SlideShare una empresa de Scribd logo
1 de 64
Descargar para leer sin conexión
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Distribution lists :
Abstract / comments :
This is an internal document that applies up to the V12 BSS release.
This document is available at the following Netscape location:
http://136.147.68.68/ned/ERGmain.html
Abis Interface Engineering Guide
GSM
Reference : PE /IRC/APP/0079
Version : 01.08 / EN
Date : 12/04/99
Author : T. Bachelier
Documentalist : A.-M. Leberre
Approved by : M. Liem
Quality manager :
Ext. ref. :
Type : CEV
Product :
Cat : I
Status : A
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide
PE /IRC/APP/0079 01.08 / EN 12/04/99
DOCUMENT AMENDMENTS
VERSION DATE COMMENTS AUTHOR
01.01 / EN 03/06/98 Creation - Preliminary edition T. Bachelier
01.02 / EN 19/06/98 Update after review Preliminary edition
See report: PE/IRC/GES/0034 V1.01
T. Bachelier
01.03 / EN 15/07/98 New minutes have been taken into account T. Bachelier
01.04 / EN 31/07/98 Modification after review + rewriting
See report: PE/IRC/GES/0034 V1.02
T. Bachelier
01.05 / EN 16/12/98 US and China comments have been taken into ac-
count
T. Bachelier
01.06 / EN 24/12/98 Modification after review
See report: PE/IRC/GES/0034 V1.03
T. Bachelier
01.07 / EN 25/03/98 The main changes are on LAPD dimensioning:
Engineering rules have been completely remade,
they are given for each type of BTS which allows
more flexibility.
T. Bachelier
01.08 / EN 12/04/98 Modification after review. T. Bachelier
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
GSM
Reference : PE /IRC/APP/0079
Version : 01.08 / EN
Date : 12/04/99
ABIS INTERFACE ENGINEERING GUIDE
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 4
PE /IRC/APP/0079 01.08 / EN 12/04/99
TABLE OF CONTENTS
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2 RELATED DOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 APPLICABLE DOCUMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 REFERENCE DOCUMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 ABBREVIATIONS AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 DEFINITION OF TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 BTS CONFIGURATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
4.1 SITES AND CELL LAY-OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 OFFERED TRAFFIC ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 RADIO INTERFACE DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 TCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 SDCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.3 BCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 CELL DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.1 Cell types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.2 BTS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 LOOK-UP TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 BTS DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 SIGNALLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.1 LAPD channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2 LAPD dimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.2 PCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 Abis TS dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 PCM configuration rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 DCC & DSC DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 LOOK-UP TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 ABIS ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 DROP&INSERT CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.1 Possible configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2 TEI issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 5
PE /IRC/APP/0079 01.08 / EN 12/04/99
TABLE OF CONTENTS
6.1.3 DTI/PCMI issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.4 RadioSiteMask configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.5 RadioSiteMask Extension strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.6 Additinal feature of TDMA/Abis mapping configuration for V11 . . . . . . . 42
6.2 HUBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.1 Cross-connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.2 Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7 TRANSMISSION MEDIUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.1 CLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 TRANSMISSION QUALITY REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 CSU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.4 HDSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.4.2 HDSL issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4.3 HDSL modems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.5 MICROWAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5.1 Microwave design Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5.2 Microwave Quality requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5.3 Microwave configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5.4 Microwave equipment redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8 BSC DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.1 BSC TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.2 SICD/SICD8V BOARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.1 Limitation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.2 Parenting rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.3 Look-up tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 BSCB AND TSCB BOARDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.4 DDTI BOARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 6
PE /IRC/APP/0079 01.08 / EN 12/04/99
LIST OF TABLES
Table 1: BTS configuration limitations .............................................................................. 17
Table 2: Traffic for a given number of TRXs in a standard cell ........................................ 18
Table 3: Traffic for a given number of TRXs in an extended cell...................................... 18
Table 4: PCM configuration for S333 (TEI 0) with 1 PCM............................................... 26
Table 5: PCM configuration for S333 (TEI 0) with 2 PCMs ............................................. 27
Table 7: Internal E1 to external T1 conversion .................................................................. 28
Table 8: LAPD/DCC configuration.................................................................................... 29
Table 9: Omnisectorial BTS ............................................................................................... 30
Table 10: Bisectorial BTS................................................................................................... 30
Table 11: Tri and hexasectorial BTS.................................................................................. 31
Table 13: PCM E1 RadioSiteMask..................................................................................... 38
Table 14: PCM T1 RadioSiteMask..................................................................................... 38
Table 15: PCM E1 RadioSiteMask..................................................................................... 39
Table 16: PCM T1 RadioSiteMask..................................................................................... 39
Table 17: RadioSiteMask (first strategy)............................................................................ 41
Table 18: RadioSiteMask (second strategy)....................................................................... 41
Table 19: RadioSiteMask (Third strategy) ......................................................................... 42
Table 20: RadioSiteMask configuration with crossconnect ............................................... 44
Table 21: Timing requirements........................................................................................... 46
Table 22: Product range...................................................................................................... 58
Table 23: SICD limitations................................................................................................. 60
Table 24: Maximum number of sites per BSC ................................................................... 61
Table 25: PCM allocation for the BSC6000 Type5............................................................ 62
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 7
PE /IRC/APP/0079 01.08 / EN 12/04/99
LIST OF FIGURES
Figure 1: Star, Drop&Insert and Hub&Spoke Configurations ........................................... 33
Figure 2: Loop Drop&Insert configuration ....................................................................... 34
Figure 3: Hub&Spoke configuration. ................................................................................. 34
Figure 4: PCMI configurations for drop&insert................................................................. 35
Figure 5: D&I in loop without board redundancy: 1G versus 2G ...................................... 36
Figure 6: Drop & Insert example........................................................................................ 38
Figure 7: Hub&Spoke example .......................................................................................... 39
Figure 8: Example............................................................................................................... 40
Figure 9: Cross-connect configuration ............................................................................... 43
Figure 10: Crossconnect configuration............................................................................... 43
Figure 11: Architectuire with Switch ................................................................................. 44
Figure 12: HDSL solution................................................................................................... 49
Figure 13: Microwave solution........................................................................................... 51
Figure 14: Reference communication of ITU..................................................................... 53
Figure 15: Performance objectives: .................................................................................... 53
Figure 16: Chain Drop&Insert with microwaves ............................................................... 54
Figure 17: Loop Drop&Insert with microwaves................................................................. 54
Figure 18: Hub and Spoke with microwaves...................................................................... 55
Figure 19: Abis configuration with microwaves on BSC side ........................................... 55
Figure 20: Typical non-protected and protected microwave equipment architecture ........ 56
Figure 21: Dimensioning the Abis interface with LAPD concentration ............................ 61
Figure 22: Example of complex configuration................................................................... 63
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 8/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
1 INTRODUCTION
1.1 PURPOSE
The purpose of this document is to give Abis interface engineering guidelines for the
NORTEL BSS network.
This document is discusses the following subjects:
v Dimensioning speech and signalling on the Abis interface,
v Impact on the BTS side,
v Abis architecture,
v Transmission medium (HDSL, microwaves),
v Impact on the BSC side.
This document is intended primarily for Network Designers and Application
Engineers involved in GSM network Engineering within NORTEL GSM Networks
and Nortel.
1.2 SCOPE
This document is internal and applies up to the V12 Release.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 9/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
2 RELATED DOCUMENTS
2.1 APPLICABLE DOCUMENTS
[A01] Feature list of System Release V11
PE/SYS/DPL/0089 V01.02/EN P. Vincent
[A02] Dimensioning the Abis interface
PE/SYS/DD/0070 V6.02/EN B. Couaillet
[A03] Transmission Network Recommendations
PE/SYS/DD/0253 V1.03/EN B. Couaillet
2.2 REFERENCE DOCUMENTS
[R01] V8 Engineering Changes
PE/IRC/APP/00030 V1.06/EN L. Jullien
[R02] V9 Engineering Changes
PE/IRC/APP/00048 V1.06/EN T. Bachelier
[R03] V10 Feature Engineering Information
PE/IRC/APP/00068 V1.08/EN S. Luong
[R04] V11 Feature Engineering Information
PE/IRC/APP/00072 V1.06/EN T. Bachelier
[R05] S8000 Outdoor BTS Engineering Information
PE/IRC/APP/00033 V4.02/EN Y. Maurin
[R06] S8000 Indoor BTS Engineering Information
PE/IRC/APP/00055 V4.02/EN Y. Maurin
[R07] S2000H BTS Engineering Information
PE/IRC/APP/00052 V3.04/EN M. N. Boursin
[R08] S2000L BTS Engineering Information
PE/IRC/APP/00053 V3.04/EN M. N. Boursin
[R09] BSC/TCU Engineering Information
PE/IRC/APP/00015 V5.04/EN B. Vanheeghe
[R10] OMC-R Engineering Information (Vol. 1)
PE/IRC/APP/00016 V5.04/EN M. Lebas
[R11] BSS Parameters User Guide
PE/IRC/APP/00037 V3.01/EN WGAl-WGSys
[R12] Defence mechanisms on PCM faults
PE/SYS/DD/0242 V3.01/EN B. Couaillet
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 10/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
[R13] UIT-T Recommendations
G732 Characteristics of primary PCM multiplex equipment operating at 2048 kbit/s.
[R14] UIT-T Recommendations
G811 Timing requirements at the output of primary reference clocks suitable for ple-
siochronous operation of international digital links.
[R15] UIT-T Recommendations
G733 Characteristics of primary PCM multiplex equipment operating at 1544 kbit/s.
[R16] UIT-T Recommendations
The control of jitter and wander within digital networks which are based on the
2048 kb/s hierarchy.
[R17] UIT-T Recommendations
The control of jitter and wander within digital networks which are based on the
1544 kb/s hierarchy.
[R18] CT5100 Specification for Backhaul Optimization
PE/SPC/DD/00xx V1.01/EN A. Chevalier
[R19] GSM Transmission Engineering Guide
PE/IRC/APP/0086 V1.01/EN B. Pariseau
[R20] Nortel BSS performances
PE/BSS/DJD/0456 V1.01/EN A. Montès
[R21] HDSL modem layer1 qualification
PE/BTS/DJD/0962 V10.01/EN B. Corn
[R22] BSCB Eng’g Information: Load Monitoring and Optimization
PE/IRC/INF/0015 V1.01/EN B. Vanhèeghe
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 11/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
3 ABBREVIATIONS AND DEFINITIONS
3.1 ABBREVIATIONS
BCF Base Common Function
BDA Application Database
BER Bit Error Rate
BPUG BSS Parameters User Guide
BSC Base Station Controller
BSS Base Station SubSystem
BTS Base Transceiver Station
CCCH Common Control Channel
CS Coupling System
CSU Channel Service Unit
DCC Data Channel Concentrator (BTS 1G)
DSC Data Signalling Concentrator (BTS 2G)
DCU Dual Channel Unit
DIU Digital Interface Unit
DM Degraded Minutes
DRX Driver + Receiver + Frame Processor
DTI Digital Trunk Interface
ES Errored Seconds
FEI Feature Engineering Information (document)
GSM Global System for Mobile communications
HDSL High bit rate Digital Subscriber Line
HG High grade
HLR Home Location Register
HO Handover
H/W Hardware
LA Location Area
LAPD Link Access Protocol on D channel
LG Local Grade
LOS Line Of Sight
L1M Layer 1 Measurements
MG Medium Grade
MS Mobile Station
NMC Nortel Matra Cellular
NMC Network Management Center
NSS Network Sub-System
O&M Operation and Maintenance
OMC Operation and Maintenance Center
OMC-R Operation and Maintenance Center-Radio
OMN Operation and Maintenance Network
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 12/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
PA Power Amplifier
PBGT Power Budget
PCH Paging Channel
PCM Pulse Code Modulation
PCMI PCM Interface
PEI Product Engineering Information (document)
QOS Quality of Service
RFU Radio Frequency Unit
RV Rendez Vous
SES Severely Errored Seconds
SMS-CB Short Message Service - Cell Broadcast
SPCMI Small PCM Interface
TBC To Be Completed
TBD To Be Defined
TCH Traffic ChHannel
TCU Transcoder Unit
TEI Terminal Equipment Identifier
TMG Traffic Management
TRX Transmission-Reception subsystem of the BTS
TS Time Slot
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 13/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
3.2 DEFINITION OF TERMS
C/I:
Carrier-to-Interference ratio, measured in dB, gives the measure of the ratio of the
usable signal over the interferences level.
DRX:
The DRX is a part of the "2G" BTS system architecture. The first product that
supports this architecture in the Nortel catalogue is the S8000 Outdoor BTS. In the
"2G" architecture, the TRX is composed of two modules, one dedicated to the signal
processing (transmission and reception) called DRX, and one dedicated to the power
transmission, called PA.
Rendez Vous time slot:
This is the time slot of the Abis interface PCM link that carries the primary LAPD of
the BTS site. It has a fixed predefined position on the PCM (BTS side) because it is
the time slot used by BSC and the BTS to establish their first dialogue after a
scanning procedure.
Soft Blocking:
Procedure by which a TRX or a cell can be put out of service (i.e. blocked) without
interrupting the given TRX or cell active calls.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 14/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Page Intentionally Left Blank
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 15/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
4 BTS CONFIGURATION
The site and the type of each BTS must be determined to perform the dimensioning
of the Abis interface. This part is performed by the Cellular planning in conjunction
with the network designer and the customer.
4.1 SITES AND CELL LAY-OUT
The sites and the cell layout are fixed according to the coverage prediction. There
are two different ways of working depending on the project context.
vIf the customer defines the site locations, then Nortel must define the predicted
coverage area.
vIf the customer does not define the site locations, Nortel assumes additional
activities for the site acquisition process follow-up such as along the site
acquisitions iterations, provision of optimal theoretical site location, site selection
rules, and coverage/quality impact of candidate site selection.
4.2 OFFERED TRAFFIC ASSESSMENT
The BTS configurations depend on the traffic (in Erlangs) that each cell must carry.
Traffic is assessed with two kinds of information: quality of service and subscriber
behaviour. The behaviour of subscribers includes the distribution of GSM
subscribers within the population, call profile, and mobility parameters. The offered
traffic of each cell is worked out from this information.
4.3 RADIO INTERFACE DIMENSIONING
The offered traffic is assessed. The next step is to dimension the radio interface.
4.3.1 TCH
The number of required TCHs is worked out from the Erlang B-law with a fixed
blocking rate applied to the assessed offered traffic. The assumption of NORTEL is
a blocking rate of 2% for traffic or data on the radio interface. One TCH channel is
carried by one radio TS.
Note that an ErlangB calculator is available at the following URL address:
http://47.53.64.96/syseng/2S00/2S30/ErlangBCalc/EBCalc.html
