇𝜖 2 1 + 𝜎 𝜔𝜖 2 − 1 𝛽 = 𝜔 𝜇𝜖 2 1 + 𝜎 𝜔𝜖 2 + 1
  • 18. Ecuaciones de Onda  La constante 𝛼 se llama factor de atenuación y 𝛽 se llama constante de crecimiento de fase. 𝛾 (Gamma) tiene unidades 𝑚−1 , sin embargo, es costumbre dar 𝛼 𝑦 𝛽 𝑒𝑛 𝑁𝑝 𝑚 𝑦 𝑟𝑎𝑑 𝑚 , respectivamente, donde el neper (Np) es una unidad adimensional como el radián.
  • 19. Soluciones en Coordenadas Cartesianas  La familiar ecuación escalar de onda en una dimensión  Tiene soluciones de la forma 𝐹 = 𝑓 𝑧 − 𝑈𝑡 𝑦 𝐹 = 𝑔 𝑧 + 𝑈𝑡 , donde 𝑓 𝑦 𝑔 son funciones arbitrarias. Estas representan ondas que viajan con velocidad 𝑈 en las direcciones +𝑧 𝑦 − 𝑧, respectivamente, de acuerdo a la siguiente figura. 𝜕2 𝐹 𝜕𝑧2 = 1 𝑈2 𝜕2 𝐹 𝜕𝑡2
  • 20. Soluciones en Coordenadas Cartesianas 𝑓 𝑧 𝑜 𝑈𝑡1 𝑓 𝑧1 − 𝑈1 𝑡1 𝑡 = 𝑡1𝑡 = 0
  • 21. Soluciones en Coordenadas Cartesianas  En particular, si se supone una variación armónica de tiempo 𝑒 𝑗𝜔𝑡 , la ecuación de onda se convierte en  Con soluciones (incluyendo el factor temporal) de la forma  O en las partes real o imaginaria de estas. 𝜕2 𝐹 𝜕𝑧2 = −𝛽2 𝐹 𝛽 = 𝜔 𝑈 𝐹 = 𝐶𝑒 𝑗 𝜔𝑡−𝛽𝑧 𝐹 = 𝐷𝑒 𝑗 𝜔𝑡+𝛽𝑧
  • 22. Soluciones en Coordenadas Cartesianas 𝐶 𝑡 = 0 𝑡 = 𝜋 2𝜔 𝑑 𝐹 𝑧 𝐹𝑖𝑔𝑢𝑟𝑎 2
  • 23. Soluciones en Coordenadas Cartesianas  La figura 2 muestra una de estas soluciones, 𝐹 = 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 , 𝑒𝑛 𝑡 = 0 𝑦 𝑒𝑛 𝑡 = 𝜋 2𝜔 ; durante este intervalo de tiempo la onda se ha movido una distancia 𝑑 = 𝑈 𝜋 2𝜔 = 𝜋/2𝛽 a la derecha. Para cualquier 𝑡 fijo, la forma de onda se repite cuando 𝑧 cambia a 2𝜋/𝛽. La distancia  Se llama longitud de onda. De esta manera en la figura 2, la onda avanzado un cuarto de longitud de onda a la derecha. La longitud de onda y la frecuencia 𝑓 = 𝜔/2𝜋, guardan entre si la relación conocida  También, 𝜆 = 𝑇𝑈 donde 𝑇 = 1 𝑓 = 2𝜋/𝜔 es el periodo 𝜆 = 2𝜋 𝛽 𝜆𝑓 = 𝑈
  • 24. Soluciones en Coordenadas Cartesianas  Las ecuaciones vectoriales de onda tienen soluciones similares a las ya discutidas anteriormente. Como los vectores unidad 𝑎 𝑥, 𝑎 𝑦 𝑦 𝑎 𝑧 en coordenadas cartesianas tienen direcciones fijas, la ecuación de onda para 𝐻 puede reescribirse bajo la forma  De especial interés son las soluciones (ondas planas) que dependen solo de una coordenada espacial, digamos 𝑧. 𝜕2 𝐻 𝜕𝑥2 + 𝜕2 𝐻 𝜕𝑦2 + 𝜕2 𝐻 𝜕𝑧2 = 𝛾2 𝐻
  • 25. Soluciones en Coordenadas Cartesianas  La ecuación se convierte entonces en  Dando  Las soluciones correspondientes para el campo eléctrico son 𝑑2 𝐻 𝑑𝑧2 = 𝛾2 𝐻 𝐻 = 𝐻 𝑜 𝑒±𝑦𝑧 𝑎 𝐻 ó 𝐻 𝑧, 𝑡 = 𝐻 𝑜 𝑒±𝑦𝑧 𝑒 𝑗𝜔𝑡 𝑎 𝐻 𝐸 = 𝐸 𝑜 𝑒±𝑦𝑧 𝑎 𝐸 ó 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒±𝑦𝑧 𝑒 𝑗𝜔𝑡 𝑎 𝐸