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 16/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
4.3.2 SDCCH
The number of required SDCCH channels is difficult to assess because it depends
on a large number of parameters:
• Mobility profile,
• Strategy used: For example, if most of the SDCCH requests are for call and
not for Location Update, it could make sense to use TCH signalling. It will al-
low the decrease the call setup time. Therefore, no more SDCCH channels
are needed according to this strategy (Note that the Location Update will be
also supported by a TCH signalling). This strategy is only applicable to few
particular cases, but it has a big impact on the dimensiong of the radio inter-
face.
• geographical zone of the cell: If the cell is near an LA boundary, the number
of Location updates could be quite important. So, the number of SDCCHs
must be high.
• features used: Queueing increases the duration of the SDCCH connections,
therefore the number of needed SDCCH may be studied.
This is not an exhaustive list. It just gives information about some parameters which
can strongly impact the SDCCH dimensioning.
Nevertheless, if we take only into account the NORTEL standard traffic model, the
number of required SDCCH can be easily determined.
The NORTEL standard traffic model indicates that 28 Erlangs of signalling traffic is
required for 100 Erlangs of speech or data traffic. After determination of the signalling
traffic, the number of SDCCH channels is worked out from the Erlang B law.
NORTEL assumption is a blocking rate of 0,1% for signalling on the radio interface.
A radio TS can carry 8 SDCCH channels and is called SDCCH/8, but the SDCCH
channels can be combined with the BCCH (refer to the following paragraph).
4.3.3 BCCH
One BCCH is required per cell. The BCCH is supported by the TS0 of the beacon
frequency.
In the case of one TRX per cell, BCCH can combined with one SDCCH/4 (4 SDCCH
channels) in order to have 7 TCH instead of 6. This configuration can be applied
under certain conditions such as the LA size. Actually, if the size of the LA is too
large, a great amount of paging will be generated and the PCH (which is limited in
this configuration) will not be able to flow all the paging messages.
If the SMS-CB is implemented with combined BCCH, there will be only 3 SDCCH
channels.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 17/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
4.4 CELL DIMENSIONING
4.4.1 CELL TYPES
The number of required TRXs depends on the type of cells. There are two different
kinds of cell: standard and extended cell. Extended cell allows bigger propagation
delay. The coverage of an extended cell could be bigger than the one of a standard
cell (for further information, please refer to [R02]).
TRX manages 8 TS in a standard cell and only four in an extended cell.
standard cell extended cell
unused TS
Standard cell is the default value used.
4.4.2 BTS CONFIGURATION
The number of required TRXs per cell is fixed according to two types of information:
the number of required radio time slots and the cell type.
The BTS is determined by the cells that it must manage. For example a BTS which
manages 3 cells with respectively 4, 5 and 2 TRXS is called a S452.
The dimensioning constants of the site are checked at the OMC level:
These limitations are only OMC-R checks. It does not necessary mean that the O16
configuration exists.
TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7
Table 1: BTS configuration limitations
Cells per site 6
TDMA per cell 16
TRX per site 24
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 18/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
4.5 LOOK-UP TABLES
The following look-up tables give the offered traffic for a given number of TRXs with
the NORTEL standard call profile (blocking rate of 2%). When the offered traffic is
assessed, these look-up tables give a first assessment about the number of needed
TRX. After this first assessment, some deeper dimensioning can be performed
according to information of section 4.3.2 (SDCCH dimensioning).
Blocking rate = 2.0%
* Combined BCCH (under certain conditions such as LA size)
Table 2: Traffic for a given number of TRXs in a standard cell
TRX Erlangs E/TRX TCH SDCCH/8 BCCH
1 2.9 2.9 7 0 1*
2 8.2 4.1 14 1 1
3 14.0 4.7 21 2 1
4 21.0 5.3 29 2 1
5 27.3 5.4 36 3 1
6 34.7 5.8 44 3 1
7 42.1 6.0 52 3 1
8 48.7 6.1 59 4 1
Table 3: Traffic for a given number of TRXs in an extended cell
TRX Erlangs E/TRX TCH SDCCH/8 BCCH
1 0.6 0.60 3 0 1*
2 2.3 1.14 6 1 1
3 5.1 1.70 10 1 1
4 8.2 2.05 14 1 1
5 11.5 2.30 18 1 1
6 14.0 2.33 21 2 1
7 17.5 2.50 25 2 1
8 21.0 2.625 29 2 1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 19/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Page Intentionally Left Blank
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 20/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
5 BTS DIMENSIONING
5.1 SIGNALLING
Two types of signalling are carried on the Abis interface. The first one, related to the
Operation and Maintenance, concerns all the component parts (BCF, TRX, Coupling
system, Power Amplifier ...). The second one, related to the traffic management, is
destined to the TRX module. In other words, all the modules receive O&M signalling,
while the TRX receives both O&M and traffic management signallings.
5.1.1 LAPD CHANNEL
These two types of signalling (O&M and radio management) are supported by the
same LAPD channel. A distinction is made between the BCF signalling and the cell
signalling.
Primary LAPD: The primary LAPD is the LAPD channel which handles BCF
signalling with cell signalling.
Secondary LAPD: It is the LAPD channel associated to a cell. It comprises only
cell signalling.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 21/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
5.1.2 LAPD DIMENSIONING
LAPD dimensioning depends on BTS limitations, Abis transmission costs and BSC
limitations. At BTS side, the hardware and software limitations are related to the BTS
type. At BSC side, two main limitations can occur: connectivity (maximum number of
LAPD ports) and real time processing capability.
In fact two different strategies can be chosen by the operator to drive the LAPD
dimensioning:
• The first one consists in concentrating the maximum number of LAPD chan-
nels at the BTS side in order to save some TS on the Abis interface. The pur-
pose is to decrease the transmission costs and to save some LAPD ports at the
BSC side. The drawback of this strategy is that it can create some BSC over-
load and lead to outage in worst case. Therefore, this strategy must be associ-
ated with a capacity analysis to ensure that the BSC can manage such
configuration.
• The second one is highly related to the BSC load. As the BSC real time pro-
cessing is a key factor in BSS design, it is of interest to split the signalling load
on the different boards in order to avoid an overloab on one board.
Of course, these two opposite strategies must fulfilled the BTS constraints. Each
type of BTS has its own limitations due to hardware or software characteristics.
This part deals with the BTS limitations and the BSC limitations in terms of real time
processing. The BSC connectivity and the parenting rules at the BSC side will be
seen in section 8 (BSC dimensioning).
BTS Limitations
The limitations depends on the BTS type. Each kind of BTS has its own limitations,
therefore the engineering rules are different depending on the BTS type.
The low capacity BTS such as S2000H/L or S2000P are not taken into account
because they always need one single LAPD channel. In fact, four different BTS have
been taken into account:
• S4000,
• S8000 BCF up to V11 (O&M software),
• S8000 BCF since V12 (COAM software),
• S8000 CBCF .
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 22/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
S4000:
The maximum configuration is S888.
The engineering rules are:
v Omnidirectional BTSs (up to O8) require only one LAPD channel.
v Multi-sectorial sites having more than 8 TRXs require one LAPD channel per cell.
v The signalling of multi-sectorial sites having up to 8 TRXs can be handled by a
single LAPD channel. But, for the sake of the BSC boards (refer to the following
section: BSC limitations in terms of real time processing), one LAPD per cell can
be defined.
S8000 BCF up to V11:
The maximum configuration is S888 and S444_444, S555_333, S666_222 for
dualband site.
The engineering rules are:
v Omnidirectional BTSs (up to O8) require only one LAPD channel.
v Multi-sectorial sites having more than 8 TRXs require one LAPD channel per cell.
v The signalling of multi-sectorial sites having up to 8 TRXs can be handled by a
single LAPD channel. But, for the sake of the BSC boards (refer to the following
section: BSC limitations in terms of real time processing), one LAPD per cell can
be defined.
v For dualband configurations (hexasectorial applications) Sxyz_x’y’z’, the rules
are the following ones:
• if x+y+z+x'+y'+z' ≤ 8, 1 LAPD can be sufficient.
• if x+y+z ≤ 8 and x'+y'+z' ≤ 8 then allocate 1 LAPD for each frequency band.
• if x+y+z > 8 or x’+y’+z’ > 8 then use 1 LAPD for x,x’, another LAPD for y,y’,
and a third LAPD for z,z’
F If a site has several LAPD channels, they must be connected on different SICD
ports unless the system will not be configured correctly.
F If a site has several LAPD channels, they must be connected on different SICD
ports unless the system will not be configured correctly.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 23/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
S8000 BCF since V12:
The maximum configurations are O16 for omnisectorial site , S888 for multisectorial
site and S444_444, S555_333, S666_222 for dualband site.
The engineering rules are:
v The number of DRX which can be handled by one LAPD channel is limited to 8.
v A site has a maximum of 3 Abis LAPD channels.
v If a cell has less than 8 TRX, it has only one LAPD channel.
v For dualband configurations (hexasectorial applications) Sxyz_x’y’z’, the rules
are the following ones:
• if x+y+z+x'+y'+z' ≤ 8, 1 LAPD can be sufficient.
• if x+y+z ≤ 8 and x'+y'+z' ≤ 8 then allocate 1 LAPD for each frequency band.
• if x+y+z > 8 or x’+y’+z’ > 8 then use 1 LAPD for x,x’, another LAPD for y,y’,
and a third LAPD for z,z’
Examples:
S111 can have one, two or three LAPD channels.
O8 has necessarily 1 LAPD channel.
S444 can have 2 or 3 LAPD channels.
S333 can have 2 or 3 LAPD channels.
F If a site has several LAPD channels, they must be connected on different SICD
ports unless the system will not be configured correctly.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 24/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
S8000 CBCF
The maximum configurations are O16 for omnisectorial site , S161616 for
multisectorial site and S444_444, S555_333, S666_222 for dualband site.
There are only two engineering rules:
v The number of DRX which can be handled by one LAPD channel is limited to 8.
v A site has a maximum of 3 Abis LAPD channels.
Examples:
S111 can have one, two or three LAPD channels.
O8 can have one, two or three LAPD channel.
S444 can have 2 or 3 LAPD channels. In case of 2 LAPD channels, 6
TRxs can defined on each LAPD channels in order to split the load.
S333 can have 2 or 3 LAPD channels.
F If a site has several LAPD channels, they must be connected on different SICD
ports unless the system will not be configured correctly.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 25/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
BSC limitations in term of real time processing
The SICD board is the LAPD interface controller that manages the signalling
interface between the BSC, the TCU, and the BTS. The SICD4 board (not the
SICD8V) can be the bottleneck of the BSC. Several BSC outages in the past were
due to an overload on the SICD4 card. The overload was either generated by high
Handovers, Paging and Location Update rates or by particulary high voice traffic
demands on certain sites (e.g. heavy load sites).
An overload mechanism has been introduced on the SICD board. But if this overload
mechanism is triggered, it will penalize the traffic (Q.O.S.) on all sites associated with
the SICD.
Therefore, it is really important to split the load on the different SICDs in order to
avoid overload on one SICD.
A site with less than 8 TRXs can easily be handled by a single LAPD channel.
However associating one LAPD channel to one cell allows a finer balancing of the
load on the available SICD boards. This implies that additional DCC/DSC cards may
be required on the BTS and that additional timeslots on the Abis interface are also
necessary. Please refer to the concerned BTS Product Engineering Information.
But it could make sense not applying these engineering rules if the forecast site traffic
is low, typically in rural area.
Note 1:
These engineering rules are applicable in a normal non-congested cell. They
cannot be applied in a congestion situation (radio blocking rate > 5%).
Note 2:
For the other rules (BSCB, SICD) which apply on the BSC side, please refer
to section 8 (BSC dimensioning).
F One LAPD channel must be associated to one cell in high traffic zone (urban
zone) for the sake of the SICD for the BSC 6000.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 26/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
5.2 PCM
5.2.1 ABIS TS DIMENSIONING
On the Abis interface, two consecutive TS are used per TDMA and one TS per
LAPD.
example:
S333 on 1 PCM: (3 + 3 + 3) * 2 = 18 Abis TS are required for traffic,
3 LAPD : 3 Abis TS are required for signalling,
the total number of Abis TS is 21.
If there are several PCMs, the number of required TS will be higher (for further
information, please refer to section 6.1.4).
S333 on 2 PCMs: 18 TS for traffic => 10 on the PCM1 and 8 on the PCM2,
but the radioSiteMask reserves 10 TS on each PCM.
3 TS for LAPD on each PCM.
The total number of TS is (10 + 3)*2 = 26 Abis TS
5.2.2 PCM CONFIGURATION RULES
The configuration rules of this section apply to the BTS side.
E1 configuration rules
The TS0 of a E1 PCM is used for synchronization. The other TS will be configured
according to several rules.
vThe TS number carrying the primary LAPD, called Rendez-Vous TS (RV TS),
obeys the following rule:
TS number = TEIBCF + 1. (with TEIBCF<16)
vThe TS associated to TRX are mapped by two on two consecutive TS. The
convention is to use the higher TS of a PCM first, and then continue toward the
lower.
vThe secondary LAPD channels will be mapped on the free TS following the Traffic
TS.
vWhen several PCM link the BTS to the BSC, the traffic TS are equally shared on
those PCM.
SP : Signalling Link TS (Primary LAPD) T : Traffic TS
SS : Signalling Link TS (Secondary LAPD)
Table 4: PCM configuration for S333 (TEI 0) with 1 PCM
TS # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S333 T T T T T T T T T T T T T T T T T T SS SS SP
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 27/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Table 5: PCM configuration for S333 (TEI 0) with 2 PCMs
SP : Signalling Link TS (Primary LAPD)
SS : Signalling Link TS (Secondary LAPD)
T : Traffic TS
T1 configuration rules
Rules:
For T1 configuration, the TS will be configured according to several rules:
vThe TS number carrying the primary LAPD, called Rendez-Vous TS (RV TS),
obeys the following rule:
TS number = TEIBCF + 1. (with TEIBCF<16)
But all the TEIs cannot be used for T1. TEIs number 3, 7, 11 and 15 are forbidden
for T1. The association between the Abis TS on the BTS side and the possible TEI
number is provided by the following table.
For further information, please refer to the following explanations (next page).
vThe TS associated to TRX are mapped by two on two consecutive TS. The
convention is to use the higher TS of a PCM first, and then continue toward the
lower.
vThe secondary LAPD channels will be mapped on the free TS following the Traffic
TS.
vWhen several PCM link the BTS to the BSC, the traffic TS are equally shared on
those PCM.
TS # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S333 T T T T T T T T T T SS SS SP
T T T T T T T T
Table 6: TEI to TS association
TEI 0 1 2 4 5 6 8 9 10 12 13 14
TS 1 2 3 4 5 6 7 8 9 10 11 12
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 28/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Explanations:
For T1 PCM, the SPCMI/PCMI/DTI converts internal PCMs (still in E1: 32 TS) to
external PCMs (T1: 24 TS). See Table 7.
Table 7: Internal E1 to external T1 conversion
This means that there is no corresponding external TS for the internal TS4.
Information on the internal TS4 never leaves the BTS.
For the T1 PCM, the rule for RV TS calculation is still RV TS = TEI number + 1 but
applies to internal PCM. So, if the TEI was configured to value 3, the used TS would
be 4 and the BTS would still remain impossible to reach.
Therefore, TEIs number 3, 7, 11, 15 cannot be used for T1. The association between
the Abis TS on the BTS side and the possible TEI number is provided in the table 6.
E1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 29/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
5.3 DCC & DSC DIMENSIONING
This part is not apllicable to S8000 CBCF, S2000H/L and S2000P. It is only relevant
for S4000 and S8000 BCF.
DCC/DSC concentrates LAPD signalling links onto a single one from the DRX and
the BCF to the BSC. It performs the inverse processing in the opposite way.
The rule used for dimensioning the DCC/DSC is:
vOne DCC/DSC per LAPD (redundancy not taken into account).
The following table summarises the number of used DCC/DSC depending on the
number of cells and depending on the number of signalling concentrated links.
Note1: Certain configurations listed in the above table can only be achieved with
dualband configurations.
Note2: If, at a given time, the number of available DCC/DSC runs under the threshold
given in the table above, the whole site may be definitively lost (until the right number
of DCC/DSC becomes available again). Therefore, it is strongly recommended to
have a spare DCC/DSC (the "+ 1" in the table represents the redundancy board).
Table 8: LAPD/DCC configuration
LAPD link F 1 2 3
CELL H
1 1 + 1
2 1 + 1 2 + 1
3 1 + 1 2 + 1 3 + 1
4 2 + 1 3 + 1
5 2 + 1 3 + 1
6 2 + 1 3 + 1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 30/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
5.4 LOOK-UP TABLES
These tables take only into account the hardware limitation for the LAPD
dimensioning (one LAPD is enough if the total number of TRX is less than 8),
because the engineering rules depend on too many parameters (rural or urban
environment, SICD or SICD8V board, high mobility).
These tables could be useful for a first high level assessment, but not for an accurate
design of the network.
Moreover, some specific cases occur. For example, the S22 configuration can be
performed with the S2000H BTS. In this case the real configuration is 2 O2 BTS (not
synchronnized) colocated on the same site and linked in a Drop and Insert