  • 26. Soluciones en Coordenadas Cartesianas  Aquí 𝑎 𝐻 𝑦 𝑎 𝐸 son vectores unitarios. La cantidad compleja 𝛾 se definió anteriormente  Se demuestra que  Es decir que ningún campo tienen componente en la dirección de propagación.  Siendo esto así se pueden rotar siempre los ejes para colocar uno de los campos, digamos 𝐸 a lo largo del eje 𝑥. Entonces se demuestra que 𝐻 yace a lo largo del eje 𝑦.  La solución de onda plana que se acaba de obtener depende, vía 𝛾, de las propiedades del medio 𝜇, 𝜖 𝑦 𝜎 𝑎 𝐻 ∙ 𝑎 𝑧 = 𝑎 𝐸 ∙ 𝑎 𝑧 = 0
  • 27. Soluciones para medios parcialmente conductores  Para una región de poca conductividad (ej.: suelo húmedo, agua de mar), la solución de la ecuación de onda E es  La razón 𝐸/𝐻 es característica del medio (también dependen de la frecuencia). Mas específicamente, para ondas 𝐸 = 𝐸 𝑥 𝑎 𝑥 , 𝐻 = 𝐻 𝑦 𝑎 𝑦 que se propaga en la dirección + 𝑧, la impedancia intrínseca, 𝜂, del medio se define por:  De esta manera 𝐸 = 𝐸 𝑜 𝑒−𝛾𝑧 𝑎 𝑥 𝜂 = 𝐸 𝑥 𝐻 𝑦 𝜂 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖
  • 28. Soluciones para medios parcialmente conductores  Donde la raíz cuadrada puede escribirse en forma polar 𝜂 ∠𝜃 con  (Si la onda se propaga en la dirección −𝑧, 𝐸 𝑥 𝐻 𝑦 = −𝜂. En efecto, 𝛾 se reemplaza por − 𝛾 y se usa la otra raíz cuadrada). 𝜂 = 𝜇/𝜖 4 1 + 𝜎 𝜔𝜖 2 𝑡𝑎𝑛2𝜃 = 𝜎 𝜔𝜖 𝑦 0 𝑜 < 𝜃 < 45 𝑜
  • 29. Soluciones para medios parcialmente conductores  Al introducer el factor tiempo 𝑒 𝑗𝜔𝑡 y al escribir 𝛾 = 𝛼 + 𝑗𝛽 se obtiene las siguientes ecuaciones para campos en una región parcialmente conductora:  El factor 𝑒−𝛼𝑧 atenúa las magnitudes de 𝐸 𝑦 𝐻 cuando se propagan en dirección +𝑧. La expresión para 𝛼,esto demuestra que existe atenuación a menos que la conductividad 𝜎 sea cero, lo que solo es el caso de dieléctricos perfectos o de espacio vacío. 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒−𝛼𝑧 𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃 𝑎 𝑥 o 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥 𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑒−𝛼𝑧 𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃 𝑎 𝑦 o 𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦
  • 30. Soluciones para medios parcialmente conductores  De la misma manera, la diferencia de fase temporal 𝜃, 𝑒𝑛𝑡𝑟𝑒 𝐸 𝑧, 𝑡 𝑦 𝐻(𝑧, 𝑡) desaparece solo cuando 𝜎 es cero. La velocidad de propagación y la longitud de onda están dadas por:  Si se conoce la velocidad de propagación 𝜆𝑓 = 𝑈 puede usarse para determinar la longitud de onda 𝜆. 𝑈 = 𝜔 𝛽 = 1 𝜇𝜖 2 1 + 𝜎 𝜔𝜖 2 + 1 𝜆 = 2𝜋 𝛽 = 2𝜋 𝜔 1 + 𝜎 𝜔𝜖 2 + 1
  • 31. Soluciones para medios parcialmente conductores  El termino 𝜎/𝜔𝜖 2 reduce tanto el valor de la velocidad como el de la longitud de onda, de lo que serían en el espacio vacío o dieléctricos perfectos, donde 𝜎 = 0. Obsérvese que el medio es dispersivo, es decir, ondas con frecuencias diferentes 𝜔 tienen diferentes velocidades 𝑈.