configuration. Two LAPD channels are required to handle the 2 BCF signalling and
8 TS to handle the traffic of the four TDMA. Therefore, the number of required TS is
10 and not 9.
PCM E1 (31 TS) / PCM T1 (24 TS)
Blocking factor = 2.0%
Table 9: Omnisectorial BTS
Config Standard cell Extended cell E1 PCM T1 PCM
Erlang TCH Erlang TCH Traffic TS LAPD required TS E1 required TS T1 DCC
O1 2.9 7 0.6 3 2 1 3 1 3 1 1+1
O2 8.2 14 2.3 6 4 1 5 1 5 1 1+1
O3 14.0 21 5.1 10 6 1 7 1 7 1 1+1
O4 21.0 29 8.2 14 8 1 9 1 9 1 1+1
O5 27.3 36 11.5 18 10 1 11 1 11 1 1+1
O6 34.7 44 14.0 21 12 1 13 1 13 1 1+1
O7 42.1 52 17.5 25 14 1 15 1 15 1 1+1
O8 48.7 59 21.0 29 16 1 17 1 17 1 1+1
Table 10: Bisectorial BTS
Config Standard cell Extended cell E1 PCM T1 PCM
Erlang TCH Erlang TCH Traffic TS LAPD required TS E1 required TS T1 DCC
S11 5.8 14 1.2 6 4 1 5 1 5 1 1+1
S22 16.4 28 4.56 12 8 1 9 1 9 1 1+1
S33 28 42 10.16 20 12 1 13 1 13 1 1+1
S44 42 58 16.4 28 16 1 17 1 17 1 1+1
S55 54.6 72 23 36 20 2 22 1 22 1 2+1
S66 69.4 88 28 42 24 2 26 1 14*2 2 2+1
S77 84.2 104 35 50 28 2 30 1 16*2 2 2+1
S88 97.4 118 42 58 32 2 18*2 2 18*2 2 2+1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 31/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Table 11: Tri and hexasectorial BTS
Config Standard cell Extended cell E1 PCM T1 PCM
Erlang TCH Erlang TCH Traffic TS LAPD required TS E1 required TS T1 DCC
S111 8.79 21 1.8 9 6 1 7 1 7 1 1+1
S222 24.6 42 6.8 18 12 1 13 1 13 1 1+1
S333 42.0 63 15.2 30 18 3 21 1 21 1 3+1
S444 63.0 87 24.6 42 24 3 27 1 15*2 2 3+1
S555 81.9 108 34,5 54 30 3 19*2 2 19*2 2 3+1
S666 104.1 132 42.0 63 36 3 21*2 2 21*2 2 3+1
S777 126.3 156 52,5 75 42 3 25*2 2 17*3 3 3+1
S888 146.1 177 63.0 87 48 3 27*2 2 19*3 3 3+1
S111111 17.58 42 3.6 18 12 1 13 1 13 1 1+1
S222222 49.2 84 13.7 36 24 6 18*2 2 18*2 2 3+1
S333333 84.0 126 30.5 60 36 6 24*2 2 24*2 2 3+1
S444444 126.0 174 49.2 84 48 6 30*2 2 22*3 3 3+1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 32/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Page Intentionally Left Blank
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 33/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
6 ABIS ARCHITECTURE
6.1 DROP&INSERT CONFIGURATIONS
6.1.1 POSSIBLE CONFIGURATIONS
Different configurations are possible on the Abis interface. They are called Star,
Drop&Insert, and Hub&Spoke configurations. The following figure presents these
different configurations.
Figure 1: Star, Drop&Insert and Hub&Spoke Configurations
The loop and chain Drop&Insert configurations are guaranteed for up to 6 BTSs. The
theorical limitation is 10 O1 BTSs on 1 E1 and 8 O1 BTSs on 1 T1, but R&D tests
and guarantees up to 6 BTSs.
Star
BSC
BTS
Loop D&I
BSC
BTS
BTS
BTS
Chain D&I
BSC
BTS
BTS
BTS
BTS
BTS
PCM
Redundant PCM.
In case of loop, one side is considered as redundant PCM
Hub&Spoke
BSC
BTS
BTS BTS
BTS
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 34/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
6.1.2 TEI ISSUES
When a BTS is in a chained configuration, the BCH TEI numbers assigned to each
BTS must be in an ascending sequence. The rule for the chain configuration is
x<y<z. The values do not need to be adjacent.
Figure 2: Loop Drop&Insert configuration
For the Hub&Spoke configuration the requirements are x<y<z and x<w. There is no
constraint between w and the couple y,z (w and y can be equal). Note that the
Hub&Spoke is not considered as a D&I configuration because of the fork.
Figure 3: Hub&Spoke configuration.
Note that all the TEI can not be higher than 15.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 35/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
6.1.3 DTI/PCMI ISSUES
PCM interfacing is provided by the DTI board for 1G BTS (S4000, S2000, S2000E),
and by the PCMI board for 2G BTS (S8000I/O, S2000H/L). DTI board handles the
interface of 1 PCM digital trunks. PCMI board handles the interface of 2 PCM digital
trunks. The following table presents the mapping between PCM ports and PCMI/DTI
boards.
The PCM links connecting the BSC to BTS must be arranged for synchronization
reasons. A PCM crossing a BTS enters via an even PCM port and leaves via an odd
PCM port. For the loop configuration, the opposite path can be set up.
The following figure shows some different Drop&Insert configurations with or without
PCMI board redundancy.
Figure 4: PCMI configurations for drop&insert
Table 12: PCM port
PCM ports PCMI board DTI board
0 PCMI 0 port 0 DTI 0
1 PCMI 0 port 1 DTI 1
2 PCMI 1 port 0 DTI 2
3 PCMI 1 port 1 DTI 3
4 PCMI 2 port 0 DTI 4
5 PCMI 2 port 1 DTI 5
BSC
0
1
BTS
PCMI0
0
1
BTS
PCMI0
0
1
BTS
PCMI0
D&I in chain without redundancy D&I in loop without board redundancy
BSC
0
1
BTS
PCMI0
0
1
BTS
PCMI0
0
1
BTS
PCMI0
BSC
0
1
BTS
PCMI0
0
1
PCMI1
0
1
BTS
PCMI0
0
1
PCMI1
0
1
BTS
PCMI0
0
1
PCMI1
D&I in chain with board redundancy D&I in loop with board redundancy
BSC
0
1
BTS
PCMI0 0
1
PCMI1
0
1
BTS
PCMI0 0
1
PCMI1
0
1
BTS
PCMI0 0
1
PCMI1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 36/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
For 1G BTS in loop Drop&Insert without DTI redundancy (following figure), if a DTI
failure occurs, only one PCM will be lost and the opposite path will be activated. For
2G BTS in the same configuration, if a PCMI failure occurs, two PCMs will be lost.
Therefore as the two ways of connection will be impossible, the site will be lost. The
PCMI redundancy avoid to lost the site in case of PCMI failure.
Figure 5: D&I in loop without board redundancy: 1G versus 2G
Therefore, changing a S4000 by a S8000 is not as easy as it appears. There are
some impacts on redundancy, and then on reliability.
D&I in loop without board redundancy
BSC
0
1
BTS A
PCMI0
0
1
BTS B
PCMI0
0
1
BTS C
PCMI0
BSC BTS D
DTI0
BTS E BTS F
DTI1
DTI0 DTI0
DTI1 DTI1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 37/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
6.1.4 RADIOSITEMASK CONFIGURATION
Rules
For each site, a parameter called RadioSiteMask is configured in order to define
which TS are reserved.
vThe same mask is applied to all the PCM connecting a BTS
vThe primary LAPD is not included in the mask.
The TS carrying the primary LAPD has a defined position on the BTS side:
TS number = TEIBCF + 1.
vThe traffic TS are mapped by two on two consecutive TS. A convention is to use
first the higher TS of a PCM and then continue toward the lower one. The
secondary LAPD follows the same rules as the traffic TS.
vWhen several PCM link the BTS to the BSC, the traffic TS are equally shared on
those PCM.
Some engineering rules define the value of the RadioSiteMask (total number of
timeslots set to 1):
For 1 PCM connected: (Nb LAPD - 1) + Nb TRX *2
For 2 PCM connected: (Nb LAPD - 1) + Ent[(Nb TRX + 1)/2] * 2
For 3 PCM connected: (Nb LAPD - 1) + Ent[(Nb TRX + 2)/3] * 2
For n PCM connected: (Nb LAPD - 1) + Ent[(Nb TRX + (n-1))/n] * 2
MIf the TEI are not adjacent, it is strongly recommended not to use the TS between
TS0 and the TS which carried the primary LAPD of the BTS with the bigger TEI.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 38/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Example 1
This first example concerns a chain configuration. One S444 and one S222 are
linked together in order to optimize the transmission link.
Figure 6: Drop & Insert example
In this example the PCM4 is a redundant PCM. Note that the TEI are in ascending
sequence.
The traffic of the BTS A is equally shared between the 2 PCMs. The secondary
LAPD follow the TS supporting the traffic. The primary LAPD is not included in the
radioSiteMask.
The BSC is a BSC6000, then 3 LAPD channels are defined for the site B in order to
be able to split the load on the different SICDs.
Ta Traffic Ts site A Pa Primary LAPD site A
Tb Traffic Ts site B Pb Primary LAPD site B
Sa Secondary LAPD site A
Sb Secondary LAPD site B
Table 13: PCM E1 RadioSiteMask
TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Sb Sb Pb Pa
PCM 2 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta
PCM 3 Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Sb Sb Pb
RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
Table 14: PCM T1 RadioSiteMask
TS number 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Tb Tb Sb Sb Pb Pa
PCM 2 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Tb Tb
PCM 3 Tb Tb Tb Tb Tb Tb Sb Sb Pb
PCM 4 Tb Tb Tb Tb Tb Tb
RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
BSC S444 S222
PCM1
PCM2
PCM3
PCM4
Site A Site B
TEI 0 TEI 1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 39/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Example 2
This other example concerns the Hub&Spoke configuration. Four omnisectorial
BTSs are linked in order to save transmission costs.
Figure 7: Hub&Spoke example
The traffic of the BTS A is equally shared between the 2 PCMs, while the traffic of
the other BTSs is supported by the PCM1 or the PCM2 but not shared.
Table 15: PCM E1 RadioSiteMask
TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PCM 1 Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Tb Tb Pb Pa
PCM 2 Ta Ta Ta Ta Tc Tc Tc Tc Tc Tc Tc Tc Td Td Td Td Pd Pc
RadioSiteMask Site A 1 1 1 1 1 1
RadioSiteMask Site B 1 1 1 1 1 1
RadioSiteMask Site C 1 1 1 1 1 1 1 1
RadioSiteMask Site D 1 1 1 1
Table 16: PCM T1 RadioSiteMask
TS number 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
PCM 1 Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Tb Tb Pb Pa
PCM 2 Ta Ta Ta Ta Tc Tc Tc Tc Tc Tc Tc Tc Td Td Td Td Pd Pc
RadioSiteMask Site A 1 1 1 1 1 1
RadioSiteMask Site B 1 1 1 1 1 1
RadioSiteMask Site C 1 1 1 1 1 1 1 1
RadioSiteMask Site D 1 1 1 1
BSC O5
O3
PCM1
PCM2
PCM3
PCM4
Site A
Site B
TEI 0
TEI 1
O4
Site C
TEI 1
O2
Site D
TEI 2
PCM5
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 40/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
6.1.5 RADIOSITEMASK EXTENSION STRATEGY
The future expansion of the network may be taken into account when dimensioning
the RadioSiteMask. It will make the network roll-out easier.
The radioSiteMask parameter is a class 2 parameter located in the btsSiteManager
Q3 object. It means that this parameter can only be set when the object is locked and
the parent bsc object is unlocked. Therefore, the modification of the radioSiteMask
will involve interruption of service.
Moreover, forecasting the future extension will avoid some complex RadioSiteMask
configurations that are difficult to manage.
Different configuration strategies can be applied according to the knowledge of the
extension politics of the operators.
First strategy:
Assumption: The number of the future additionnal DRXs in a BTS can be assessed.
In this case, it will be of interest to increase the RadioSiteMask. This method allows
extensions without requiring the reconfiguration of the RadioSiteMask (no
interruption of service).
Figure 8: Example
The site A is composed of 6 DRXs in a cabinet. One cabinet can contain up to 8
DRXs. Therefore, it could make sense to foresee the introduction of the 2 other
possible DRXs. It would facilitate their introduction and avoid any interruption of
service for the two sites.
BSC S222 O2PCM1 PCM2
Site A Site B
TEI 0 TEI 1
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 41/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Ta Traffic TS site A
Tb Traffic TS site B
Sa Secondary LAPD site A
Pa Primary LAPD site A
Pb Primary LAPD site B
Of course, if Site A is composed of three radio cabinets, it does not make sense to
dimension the RadioSiteMask for a 3S888. Another strategy has to be considered.
Second strategy
Assumptions:Nortel has no knowledge of the future number of added DRXs.
Nortel is convinced that the operator will not add any other BTSs in a
D&I configuration.
In such case, the RadioSiteMask can be defined as indicated in Table 18.
Ta Traffic TS site A
Tb Traffic TS site B
Sa Secondary LAPD site A
Pa Primary LAPD site A
Pb Primary LAPD site B
This configuration allows to easily increase capacity in the both site. The introduction
of additional DRX in a site will not perturb the other one, only one RadioSiteMask is
impacted. Moreover the two RadioSiteMask stay simple and easy to manage.
The drawback is that it will be difficult to add a BTS in a D&I configuration, because
the RadioSiteMask of the site B must be modified (interruption of service).
Table 17: RadioSiteMask (first strategy)
TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Pb Pa
PCM 2 Tb Tb Tb Tb Pb
RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Table 18: RadioSiteMask (second strategy)
TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Pb Pa
PCM 2 Tb Tb Tb Tb Pb
RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 42/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Third strategy
Assumption: Nortel has no information about the extension policy.
If Nortel has any information, the two previous strategies are not recommended. The
"normal" configuration with the engineering rules of page 37 may be followed.
The BTS introduction in a Drop&Insert configuration will be easy. Moreover, it is also
possible to introduce additional DRXs without interruption of service for the second
site.
Ta Traffic TS site A Pa Primary LAPD site A
Tb Traffic TS site B Pb Primary LAPD site B
Sa Secondary LAPD site A
The drawback is that some RadioSiteMask can be quite complex and it will become
more and more difficult to make them evolve.
6.1.6 ADDITINAL FEATURE OF TDMA/ABIS MAPPING CONFIGURATION FOR V11
A new V11 feature secures the Abis interface. FM844 "Traffic Channel Defense"
allows to reconfigure the TDMA according to their priority in case of PCM failure for
a multiPCM site, as long as one PCM is available (refer to [R04]).
If the following requirements are fulfilled:
• the PCMs are not full,
• if the rentalfees are per used PCM and not per used TS,
then it could make sense to increase the radioSiteMask. It will allow more TS
reconfigurations and then to lose less traffic channels. Moreover it could facilitate the
introduction of new DRXs.
The drawback is that the evolution of the network could be more difficult (for
example, adding a BTS in drop&insert). There is a trade-off between quality of
service and flexibility.
For further information on this feature, please refer to the V11 FEI [R04].
Table 19: RadioSiteMask (Third strategy)
TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Ta Ta Ta Ta Sa Sa Pb Pa
PCM 2 Tb Tb Tb Tb Pb
RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 43/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
6.2 HUBS
6.2.1 CROSS-CONNECT
Since the V8 system release, a new feature is available: TEI decorrelation. It allows
the simulation of a Drop&Insert function from the BSC point of view, without using
the BTS in Drop&Insert configuration.
The TEI of the BTS can be the same, then since V8, the TEI number and the
"Rendez-vous TS" are decorrelated on the BSC side. The number of the "Rendez-
vous TS" is configurated by the pcmTimeSlotNumber parameter on the MMI interface.
pcmTimeSlotNumber is located in the btsSiteManager Q3 object.
Figure 9: Cross-connect configuration
For the BTS, the installation is easier because all the sites have the same
configuration (Star with a TEI = 0). For the BSC, the 3 sites are in drop and insert so
the drop and insert rules must be respected on the BSC side. The choice of the TS
for the signalisation must be done in accordance with the crossconnect
configuration.
Figure 10: Crossconnect configuration
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 44/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
The traffic TS must be at the same place (TS number) on the two sides of the
crossconnect. This rule does not concern the primary signalling TS which has a fixed
position on the BTS side (TEIBCF+1).
Ta Traffic Ts site A
Tb Traffic Ts site B
Tc Traffic Ts site C
Pa Primary LAPD site A
Pb Primary LAPD site B
Pc Primary LAPD site CSwitch
6.2.2 SWITCH
Hubs can act as switch for redundancy purpose. The main advantage of this
architecture is that in case of PCM1 failure, the hub1 is able to switch on the
redundant PCM2 without loosing the communications.
Figure 11: Architectuire with Switch
It can be implemented with digital cross-connect such as PDMX-E (Nortel product).
Table 20: RadioSiteMask configuration with crossconnect
TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PCM A Ta Ta Ta Ta Pa
PCM B Tb Tb Tb Tb Pb
PCM C Tc Tc Tc Tc Pc
PCM D Ta Ta Ta Ta Tb Tb Tb Tb Tc Tc Tc Tc Pc Pb Pa
RadioSiteMask Site A 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RadioSiteMask Site B 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RadioSiteMask Site C 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BSC
BTS
BTS
BTS
Hub1 Hub2
PCM1
PCM2
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 45/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Page Intentionally Left Blank
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 46/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
7 TRANSMISSION MEDIUM
7.1 CLOCK
Timing requirements according to G811 are:
One characteristic defines the quality of the PCM clock for the BSS sub-systems and
especially for the BTS.
There are two requirements to consider:
• The requirement for a PCM: 50 ppm (see G732).
• The requirement for the BTS in order to generate a reference time for radio
interface.
The BTS uses the clock reference from the network to generate a 5*10 -8 precision
timing reference for the radio interface.
Long-term accuracy recommended for PCM E1 (2,048 MHz) and PCM T1 (1,544
MHz):
| ∆f/f | = 10 -9 or 0,001 ppm
This characteristic assures a good transmission quality for BTS frequencies allowing
the mobile connections and avoiding the disturbance of the adjacent frequencies.
Note: it is not necessary that all GSM sub-systems are synchronized with the same
clock, but that they respect the recommendations defined above.
Table 21: Timing requirements
Time | ∆f/f |
≥ 98,89% | ∆f/f | ≤ 10 −11
≤ 1% 10−11 < | ∆f/f | ≤ 2∗10−9
≤ 0,1% 2∗10 −9 < | ∆f/f | ≤ 5∗10 −7
≤ 0,01% 5∗10 −7
< | ∆f/f |
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 47/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
7.2 TRANSMISSION QUALITY REQUIREMENTS
To maintain the PCM quality to a good level, BER shall not exceed 10E-4.
To not disturb the voice quality, BER shall be maintained at or above 10E-6.
PCM unavailibility also has a big impact on the BSS. The unavailibility is determined
by errors detected by the DDTI board. The different types of error are:
For E1 PCM links :
• No signal
• Signal Indicator Alarm error
• Frame alignment loss
• Synchronization loss
• Frame error
• Distant alarm indicator error
• CRC error
For T1 PCM links :
• No signal
• Signal Indicator Alarm error
• Frame alignment loss
• Synchronization loss
• Distant alarm indicator error
The time duration of the PCM unavailibility is determined by the number of Errored
Seconds (ES if at least an error occurs for 1 second). For example, if the signal is
lost for 3.1 seconds, the PCM unavailibility time could be 5 seconds.
SIGNAL SIGNAL
ES ES ES ES ES
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 48/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
The time duration of the PCM unavailability impacts the BTS in different ways:
PCM unavailibility < 5 seconds
When the BSC-BTS link is interrupted during less than 5 seconds (5 Errored
Seconds), nothing happens. The communications are disturbed, but not lost.
PCM unavailibility between 5 seconds and 30 minutes
A timer exists that triggers a defense BSS mechanism. If the BSC-BTS link is
interrupted for more than this timer, the BSC will try to find another PCM to
reestablish the contact. When the contact is reestablished, the BSC will lead in the
BTS to a reset of PCM boards and a BCF and TRX reconfiguration.
Today this timer is set to 5 seconds, which allows fast recovery in case of a real
failure, and fast alarm reporting, and however tolerates short transient link outages
often encountered especially with microwaves links. This timer is therefore a trade-
off between fast recovery and tolerance to transient faults.
PCM unavailibility > 30 minutes
If the interruption lasts for more than 30 minutes, the BTS resets itself, and will be
redownloaded and reconfigured when the link is up again. In case of DRX (S8000 or
S2000H/L) or AMNU/DCU4, the download procedure is reduced. In fact, the
software is not downloaded, but only checked.
The reconfiguration and reboot time depend on the BTS configuration. This kind of
information can be found in the document "Performance Tests Results Report"
([R20]) which gives a summary of performance tests performed in PIV.
F PCM unavailibility (BER > 10E-3) for less than 5 seconds leads to disturb the
communications.
F PCM unavailibility beween 5 seconds and 30 minutes leads to lose current com-
munications plus a BTS reconfiguration time (BTS dependent, refer to [R20]).
F PCM unavailibility of more than 30 minutes leads to a complete reboot of the BTS
which could last several minutes depending on the configuration (refer to [R20]).
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 49/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
7.3 CSU
The CSU equipment is designed to be inserted between the Abis link provided by the
operator and the BCF subrack. Its purpose is to test and recalibrate the incoming and
outgoing signal and ensure that it meets the recommendations. The equipment
includes a set of alarms displayed on the CSU front panel. Any alarm condition (or
power failure) releases a single pole alarm relay connected to the user alarms of the
BTS.
Three types of CSU equipment can be ordered: CSU T-serv II, CSU T-smart, and
CSU MPATH. The MPATH CSU offers additional features (such as SNMP
management) compared to other types of CSU.
The CSU equipment is designed for T1 PCM and is mandatory for the US market.
7.4 HDSL
7.4.1 INTRODUCTION
HDSL is a technology that allows to convey, on a few kilometers, a PCM signal over
ordinary twisted pairs. This technology becomes more and more popular, as a cheap
solution to provide PCM links to remote locations. This applies generally to the Abis
link, including Drop&Insert configurations.
Figure 12: HDSL solution
For short distances (up to 1.5 Km), only one wires twisted pair is needed. Two wires
twisted pairs are required for longer distance (up to 4 Km). The distances depend on
the modems and on the quality of the twisted pair wires. Therefore the values given
above are only for indication purposes and must not be communicated to customers.
BSC BTS
master
HDSL modem
slave
HDSL modem
2 twisted pairs4 shielded pairs 4 shielded pairs
PCM PCMHDSL
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 50/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
7.4.2 HDSL ISSUES
HDSL modems use a very complex synchronization scheme based on a master-
slave configuration. The master HDSL modem is on the BSC side and the slave one
is on the BTS side. The consequence is that any short link drop or click disturbancy
leads to long link unstability. Depending on the modem, 1 second interruption may
translate up to 15 seconds.
The timer that triggers a defense BSS mechanism is set to 5 seconds (refer to
section 7.2 ). This value may no longer be the right trade-off between fast recovery
and tolerance to transient fault for the HDSL link. For the network that uses HDSL,
a timer value of 15 seconds seems to be a better trade-off for the sake of the link
stability (but QOS impact). This specific parameter setting of the BSS defense
mechanism is not mandatory. Some HDSL modems work properly with the default
configuration.
Note that the timer value applies to all PCM links of the BSC and not only to the HDSL
links.
7.4.3 HDSL MODEMS
The HDSL modems are systematically tested by R&D in order to remove modems
which are suspected to lead problems on the field. The list of the recommended
HDSL modems and the list of the inadvisable ones can be found in the document
"HDSL modem layer1 qualification" ([R21]).
For all modems considered OK, a very short disturbance on the Abis line (i.e. :
1 second cut) leads to unavailability of the link for more than 10 seconds.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 51/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
7.5 MICROWAVES
7.5.1 MICROWAVE DESIGN GUIDELINES
MW link have the following advantages over leased lines:
Meet superior reliability, allow total control over them, easy expansion, and rapid
deployment.
However, the following design guidelines must be taken into account:
• L.O.S (line of Sight),
• Distance,
• Parabolic antennas,
• Frequency dependence,
• Interference limitation.
L.O.S. needed
That means that a MW link is terrain dependant, and sometimes a link cannot be
installed. Indeed the clearance has to be 60% of the first Fresnel zone, plus a
security factor (5 or 6 m) for errors on terrain data. The 60% F1 is calculated for
standard atmosphere (k=4/3) and the atmosphere can change, needing the link a
better clearance. In this case a calculation can be done with k=2/3 and 50% F1.
Distance
The effects of rain and multipath limit the distance a link can cover, so that
sometimes a repeater is needed to cover this distance. In order to calculate the
unavailability due to rain, the rain zone where the link is going to be installed, has to
be known ; this will give the rain rate that is exceeded the 0.01% of the annual time
(i.e. k rain zone is 42 mm/h).
Figure 13: Microwave solution
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 52/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
When designing a link, the availability (unavailability) is an objective that is fixed by
the operator in order to meet its quality requirements. For example, the availability
due to propagation in a 1+0 (nonprotected) can be 99.99% of the annual time; for this
objective, if the rain zone is k (42 mm/h), in 23 GHz up to 13 Km can be covered
(0.6 m antennas at both sites and vertical polarization), and in 38 GHz up to 6 Km
(0.6 m antennas at both sites and vertical polarization).
Parabolic antennas
Parabolic antennas must be installed. Wind loadings have to be considered on the
tower, or the place where the antenna is going to be installed. The tilt and twist of the
tower, that increases with the height, can affect the alignment of the antenna,
reducing the receive signal level, and consequently the fade margin.
Frequency dependence
Sometimes it is difficult to get a channel from the local government; normally this
depends on the working band (15 GHz, 23 GHz etc..).
Interference limitation
There is a limitation in the number of links that can converge at one point
(concentrator) due to interference mechanism. In digital MW links the interference
reduces the threshold, which means that the fade margin decreases and the link will
be unavailable for more time than the time it was calculated for. Alternate polarization
(cross polarization discrimination) and high gain antennas (more directivity) can
offset these effects.
For further information, please refer to the web pages of the transmissions group at
the following URL address:
http://136.147.68.68/ned/ND_AE/ND/Transmission/Transmission.html
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 53/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
7.5.2 MICROWAVE QUALITY REQUIREMENTS
The ITU-T G.821 defines different grades of service for the microwave
transmissions: high grade (HG), medium grade (MG) and local grade (LG).
Figure 14: Reference communication of ITU.
The performance of the grade of service can be estimated by 3 parameters:
F Degraded Minutes:
DM if BER > 10-6
for 1 minute.
F Severely Errored Seconds:
SES if BER > 10-3
for 1 second.
F Errored Seconds:
ES if at least an error occurs for 1 second.
The performance objectives of these 3 grades of service are:
Figure 15: Performance objectives:
27500 km
1250 km1250 km 25000 km
Local
grade
Local
grade
Medium
grade
Medium
grade
High
grade
Global
< 10%
< 0.2%
< 8%
HG
< 4%
< 0.04%
*
< 3.2%
MG
< 1.5%
< 0.015%
*
< 1.2%
LG
< 1.5%
< 0.015%
< 1.2%
Note*: 0.05% can be added if m/w is used.
DM: Min. at 10E-6; SES: Sec. at 10E-3; ES: Sec. with errors.
PERFORMANCE OBJECTIVES:
Degraded
Minutes
Severely
Errored
Seconds
Errored
Seconds
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 54/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Depending on the configuration local or medium grade links are recommended for
Abis interface. Medium grade quality is 50% to 100% more expensive than local
grade as it requires redundant equipment. It must be proposed only if specified by
customer.
7.5.3 MICROWAVE CONFIGURATIONS
It is possible to combine the drop and insert functionality of the BTS product and the
microwaves product in order to insure the transmission security and capacity. The
following configurations are given as example.
Figure 16: Chain Drop&Insert with microwaves
Figure 17: Loop Drop&Insert with microwaves
Central Office
BSC
TCU
medium or local grade
DMS Switch
BTS BTS BTS
Central Office
TCUDMS Switch
BSC
local grade ringlocal or medium grade
BTS 1 BTS 2 BTS 3
BTS 5 BTS 4
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 55/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Figure 18: Hub and Spoke with microwaves
The minimum capacity of the microwaves equipment is 2 E1 PCM links. Therefore, from the BSC
point of view, the Loop D&I implementation (fig. 17) is seen as below:
Figure 19: Abis configuration with microwaves on BSC side
local gradelocal or medium grade
Central Office
TCUDMS Switch
BSC
BTS
BTSBTS
BTS
BTS
BTS S222
BSC
BTS
1
BTS
2
BTS
3
BTS
4
BTS
5
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 56/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
7.5.4 MICROWAVE EQUIPMENT REDUNDANCY
PCM link failure can be more diverse than for a cable support. Two main events can
occur: either an equipment failure, either a signal fading due to rains or multipath.
In all cases, all the PCM carried between the two radio systems are brought down.
A failure of only one PCM link is not possible, contrary to the LL cable solution.
PCM link failure due to equipment can be minimized by redundant configuration.
Figure 20: Typical non-protected and protected microwave equipment architecture
Two protected configurations can be considered:
• The first one with redundant DIU and RFU with a single antennae (a wave
guide coupler must be used).
• The second one uses two antennas without wave guide coupler. It allows to
avoid the PCM link failure due to antennea falling out of alignment.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 57/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Page Intentionally Left Blank
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 58/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
8 BSC DIMENSIONING
8.1 BSC TYPE
The following table gives the board configuration related to Abis interface for each
available BSC type.
*The BSCB board is optional for the BTS LAPD concentration. If this option is not chosen, the num-
ber of BSCB boards required is zero.
The number of BSCB boards shown in the table indicates the maximum number of BSCB boards for
each type of BSC. The minimum number of BSCB boards is 2. The quantity of boards depends on
the number of LAPD channels (or sites) to be concentrated.
One board is reserved for redundancy purpose (+1).
** There is a maximum of 24 DDTI boards per BSC12000 (whatever the product version is: 1201/
1202/1203/1204/1205). The basic configuration provides 10 DDTI boards. But, depending on the
needs, it is possible to add DDTI units up to 24.
For the BSC 6000 product family, there are 6/10/14/20/24 DDTI boards depending on the product
version 602/604/606/608/610 respectively. These numbers are fixed.
Table 22: Product range
Architecture BSC 6000 BSC 12000
Type 1 2 3 4 5 1 2 3 4 5
DDTI(**) 6 10 14 20 24 24 24 24 24 24
BSCB(*) 0 0 0 11+1 11+1 11+1 11+1 11+1 11+1 11+1
SICD 2 4 6 8 10
SICD8 1 2 3 4 5
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 59/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
8.2 SICD/SICD8V BOARDS
8.2.1 LIMITATION RULES
SICD limitation rules
The limitation rules for the SICD board are:
vOne SICD board has 4 ports (hardware design). One SICD board can manage up
to 4 physical channels of LAPD (concentrated with BSCB or non concentrated).
vOne LAPD equipment (SICD ports) supports up to 10 TEI. Note that one TCU
corresponds to one TEI, one BCF corresponds to one TEI, and one TRX
corresponds to one TEI.
v16 is the maximum number of TDMA per SICD due to traffic load.
vAll the LAPD equipment are reserved for the Abis interface except the fourth port
(port 3) of the SICD 0 which is used for the TCU (by convention).
SICD8V limitation rules
The limitation rules for the SICD8V board are:
vOne SICD board has 8 ports (hardware design). One SICD board can manage up
to 8 physical channels of LAPD (concentrated with BSCB or non concentrated).
vOne LAPD equipment (SICD ports) supports up to 15 TEI. Note that one TCU
corresponds to one TEI, one BCF corresponds to one TEI, and one TRX
corresponds to one TEI.
v64 is the maximum number of TDMA per SICD due to traffic load.
vAll the LAPD equipment are reserved for the Abis interface except the fourth port
(port 3) of the SICD8V 0 which is used for the TCU (by convention).
8.2.2 PARENTING RULES
To avoid overload on one SICD due to high spot traffic, use the following rules for
parenting.
vTwo neighbor sites must be on two different SICDs.
vTwo cells of a same site must be on two different SICDs. Of course this condition
can only be applied if the two cells are mapped on two different LAPD channels.
A SICD8V board does the same job as a SICD, but the processor is more powerful.
Furthermore, the inhomogenous load on the various SICD8V has less impact with
SICD8V than with SICD because the load is only split onto 5 boards as opposed to
10 for SICD.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 60/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
8.2.3 LOOK-UP TABLES
*This number can be worked out from nb SICD * max TDMA per SICD.
8.3 BSCB AND TSCB BOARDS
Use of BSCB is optional. If this option is not chosen, the number of BSCB boards
required is zero. The minimum number of BSCB boards is 2. The quantity of boards
depends on the number of LAPD channels (or sites) to be concentrated.
The associated parameter is a class 0 parameter (xSCBConfiguration in the bsc
object). Therefore, every time a board is added, the BDA needs to be rebuilt.
The BSC does not have a dedicated board used for redundancy, but manages a pool
of BSCB boards. When one BSCB fails, the BSC reconfigures the whole
configuration of the failed BSCB onto a free BSCB board (one without any LAPD
mapped on it).
When new concentrated LAPD terminals are declared and LAPD channel locations
are moved from one SICD to another, it is very important to check that a BSCB
remains free.
Table 23: SICD limitations
Architecture BSC 6000 BSC 12000
Type 1 2 3 4 5 1 2 3 4 5
SICD/SICD8V board 2 4 6 8 10 1 2 3 4 5
LAPD eqpt 8 16 24 32 40 8 16 24 32 40
LAPD eqpt for Abis 7 15 23 31 39 7 15 23 31 39
TEI per LAPD eqpt 10 10 10 10 10 15 15 15 15 15
TDMA per SICD/SICD8V 16 16 16 16 16 64 64 64 64 64
TDMA* 32 64 96 128 160 64 128 192 256 320
F The BSCB boards can be the bottleneck of the BSC in some configurations.
Therefore it is very important to follow the rules describe in the document "BSCB
Eng’g Information: Load monitoring and optimization" ([R22]).
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 61/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
Figure 21: Dimensioning the Abis interface with LAPD concentration
A BSCB board processes the concentration of 12 unconcentrated links to 3 (3 times
4 LAPD unconcentrated into 1 LAPD concentrated). The limit of 10 TEIs per SICD
port (BCF+TRX) or 15 TEIs per SICD8V port is still in effect.
*Number of sites per BSC, depending on the number of SICD and BSCB (with BSCB redundancy).
Table 24: Maximum number of sites per BSC
Architecture BSC 6000 BSC 12000
Type 1 2 3 4 5 1 2 3 4 5
SICD/SICD8V board 2 4 6 8 10 1 2 3 4 5
LAPD eqpt 8 16 24 32 40 8 16 24 32 40
LAPD eqpt for Abis 7 15 23 31 39 7 15 23 31 39
BSCB 0 0 0 11+1 11+1 11+1 11+1 11+1 11+1 11+1
max number of sites (*) 7 15 23 124 138 28 60 92 124 138
BTS sites
BSCB BSCB BSCB
SICD8V SICD8V
Abis Interface
+
BSC internal connectivity
Max. of 12 non-concentrated
LapD channels used per BSCB board
Max. of 3 concentrated
LapD channels used per BSCB board
Max. of 8 LapD Equipment used
per SICD8V board (4 LapD equipment
per SICD board)
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 62/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
8.4 DDTI BOARDS
Since the BSC extracts the synchronization clock from PCM 0, 2, 4, and 6, these
spans are used only for the Ater interface. The others can be used
indiscriminately either for the Abis or the Ater interface but must use some
spread convention.
Spread convention nc. 1
In order to minimize the number of remainning PCMs when a board fails, it is best to
spread the spans of a BTS on different DDTIs.
Spread convention nc. 2
Use the same previous rule when configuring Ater PCMs. Avoid the configuration
of two Ater PCMs on a same DDTI board.
A DDTI board handles two PCMs which are connected to port 0 and port 1.
PCM_Number = 2*DDTI_Number + Port_Number
Table 25: PCM allocation for the BSC6000 Type5
PCM Number Allocation
0, 2, 4, 6 Ater
1, 3, 5, 7 to 47 Ater or Abis
F The use of PCM 0, 2, 4, 6 for Abis interface may lead serious synchronization
problems for the whole BSS. So, this configuration is forbiden.
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 63/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
9 APPENDIX
This configuration has been tested in a network. This interesting configuration uses
cross-connect and Hub&Spoke configuration.
Figure 22: Example of complex configuration
BSC
S11
Cross-connect S111
S111
S111
S111
S11
S111 S11 S111TEI0
TEI1
TEI1 TEI2 TEI3 TEI4
TEI3
TEI2
TEI4
This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission
Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation
Abis Interface Engineering Guide Page 64/64
PE /IRC/APP/0079 01.08 / EN 12/04/99
END OF DOCUMENT