  • 32. Problemas  Problema 1  Una onda viajera está descrita por 𝑦 = 10𝑠𝑒𝑛 𝛽𝑧 − 𝜔𝑡 . Dibuje en 𝑡 = 0 𝑦 𝑒𝑛 𝑡 = 𝑡1 cuando ha avanzado 𝜆 8 , si la velocidad es de 3 × 108 𝑚/𝑠 y la frecuencia angular es 𝜔 = 106 𝑟𝑎𝑑 𝑠 , 𝑏)𝜔 = 2 × 106 𝑟𝑎𝑑/𝑠 y el mismo 𝑡1
  • 33. Problemas  Solución Inciso a  La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que  𝑡1 = 𝑇 8 = 2𝜋/𝜔 8 = 𝜋 4𝜔  𝜆 8 = 𝑐𝑡1 = 3 × 108 𝜋 4 106 = 236m 𝑡 = 0 𝑡 = 𝑡1 10 𝜔 = 106 𝑧 𝑦 𝜆/2 𝜆 236𝑚
  • 34. Problemas  Solución inciso b  La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que  𝑡1 = 𝑇 8 = 2𝜋/𝜔 8 = 𝜋 4𝜔  𝜆 8 = 𝑐𝑡1 = 3 × 108 𝜋 4 2×106 = 118m 𝑡 = 0 𝑡 = 𝑡1 10 𝜔 = 2 × 106 𝑧 𝑦 𝜆/2 𝜆 118𝑚
  • 35. Soluciones para dieléctricos perfectos  Para un dieléctrico perfecto, 𝜎 = 0 y así  Como ∝= 0 no hay atenuación de las ondas 𝐸 𝑦 𝐻. El angula cero sobre 𝜂 produce un 𝐻 que esta en fase temporal con 𝐸 en cada localización fija. Suponiendo 𝐸 en 𝑎 𝑥 y la propagación en 𝑎 𝑧, las ecuaciones de campo pueden obtenerse como limites, como se denota a continuación: 𝛼 = 0 𝛽 = 𝜔 𝜇𝜖 𝜂 = 𝜇 𝜖 ∠00 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒 𝑗(𝜔𝑡−𝛽𝑧) 𝑎 𝑥 𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑒 𝑗(𝜔𝑡−𝛽𝑧) 𝑎 𝑦
  • 36. Soluciones para dieléctricos perfectos  La velocidad de la onda y la longitud de la onda son:  Para espacio vacío 𝑈 = 𝜔 𝛽 = 4𝜋 × 10−7 𝐻 𝑚 𝜖 = 𝜖 𝑜 = 8.854 × 10−12 𝐹 𝑚 ≈ 10−9 36𝜋 𝐹/𝑚 𝜂 = 𝜂 𝑜 ≈ 120𝜋 Ω 𝑦 𝑈 = 𝑐 ≈ 3 × 108 𝑚/𝑠
  • 37. Problemas  Problema 2  En el espacio vacío, 𝐸 𝑧, 𝑡 = 103 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Obtenga 𝐻(𝑧, 𝑡)
  • 38. Problemas  Solución  Un examen de la fase, 𝜔𝑡 − 𝛽𝑧, revela que la dirección de la propagación es +𝑧, 𝐻 debe tener dirección −𝑎 𝑥. Por tanto 𝐸 𝑦 −𝐻𝑧 = 𝜂 𝑜 = 120𝜋 Ω ó 𝐻 𝑥 = − 103 120𝜋 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚 𝑦 𝐻𝑧 𝑧, 𝑡 = − 103 120𝜋 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚
  • 39. Problemas  Problema 3  Sea la onda, en el espacio vacío, 𝐸 𝑧, 𝑡 = 103 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Determine la constante de propagación 𝛾 sabiendo que la frecuencia es que la frecuencia es 𝑓 = 95.5𝑀ℎ𝑧