Más contenido relacionado

La actualidad más candente

Newfies-Dialer : Autodialer software - Documentation version 1.1.0
Newfies-Dialer : Autodialer software - Documentation version 1.1.0Newfies-Dialer : Autodialer software - Documentation version 1.1.0
Newfies-Dialer : Autodialer software - Documentation version 1.1.0Areski Belaid
 
Newfies dialer Auto dialer Software
Newfies dialer Auto dialer SoftwareNewfies dialer Auto dialer Software
Newfies dialer Auto dialer SoftwareAreski Belaid
 
MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...
MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...
MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...Juniper Networks
 
인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼
인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼
인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼HION IT
 
Juniper firewall index
Juniper firewall indexJuniper firewall index
Juniper firewall indexRonald Pérez
 
Gdfs sg246374
Gdfs sg246374Gdfs sg246374
Gdfs sg246374Accenture
 
Laravel 4 Documentation
Laravel 4 DocumentationLaravel 4 Documentation
Laravel 4 DocumentationHoHoangKha
 

La actualidad más candente (16)

Newfies-Dialer : Autodialer software - Documentation version 1.1.0
Newfies-Dialer : Autodialer software - Documentation version 1.1.0Newfies-Dialer : Autodialer software - Documentation version 1.1.0
Newfies-Dialer : Autodialer software - Documentation version 1.1.0
 
Newfies dialer Auto dialer Software
Newfies dialer Auto dialer SoftwareNewfies dialer Auto dialer Software
Newfies dialer Auto dialer Software
 
Lfa
LfaLfa
Lfa
 
MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...
MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...
MetaFabric™ Architecture Virtualized Data Center: Design and Implementation G...
 
100402371a
100402371a100402371a
100402371a
 
인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼
인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼
인터맥스캐너 Intermec SF61B 2D 포켓타입 모바일스캐너 매뉴얼
 
Catalog Sew-Eurodrive
Catalog Sew-EurodriveCatalog Sew-Eurodrive
Catalog Sew-Eurodrive
 
Juniper firewall index
Juniper firewall indexJuniper firewall index
Juniper firewall index
 
Gdfs sg246374
Gdfs sg246374Gdfs sg246374
Gdfs sg246374
 
Ls9208 prg
Ls9208 prgLs9208 prg
Ls9208 prg
 
100384784c
100384784c100384784c
100384784c
 
Open VAS Manual
Open VAS ManualOpen VAS Manual
Open VAS Manual
 
Momentus pm
Momentus pmMomentus pm
Momentus pm
 
Laravel 4 Documentation
Laravel 4 DocumentationLaravel 4 Documentation
Laravel 4 Documentation
 
Cluster in linux
Cluster in linuxCluster in linux
Cluster in linux
 
Air os ug_v80
Air os ug_v80Air os ug_v80
Air os ug_v80
 

Destacado

01 01 bss signaling fundamental
01 01 bss signaling fundamental01 01 bss signaling fundamental
01 01 bss signaling fundamentalEricsson Saudi
 
52319921 huawei-node-b-manual
52319921 huawei-node-b-manual52319921 huawei-node-b-manual
52319921 huawei-node-b-manualShelton Siziba
 
Gsm review note by zemaryali
Gsm review note by zemaryaliGsm review note by zemaryali
Gsm review note by zemaryaliZaryal Social
 
Huawei umts o&m planning and configuration
Huawei umts o&m planning and configurationHuawei umts o&m planning and configuration
Huawei umts o&m planning and configurationTerra Sacrifice
 
205583569 gb-interface-detailed-planning-final
205583569 gb-interface-detailed-planning-final205583569 gb-interface-detailed-planning-final
205583569 gb-interface-detailed-planning-finalOlivier Rostaing
 
Gsm Originating Call Flow
Gsm Originating Call FlowGsm Originating Call Flow
Gsm Originating Call FlowDeepak Sharma
 
E nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-enE nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-enVugar Ali
 
Bts3900 Site Maintenance Guide(V200 01)
Bts3900 Site Maintenance Guide(V200 01)Bts3900 Site Maintenance Guide(V200 01)
Bts3900 Site Maintenance Guide(V200 01)Atif Mahmood
 
Bts3900 gsm commissioning guide (v300 r008-03)
Bts3900 gsm commissioning guide (v300 r008-03)Bts3900 gsm commissioning guide (v300 r008-03)
Bts3900 gsm commissioning guide (v300 r008-03)ihtisham ulhaq
 
140556299 huawei-node b-data-configuration
140556299 huawei-node b-data-configuration140556299 huawei-node b-data-configuration
140556299 huawei-node b-data-configurationShelton Siziba
 
Huawei wcdma ran10.0 overview
Huawei wcdma ran10.0 overviewHuawei wcdma ran10.0 overview
Huawei wcdma ran10.0 overviewRiadh Bachrouch
 
01 Bts3900 System Structure
01 Bts3900 System Structure01 Bts3900 System Structure
01 Bts3900 System StructureAtif Mahmood
 
Basic GSM Call Flows
Basic GSM Call FlowsBasic GSM Call Flows
Basic GSM Call Flowsemyl97
 
The Huawei Node B Evolution
The Huawei Node B EvolutionThe Huawei Node B Evolution
The Huawei Node B EvolutionAtif Mahmood
 

Destacado (20)

Gsm interfaces
Gsm interfacesGsm interfaces
Gsm interfaces
 
GSM fundamentals (Huawei)
GSM fundamentals (Huawei)GSM fundamentals (Huawei)
GSM fundamentals (Huawei)
 
01 01 bss signaling fundamental
01 01 bss signaling fundamental01 01 bss signaling fundamental
01 01 bss signaling fundamental
 
52319921 huawei-node-b-manual
52319921 huawei-node-b-manual52319921 huawei-node-b-manual
52319921 huawei-node-b-manual
 
Gsm review note by zemaryali
Gsm review note by zemaryaliGsm review note by zemaryali
Gsm review note by zemaryali
 
GSM Base transceiver station
GSM Base transceiver stationGSM Base transceiver station
GSM Base transceiver station
 
Huawei umts o&m planning and configuration
Huawei umts o&m planning and configurationHuawei umts o&m planning and configuration
Huawei umts o&m planning and configuration
 
205583569 gb-interface-detailed-planning-final
205583569 gb-interface-detailed-planning-final205583569 gb-interface-detailed-planning-final
205583569 gb-interface-detailed-planning-final
 
Gsm Originating Call Flow
Gsm Originating Call FlowGsm Originating Call Flow
Gsm Originating Call Flow
 
E nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-enE nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-en
 
Bts3900 Site Maintenance Guide(V200 01)
Bts3900 Site Maintenance Guide(V200 01)Bts3900 Site Maintenance Guide(V200 01)
Bts3900 Site Maintenance Guide(V200 01)
 
Bts3900 gsm commissioning guide (v300 r008-03)
Bts3900 gsm commissioning guide (v300 r008-03)Bts3900 gsm commissioning guide (v300 r008-03)
Bts3900 gsm commissioning guide (v300 r008-03)
 
140556299 huawei-node b-data-configuration
140556299 huawei-node b-data-configuration140556299 huawei-node b-data-configuration
140556299 huawei-node b-data-configuration
 
Gsm signaling
Gsm signalingGsm signaling
Gsm signaling
 
Huawei wcdma ran10.0 overview
Huawei wcdma ran10.0 overviewHuawei wcdma ran10.0 overview
Huawei wcdma ran10.0 overview
 
01 Bts3900 System Structure
01 Bts3900 System Structure01 Bts3900 System Structure
01 Bts3900 System Structure
 
Basic GSM Call Flows
Basic GSM Call FlowsBasic GSM Call Flows
Basic GSM Call Flows
 
The Huawei Node B Evolution
The Huawei Node B EvolutionThe Huawei Node B Evolution
The Huawei Node B Evolution
 
GSM channels
GSM channelsGSM channels
GSM channels
 
3G IP Architecture
3G IP Architecture3G IP Architecture
3G IP Architecture
 

Similar a 49529487 abis-interface

Wireless m-bus-quick-start-guide
Wireless m-bus-quick-start-guideWireless m-bus-quick-start-guide
Wireless m-bus-quick-start-guide봉조 김
 
Bx310x Product Specification
Bx310x Product SpecificationBx310x Product Specification
Bx310x Product SpecificationFrederic Petit
 
Openflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noiprOpenflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noiprSĩ Anh Nguyễn
 
Openflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noiprOpenflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noiprSĩ Anh Nguyễn
 
exfo_book_guide-wdm_en.pdf
exfo_book_guide-wdm_en.pdfexfo_book_guide-wdm_en.pdf
exfo_book_guide-wdm_en.pdfMohamedshabana38
 
Team Omni L2 Requirements Revised
Team Omni L2 Requirements RevisedTeam Omni L2 Requirements Revised
Team Omni L2 Requirements RevisedAndrew Daws
 
PowerElectronicsHandbookbyMuhammadH.Rashid.pdf
PowerElectronicsHandbookbyMuhammadH.Rashid.pdfPowerElectronicsHandbookbyMuhammadH.Rashid.pdf
PowerElectronicsHandbookbyMuhammadH.Rashid.pdfssuser19b225
 
12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdf
12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdf12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdf
12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdfPawachMetharattanara
 
devicetree-specification
devicetree-specificationdevicetree-specification
devicetree-specificationSurajRGupta2
 
software-eng.pdf
software-eng.pdfsoftware-eng.pdf
software-eng.pdffellahi1
 
Intel добавит в CPU инструкции для глубинного обучения
Intel добавит в CPU инструкции для глубинного обученияIntel добавит в CPU инструкции для глубинного обучения
Intel добавит в CPU инструкции для глубинного обученияAnatol Alizar
 
IBM Power 770 and 780 Technical Overview and Introduction
IBM Power 770 and 780 Technical Overview and IntroductionIBM Power 770 and 780 Technical Overview and Introduction
IBM Power 770 and 780 Technical Overview and IntroductionIBM India Smarter Computing
 
vdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdf
vdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdfvdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdf
vdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdfquandao25
 
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...Sven Åge Eriksen
 
Manual programação stm 32 f4
Manual programação stm 32 f4Manual programação stm 32 f4
Manual programação stm 32 f4Ricardo Albani
 

Similar a 49529487 abis-interface (20)

Wireless m-bus-quick-start-guide
Wireless m-bus-quick-start-guideWireless m-bus-quick-start-guide
Wireless m-bus-quick-start-guide
 
Bx310x Product Specification
Bx310x Product SpecificationBx310x Product Specification
Bx310x Product Specification
 
Openflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noiprOpenflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noipr
 
Openflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noiprOpenflow switch-v1.5.0.noipr
Openflow switch-v1.5.0.noipr
 
Tilak's Report
Tilak's ReportTilak's Report
Tilak's Report
 
exfo_book_guide-wdm_en.pdf
exfo_book_guide-wdm_en.pdfexfo_book_guide-wdm_en.pdf
exfo_book_guide-wdm_en.pdf
 
Team Omni L2 Requirements Revised
Team Omni L2 Requirements RevisedTeam Omni L2 Requirements Revised
Team Omni L2 Requirements Revised
 
St3300655 lw
St3300655 lwSt3300655 lw
St3300655 lw
 
PowerElectronicsHandbookbyMuhammadH.Rashid.pdf
PowerElectronicsHandbookbyMuhammadH.Rashid.pdfPowerElectronicsHandbookbyMuhammadH.Rashid.pdf
PowerElectronicsHandbookbyMuhammadH.Rashid.pdf
 
12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdf
12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdf12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdf
12H0005X00-Anixter-Installation-Pocket-Reference-Guide-BOOK-W&C-EN-US.pdf
 
devicetree-specification
devicetree-specificationdevicetree-specification
devicetree-specification
 
software-eng.pdf
software-eng.pdfsoftware-eng.pdf
software-eng.pdf
 
Ns doc
Ns docNs doc
Ns doc
 
Intel добавит в CPU инструкции для глубинного обучения
Intel добавит в CPU инструкции для глубинного обученияIntel добавит в CPU инструкции для глубинного обучения
Intel добавит в CPU инструкции для глубинного обучения
 
IBM BladeCenter Products and Technology
IBM BladeCenter Products and TechnologyIBM BladeCenter Products and Technology
IBM BladeCenter Products and Technology
 
IBM Power 770 and 780 Technical Overview and Introduction
IBM Power 770 and 780 Technical Overview and IntroductionIBM Power 770 and 780 Technical Overview and Introduction
IBM Power 770 and 780 Technical Overview and Introduction
 
vdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdf
vdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdfvdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdf
vdoc.pub_static-timing-analysis-for-nanometer-designs-a-practical-approach-.pdf
 
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
 
Dm00046982
Dm00046982Dm00046982
Dm00046982
 
Manual programação stm 32 f4
Manual programação stm 32 f4Manual programação stm 32 f4
Manual programação stm 32 f4
 

Más de Terra Sacrifice

Smallcellsforumforjason 150318164026-conversion-gate01
Smallcellsforumforjason 150318164026-conversion-gate01Smallcellsforumforjason 150318164026-conversion-gate01
Smallcellsforumforjason 150318164026-conversion-gate01Terra Sacrifice
 
Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02Terra Sacrifice
 
Introduction to-telecommunication-rf
Introduction to-telecommunication-rfIntroduction to-telecommunication-rf
Introduction to-telecommunication-rfTerra Sacrifice
 
Drivetest training znix team
Drivetest training znix teamDrivetest training znix team
Drivetest training znix teamTerra Sacrifice
 
Wcdmaphysicallayer 111120031701-phpapp02
Wcdmaphysicallayer 111120031701-phpapp02Wcdmaphysicallayer 111120031701-phpapp02
Wcdmaphysicallayer 111120031701-phpapp02Terra Sacrifice
 