  • 40. Problemas  Solucion  En general, 𝛾 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 En el espacio vacío, 𝜎 = 0, así que:  𝛾 = 𝑗𝜔 𝜇0 𝜖0 = 𝑗 2𝜋𝑓/𝑐 = 𝑗 2𝜋 95.5×106 3×108 = −𝑗2𝑚−1  Obsérvese que este resultado demuestra que el factor de atenuación es 𝛼 = 0 y la constante de defasaje es 𝛽 = 2 𝑟𝑎𝑑/𝑚
  • 41. Problemas  Problema 4  El campo eléctrico de una onda plana de 1MHz que viaja en la dirección +𝑧 en aire apunta en la dirección 𝑥. Si el valor pico de 𝐸 es de 1.2𝜋 𝑚𝑉 𝑚 y 𝐸 es máximo cuando 𝑡 = 0 𝑦 𝑧 = 50𝑚, obtenga expresiones para 𝐸 𝑧, 𝑡 𝑦 𝐻 𝑧, 𝑡 y luego trace una grafica de estas variaciones en función de 𝑧 𝑐𝑜𝑛 𝑡 = 0.
  • 42. Problemas  Solución  Con 𝑓 = 1𝑀𝐻𝑧, la longitud de onda en el aire es:  𝜆 = 𝑐 𝑓 = 3×108 1×106 = 300 𝑚  Y el numero de onda correspondiente es 𝛽 = 2𝜋 𝜆 = 2𝜋 300 𝑟𝑎𝑑/𝑚. La expresión general para un campo eléctrico dirigido hacia 𝑥 que viaja en la dirección de +𝑧 aparece en la ecuación como  𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥 ⇒ 𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋 300 𝑧 + 𝜃 𝑎 𝑥 𝑚𝑉 𝑚  El campo 𝐸 𝑧, 𝑡 es máximo cuando el argumento de la función coseno es igual a cero o a múltiplos de 2𝜋. Con 𝑡 = 0 𝑦 𝑧 = 50𝑚, esta condición es
  • 43. Problemas  Solución  − 2𝜋×50 300 + 𝜃 = 0 𝑜 𝜃 = 𝜋 3  𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋 300 𝑧 + 𝜋 3 𝑎 𝑥 𝑚𝑉 𝑚  Y de acuerdo con  𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦 ⟹  𝐻 𝑧, 𝑡 = 1.2𝜋×10−3 120𝜋 𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑦 𝜇𝐴/𝑚  𝐻 𝑧, 𝑡 = 10𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑦 𝜇𝐴/𝑚  Donde se utilizo la aproximación 𝜂 𝑜 ≈ 120𝜋 Ω 𝑐𝑜𝑛 𝑡 = 0 tenemos que
  • 44. Problemas  Solución  𝐸 𝑧, 0 = 1.2𝜋𝑐𝑜𝑠 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑥 𝑚𝑉/𝑚  𝐻 𝑧, 0 = 10𝑐𝑜𝑠 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑦 𝑚𝑉/𝑚 Variaciones espaciales de 𝐸 𝑦 𝐻 𝑐𝑜𝑛 𝑡 = 0 para la onda Plana del ejemplo