2gcaseanalsyishandover training
2gcaseanalsyishandover training2gcaseanalsyishandover training
2gcaseanalsyishandover trainingTerra Sacrifice
 
Rf bts configurations v1
Rf bts configurations v1Rf bts configurations v1
Rf bts configurations v1Terra Sacrifice
 
Cluster optimization procedure v1
Cluster optimization procedure v1Cluster optimization procedure v1
Cluster optimization procedure v1Terra Sacrifice
 
Ericsson optimization opti
Ericsson optimization optiEricsson optimization opti
Ericsson optimization optiTerra Sacrifice
 
Rf bts configurations v1
Rf bts configurations v1Rf bts configurations v1
Rf bts configurations v1Terra Sacrifice
 

Más de Terra Sacrifice (16)

Smallcellsforumforjason 150318164026-conversion-gate01
Smallcellsforumforjason 150318164026-conversion-gate01Smallcellsforumforjason 150318164026-conversion-gate01
Smallcellsforumforjason 150318164026-conversion-gate01
 
Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02
 
Introduction to-telecommunication-rf
Introduction to-telecommunication-rfIntroduction to-telecommunication-rf
Introduction to-telecommunication-rf
 
Drivetest training znix team
Drivetest training znix teamDrivetest training znix team
Drivetest training znix team
 
Sdcch drop rate
Sdcch drop rateSdcch drop rate
Sdcch drop rate
 
Wcdmaphysicallayer 111120031701-phpapp02
Wcdmaphysicallayer 111120031701-phpapp02Wcdmaphysicallayer 111120031701-phpapp02
Wcdmaphysicallayer 111120031701-phpapp02
 
2gcaseanalsyishandover training
2gcaseanalsyishandover training2gcaseanalsyishandover training
2gcaseanalsyishandover training
 
Basic gsm ok
Basic gsm okBasic gsm ok
Basic gsm ok
 
Rf bts configurations v1
Rf bts configurations v1Rf bts configurations v1
Rf bts configurations v1
 
Cluster optimization procedure v1
Cluster optimization procedure v1Cluster optimization procedure v1
Cluster optimization procedure v1
 
Ericsson optimization opti
Ericsson optimization optiEricsson optimization opti
Ericsson optimization opti
 
Case analysis call drop
Case analysis call dropCase analysis call drop
Case analysis call drop
 
Wcdma channels
Wcdma channelsWcdma channels
Wcdma channels
 
Basic gsm ok
Basic gsm okBasic gsm ok
Basic gsm ok
 
Rf bts configurations v1
Rf bts configurations v1Rf bts configurations v1
Rf bts configurations v1
 
Rf radio parameters
Rf radio parametersRf radio parameters
Rf radio parameters
 

Último

OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureEric D. Schabell
 
RAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AIRAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AIUdaiappa Ramachandran
 
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAAnypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAshyamraj55
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024D Cloud Solutions
 
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfUiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfDianaGray10
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6DianaGray10
 
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...DianaGray10
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8DianaGray10
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfAijun Zhang
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxGDSC PJATK
 
Do we need a new standard for visualizing the invisible?
Do we need a new standard for visualizing the invisible?Do we need a new standard for visualizing the invisible?
Do we need a new standard for visualizing the invisible?SANGHEE SHIN
 
Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Adtran
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioChristian Posta
 
Babel Compiler - Transforming JavaScript for All Browsers.pptx
Babel Compiler - Transforming JavaScript for All Browsers.pptxBabel Compiler - Transforming JavaScript for All Browsers.pptx
Babel Compiler - Transforming JavaScript for All Browsers.pptxYounusS2
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024SkyPlanner
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum ComputingGDSC PJATK
 

Último (20)

OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability Adventure
 
RAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AIRAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AI
 
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAAnypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024
 
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfUiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6
 
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdf
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptx
 
Do we need a new standard for visualizing the invisible?
Do we need a new standard for visualizing the invisible?Do we need a new standard for visualizing the invisible?
Do we need a new standard for visualizing the invisible?
 
Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and Istio
 
Babel Compiler - Transforming JavaScript for All Browsers.pptx
Babel Compiler - Transforming JavaScript for All Browsers.pptxBabel Compiler - Transforming JavaScript for All Browsers.pptx
Babel Compiler - Transforming JavaScript for All Browsers.pptx
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum Computing
 

49529487 abis-interface

  • 1. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Distribution lists : Abstract / comments : This is an internal document that applies up to the V12 BSS release. This document is available at the following Netscape location: http://136.147.68.68/ned/ERGmain.html Abis Interface Engineering Guide GSM Reference : PE /IRC/APP/0079 Version : 01.08 / EN Date : 12/04/99 Author : T. Bachelier Documentalist : A.-M. Leberre Approved by : M. Liem Quality manager : Ext. ref. : Type : CEV Product : Cat : I Status : A
  • 2. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide PE /IRC/APP/0079 01.08 / EN 12/04/99 DOCUMENT AMENDMENTS VERSION DATE COMMENTS AUTHOR 01.01 / EN 03/06/98 Creation - Preliminary edition T. Bachelier 01.02 / EN 19/06/98 Update after review Preliminary edition See report: PE/IRC/GES/0034 V1.01 T. Bachelier 01.03 / EN 15/07/98 New minutes have been taken into account T. Bachelier 01.04 / EN 31/07/98 Modification after review + rewriting See report: PE/IRC/GES/0034 V1.02 T. Bachelier 01.05 / EN 16/12/98 US and China comments have been taken into ac- count T. Bachelier 01.06 / EN 24/12/98 Modification after review See report: PE/IRC/GES/0034 V1.03 T. Bachelier 01.07 / EN 25/03/98 The main changes are on LAPD dimensioning: Engineering rules have been completely remade, they are given for each type of BTS which allows more flexibility. T. Bachelier 01.08 / EN 12/04/98 Modification after review. T. Bachelier
  • 3. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation GSM Reference : PE /IRC/APP/0079 Version : 01.08 / EN Date : 12/04/99 ABIS INTERFACE ENGINEERING GUIDE
  • 4. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 4 PE /IRC/APP/0079 01.08 / EN 12/04/99 TABLE OF CONTENTS 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2 RELATED DOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 APPLICABLE DOCUMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 REFERENCE DOCUMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 ABBREVIATIONS AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 DEFINITION OF TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 BTS CONFIGURATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4.1 SITES AND CELL LAY-OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 OFFERED TRAFFIC ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 RADIO INTERFACE DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.1 TCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.2 SDCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.3 BCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 CELL DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4.1 Cell types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4.2 BTS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5 LOOK-UP TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 BTS DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 SIGNALLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.1 LAPD channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.2 LAPD dimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.2 PCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2.1 Abis TS dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2.2 PCM configuration rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 DCC & DSC DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.4 LOOK-UP TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 ABIS ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1 DROP&INSERT CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.1 Possible configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.2 TEI issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
  • 5. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 5 PE /IRC/APP/0079 01.08 / EN 12/04/99 TABLE OF CONTENTS 6.1.3 DTI/PCMI issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.4 RadioSiteMask configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.5 RadioSiteMask Extension strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.6 Additinal feature of TDMA/Abis mapping configuration for V11 . . . . . . . 42 6.2 HUBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2.1 Cross-connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2.2 Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7 TRANSMISSION MEDIUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.1 CLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.2 TRANSMISSION QUALITY REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.3 CSU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.4 HDSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.4.2 HDSL issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.4.3 HDSL modems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.5 MICROWAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.5.1 Microwave design Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.5.2 Microwave Quality requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.5.3 Microwave configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.5.4 Microwave equipment redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8 BSC DIMENSIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.1 BSC TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.2 SICD/SICD8V BOARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.1 Limitation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.2 Parenting rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.3 Look-up tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.3 BSCB AND TSCB BOARDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.4 DDTI BOARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
  • 6. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 6 PE /IRC/APP/0079 01.08 / EN 12/04/99 LIST OF TABLES Table 1: BTS configuration limitations .............................................................................. 17 Table 2: Traffic for a given number of TRXs in a standard cell ........................................ 18 Table 3: Traffic for a given number of TRXs in an extended cell...................................... 18 Table 4: PCM configuration for S333 (TEI 0) with 1 PCM............................................... 26 Table 5: PCM configuration for S333 (TEI 0) with 2 PCMs ............................................. 27 Table 7: Internal E1 to external T1 conversion .................................................................. 28 Table 8: LAPD/DCC configuration.................................................................................... 29 Table 9: Omnisectorial BTS ............................................................................................... 30 Table 10: Bisectorial BTS................................................................................................... 30 Table 11: Tri and hexasectorial BTS.................................................................................. 31 Table 13: PCM E1 RadioSiteMask..................................................................................... 38 Table 14: PCM T1 RadioSiteMask..................................................................................... 38 Table 15: PCM E1 RadioSiteMask..................................................................................... 39 Table 16: PCM T1 RadioSiteMask..................................................................................... 39 Table 17: RadioSiteMask (first strategy)............................................................................ 41 Table 18: RadioSiteMask (second strategy)....................................................................... 41 Table 19: RadioSiteMask (Third strategy) ......................................................................... 42 Table 20: RadioSiteMask configuration with crossconnect ............................................... 44 Table 21: Timing requirements........................................................................................... 46 Table 22: Product range...................................................................................................... 58 Table 23: SICD limitations................................................................................................. 60 Table 24: Maximum number of sites per BSC ................................................................... 61 Table 25: PCM allocation for the BSC6000 Type5............................................................ 62
  • 7. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 7 PE /IRC/APP/0079 01.08 / EN 12/04/99 LIST OF FIGURES Figure 1: Star, Drop&Insert and Hub&Spoke Configurations ........................................... 33 Figure 2: Loop Drop&Insert configuration ....................................................................... 34 Figure 3: Hub&Spoke configuration. ................................................................................. 34 Figure 4: PCMI configurations for drop&insert................................................................. 35 Figure 5: D&I in loop without board redundancy: 1G versus 2G ...................................... 36 Figure 6: Drop & Insert example........................................................................................ 38 Figure 7: Hub&Spoke example .......................................................................................... 39 Figure 8: Example............................................................................................................... 40 Figure 9: Cross-connect configuration ............................................................................... 43 Figure 10: Crossconnect configuration............................................................................... 43 Figure 11: Architectuire with Switch ................................................................................. 44 Figure 12: HDSL solution................................................................................................... 49 Figure 13: Microwave solution........................................................................................... 51 Figure 14: Reference communication of ITU..................................................................... 53 Figure 15: Performance objectives: .................................................................................... 53 Figure 16: Chain Drop&Insert with microwaves ............................................................... 54 Figure 17: Loop Drop&Insert with microwaves................................................................. 54 Figure 18: Hub and Spoke with microwaves...................................................................... 55 Figure 19: Abis configuration with microwaves on BSC side ........................................... 55 Figure 20: Typical non-protected and protected microwave equipment architecture ........ 56 Figure 21: Dimensioning the Abis interface with LAPD concentration ............................ 61 Figure 22: Example of complex configuration................................................................... 63
  • 8. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 8/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 1 INTRODUCTION 1.1 PURPOSE The purpose of this document is to give Abis interface engineering guidelines for the NORTEL BSS network. This document is discusses the following subjects: v Dimensioning speech and signalling on the Abis interface, v Impact on the BTS side, v Abis architecture, v Transmission medium (HDSL, microwaves), v Impact on the BSC side. This document is intended primarily for Network Designers and Application Engineers involved in GSM network Engineering within NORTEL GSM Networks and Nortel. 1.2 SCOPE This document is internal and applies up to the V12 Release.
  • 9. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 9/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 2 RELATED DOCUMENTS 2.1 APPLICABLE DOCUMENTS [A01] Feature list of System Release V11 PE/SYS/DPL/0089 V01.02/EN P. Vincent [A02] Dimensioning the Abis interface PE/SYS/DD/0070 V6.02/EN B. Couaillet [A03] Transmission Network Recommendations PE/SYS/DD/0253 V1.03/EN B. Couaillet 2.2 REFERENCE DOCUMENTS [R01] V8 Engineering Changes PE/IRC/APP/00030 V1.06/EN L. Jullien [R02] V9 Engineering Changes PE/IRC/APP/00048 V1.06/EN T. Bachelier [R03] V10 Feature Engineering Information PE/IRC/APP/00068 V1.08/EN S. Luong [R04] V11 Feature Engineering Information PE/IRC/APP/00072 V1.06/EN T. Bachelier [R05] S8000 Outdoor BTS Engineering Information PE/IRC/APP/00033 V4.02/EN Y. Maurin [R06] S8000 Indoor BTS Engineering Information PE/IRC/APP/00055 V4.02/EN Y. Maurin [R07] S2000H BTS Engineering Information PE/IRC/APP/00052 V3.04/EN M. N. Boursin [R08] S2000L BTS Engineering Information PE/IRC/APP/00053 V3.04/EN M. N. Boursin [R09] BSC/TCU Engineering Information PE/IRC/APP/00015 V5.04/EN B. Vanheeghe [R10] OMC-R Engineering Information (Vol. 1) PE/IRC/APP/00016 V5.04/EN M. Lebas [R11] BSS Parameters User Guide PE/IRC/APP/00037 V3.01/EN WGAl-WGSys [R12] Defence mechanisms on PCM faults PE/SYS/DD/0242 V3.01/EN B. Couaillet
  • 10. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 10/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 [R13] UIT-T Recommendations G732 Characteristics of primary PCM multiplex equipment operating at 2048 kbit/s. [R14] UIT-T Recommendations G811 Timing requirements at the output of primary reference clocks suitable for ple- siochronous operation of international digital links. [R15] UIT-T Recommendations G733 Characteristics of primary PCM multiplex equipment operating at 1544 kbit/s. [R16] UIT-T Recommendations The control of jitter and wander within digital networks which are based on the 2048 kb/s hierarchy. [R17] UIT-T Recommendations The control of jitter and wander within digital networks which are based on the 1544 kb/s hierarchy. [R18] CT5100 Specification for Backhaul Optimization PE/SPC/DD/00xx V1.01/EN A. Chevalier [R19] GSM Transmission Engineering Guide PE/IRC/APP/0086 V1.01/EN B. Pariseau [R20] Nortel BSS performances PE/BSS/DJD/0456 V1.01/EN A. Montès [R21] HDSL modem layer1 qualification PE/BTS/DJD/0962 V10.01/EN B. Corn [R22] BSCB Eng’g Information: Load Monitoring and Optimization PE/IRC/INF/0015 V1.01/EN B. Vanhèeghe
  • 11. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 11/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 3 ABBREVIATIONS AND DEFINITIONS 3.1 ABBREVIATIONS BCF Base Common Function BDA Application Database BER Bit Error Rate BPUG BSS Parameters User Guide BSC Base Station Controller BSS Base Station SubSystem BTS Base Transceiver Station CCCH Common Control Channel CS Coupling System CSU Channel Service Unit DCC Data Channel Concentrator (BTS 1G) DSC Data Signalling Concentrator (BTS 2G) DCU Dual Channel Unit DIU Digital Interface Unit DM Degraded Minutes DRX Driver + Receiver + Frame Processor DTI Digital Trunk Interface ES Errored Seconds FEI Feature Engineering Information (document) GSM Global System for Mobile communications HDSL High bit rate Digital Subscriber Line HG High grade HLR Home Location Register HO Handover H/W Hardware LA Location Area LAPD Link Access Protocol on D channel LG Local Grade LOS Line Of Sight L1M Layer 1 Measurements MG Medium Grade MS Mobile Station NMC Nortel Matra Cellular NMC Network Management Center NSS Network Sub-System O&M Operation and Maintenance OMC Operation and Maintenance Center OMC-R Operation and Maintenance Center-Radio OMN Operation and Maintenance Network
  • 12. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 12/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 PA Power Amplifier PBGT Power Budget PCH Paging Channel PCM Pulse Code Modulation PCMI PCM Interface PEI Product Engineering Information (document) QOS Quality of Service RFU Radio Frequency Unit RV Rendez Vous SES Severely Errored Seconds SMS-CB Short Message Service - Cell Broadcast SPCMI Small PCM Interface TBC To Be Completed TBD To Be Defined TCH Traffic ChHannel TCU Transcoder Unit TEI Terminal Equipment Identifier TMG Traffic Management TRX Transmission-Reception subsystem of the BTS TS Time Slot
  • 13. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 13/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 3.2 DEFINITION OF TERMS C/I: Carrier-to-Interference ratio, measured in dB, gives the measure of the ratio of the usable signal over the interferences level. DRX: The DRX is a part of the "2G" BTS system architecture. The first product that supports this architecture in the Nortel catalogue is the S8000 Outdoor BTS. In the "2G" architecture, the TRX is composed of two modules, one dedicated to the signal processing (transmission and reception) called DRX, and one dedicated to the power transmission, called PA. Rendez Vous time slot: This is the time slot of the Abis interface PCM link that carries the primary LAPD of the BTS site. It has a fixed predefined position on the PCM (BTS side) because it is the time slot used by BSC and the BTS to establish their first dialogue after a scanning procedure. Soft Blocking: Procedure by which a TRX or a cell can be put out of service (i.e. blocked) without interrupting the given TRX or cell active calls.
  • 14. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 14/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Page Intentionally Left Blank
  • 15. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 15/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 4 BTS CONFIGURATION The site and the type of each BTS must be determined to perform the dimensioning of the Abis interface. This part is performed by the Cellular planning in conjunction with the network designer and the customer. 4.1 SITES AND CELL LAY-OUT The sites and the cell layout are fixed according to the coverage prediction. There are two different ways of working depending on the project context. vIf the customer defines the site locations, then Nortel must define the predicted coverage area. vIf the customer does not define the site locations, Nortel assumes additional activities for the site acquisition process follow-up such as along the site acquisitions iterations, provision of optimal theoretical site location, site selection rules, and coverage/quality impact of candidate site selection. 4.2 OFFERED TRAFFIC ASSESSMENT The BTS configurations depend on the traffic (in Erlangs) that each cell must carry. Traffic is assessed with two kinds of information: quality of service and subscriber behaviour. The behaviour of subscribers includes the distribution of GSM subscribers within the population, call profile, and mobility parameters. The offered traffic of each cell is worked out from this information. 4.3 RADIO INTERFACE DIMENSIONING The offered traffic is assessed. The next step is to dimension the radio interface. 4.3.1 TCH The number of required TCHs is worked out from the Erlang B-law with a fixed blocking rate applied to the assessed offered traffic. The assumption of NORTEL is a blocking rate of 2% for traffic or data on the radio interface. One TCH channel is carried by one radio TS. Note that an ErlangB calculator is available at the following URL address: http://47.53.64.96/syseng/2S00/2S30/ErlangBCalc/EBCalc.html
  • 16. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 16/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 4.3.2 SDCCH The number of required SDCCH channels is difficult to assess because it depends on a large number of parameters: • Mobility profile, • Strategy used: For example, if most of the SDCCH requests are for call and not for Location Update, it could make sense to use TCH signalling. It will al- low the decrease the call setup time. Therefore, no more SDCCH channels are needed according to this strategy (Note that the Location Update will be also supported by a TCH signalling). This strategy is only applicable to few particular cases, but it has a big impact on the dimensiong of the radio inter- face. • geographical zone of the cell: If the cell is near an LA boundary, the number of Location updates could be quite important. So, the number of SDCCHs must be high. • features used: Queueing increases the duration of the SDCCH connections, therefore the number of needed SDCCH may be studied. This is not an exhaustive list. It just gives information about some parameters which can strongly impact the SDCCH dimensioning. Nevertheless, if we take only into account the NORTEL standard traffic model, the number of required SDCCH can be easily determined. The NORTEL standard traffic model indicates that 28 Erlangs of signalling traffic is required for 100 Erlangs of speech or data traffic. After determination of the signalling traffic, the number of SDCCH channels is worked out from the Erlang B law. NORTEL assumption is a blocking rate of 0,1% for signalling on the radio interface. A radio TS can carry 8 SDCCH channels and is called SDCCH/8, but the SDCCH channels can be combined with the BCCH (refer to the following paragraph). 4.3.3 BCCH One BCCH is required per cell. The BCCH is supported by the TS0 of the beacon frequency. In the case of one TRX per cell, BCCH can combined with one SDCCH/4 (4 SDCCH channels) in order to have 7 TCH instead of 6. This configuration can be applied under certain conditions such as the LA size. Actually, if the size of the LA is too large, a great amount of paging will be generated and the PCH (which is limited in this configuration) will not be able to flow all the paging messages. If the SMS-CB is implemented with combined BCCH, there will be only 3 SDCCH channels.
  • 17. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 17/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 4.4 CELL DIMENSIONING 4.4.1 CELL TYPES The number of required TRXs depends on the type of cells. There are two different kinds of cell: standard and extended cell. Extended cell allows bigger propagation delay. The coverage of an extended cell could be bigger than the one of a standard cell (for further information, please refer to [R02]). TRX manages 8 TS in a standard cell and only four in an extended cell. standard cell extended cell unused TS Standard cell is the default value used. 4.4.2 BTS CONFIGURATION The number of required TRXs per cell is fixed according to two types of information: the number of required radio time slots and the cell type. The BTS is determined by the cells that it must manage. For example a BTS which manages 3 cells with respectively 4, 5 and 2 TRXS is called a S452. The dimensioning constants of the site are checked at the OMC level: These limitations are only OMC-R checks. It does not necessary mean that the O16 configuration exists. TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 Table 1: BTS configuration limitations Cells per site 6 TDMA per cell 16 TRX per site 24
  • 18. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 18/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 4.5 LOOK-UP TABLES The following look-up tables give the offered traffic for a given number of TRXs with the NORTEL standard call profile (blocking rate of 2%). When the offered traffic is assessed, these look-up tables give a first assessment about the number of needed TRX. After this first assessment, some deeper dimensioning can be performed according to information of section 4.3.2 (SDCCH dimensioning). Blocking rate = 2.0% * Combined BCCH (under certain conditions such as LA size) Table 2: Traffic for a given number of TRXs in a standard cell TRX Erlangs E/TRX TCH SDCCH/8 BCCH 1 2.9 2.9 7 0 1* 2 8.2 4.1 14 1 1 3 14.0 4.7 21 2 1 4 21.0 5.3 29 2 1 5 27.3 5.4 36 3 1 6 34.7 5.8 44 3 1 7 42.1 6.0 52 3 1 8 48.7 6.1 59 4 1 Table 3: Traffic for a given number of TRXs in an extended cell TRX Erlangs E/TRX TCH SDCCH/8 BCCH 1 0.6 0.60 3 0 1* 2 2.3 1.14 6 1 1 3 5.1 1.70 10 1 1 4 8.2 2.05 14 1 1 5 11.5 2.30 18 1 1 6 14.0 2.33 21 2 1 7 17.5 2.50 25 2 1 8 21.0 2.625 29 2 1
  • 19. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 19/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Page Intentionally Left Blank
  • 20. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 20/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 5 BTS DIMENSIONING 5.1 SIGNALLING Two types of signalling are carried on the Abis interface. The first one, related to the Operation and Maintenance, concerns all the component parts (BCF, TRX, Coupling system, Power Amplifier ...). The second one, related to the traffic management, is destined to the TRX module. In other words, all the modules receive O&M signalling, while the TRX receives both O&M and traffic management signallings. 5.1.1 LAPD CHANNEL These two types of signalling (O&M and radio management) are supported by the same LAPD channel. A distinction is made between the BCF signalling and the cell signalling. Primary LAPD: The primary LAPD is the LAPD channel which handles BCF signalling with cell signalling. Secondary LAPD: It is the LAPD channel associated to a cell. It comprises only cell signalling.
  • 21. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 21/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 5.1.2 LAPD DIMENSIONING LAPD dimensioning depends on BTS limitations, Abis transmission costs and BSC limitations. At BTS side, the hardware and software limitations are related to the BTS type. At BSC side, two main limitations can occur: connectivity (maximum number of LAPD ports) and real time processing capability. In fact two different strategies can be chosen by the operator to drive the LAPD dimensioning: • The first one consists in concentrating the maximum number of LAPD chan- nels at the BTS side in order to save some TS on the Abis interface. The pur- pose is to decrease the transmission costs and to save some LAPD ports at the BSC side. The drawback of this strategy is that it can create some BSC over- load and lead to outage in worst case. Therefore, this strategy must be associ- ated with a capacity analysis to ensure that the BSC can manage such configuration. • The second one is highly related to the BSC load. As the BSC real time pro- cessing is a key factor in BSS design, it is of interest to split the signalling load on the different boards in order to avoid an overloab on one board. Of course, these two opposite strategies must fulfilled the BTS constraints. Each type of BTS has its own limitations due to hardware or software characteristics. This part deals with the BTS limitations and the BSC limitations in terms of real time processing. The BSC connectivity and the parenting rules at the BSC side will be seen in section 8 (BSC dimensioning). BTS Limitations The limitations depends on the BTS type. Each kind of BTS has its own limitations, therefore the engineering rules are different depending on the BTS type. The low capacity BTS such as S2000H/L or S2000P are not taken into account because they always need one single LAPD channel. In fact, four different BTS have been taken into account: • S4000, • S8000 BCF up to V11 (O&M software), • S8000 BCF since V12 (COAM software), • S8000 CBCF .
  • 22. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 22/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 S4000: The maximum configuration is S888. The engineering rules are: v Omnidirectional BTSs (up to O8) require only one LAPD channel. v Multi-sectorial sites having more than 8 TRXs require one LAPD channel per cell. v The signalling of multi-sectorial sites having up to 8 TRXs can be handled by a single LAPD channel. But, for the sake of the BSC boards (refer to the following section: BSC limitations in terms of real time processing), one LAPD per cell can be defined. S8000 BCF up to V11: The maximum configuration is S888 and S444_444, S555_333, S666_222 for dualband site. The engineering rules are: v Omnidirectional BTSs (up to O8) require only one LAPD channel. v Multi-sectorial sites having more than 8 TRXs require one LAPD channel per cell. v The signalling of multi-sectorial sites having up to 8 TRXs can be handled by a single LAPD channel. But, for the sake of the BSC boards (refer to the following section: BSC limitations in terms of real time processing), one LAPD per cell can be defined. v For dualband configurations (hexasectorial applications) Sxyz_x’y’z’, the rules are the following ones: • if x+y+z+x'+y'+z' ≤ 8, 1 LAPD can be sufficient. • if x+y+z ≤ 8 and x'+y'+z' ≤ 8 then allocate 1 LAPD for each frequency band. • if x+y+z > 8 or x’+y’+z’ > 8 then use 1 LAPD for x,x’, another LAPD for y,y’, and a third LAPD for z,z’ F If a site has several LAPD channels, they must be connected on different SICD ports unless the system will not be configured correctly. F If a site has several LAPD channels, they must be connected on different SICD ports unless the system will not be configured correctly.
  • 23. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 23/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 S8000 BCF since V12: The maximum configurations are O16 for omnisectorial site , S888 for multisectorial site and S444_444, S555_333, S666_222 for dualband site. The engineering rules are: v The number of DRX which can be handled by one LAPD channel is limited to 8. v A site has a maximum of 3 Abis LAPD channels. v If a cell has less than 8 TRX, it has only one LAPD channel. v For dualband configurations (hexasectorial applications) Sxyz_x’y’z’, the rules are the following ones: • if x+y+z+x'+y'+z' ≤ 8, 1 LAPD can be sufficient. • if x+y+z ≤ 8 and x'+y'+z' ≤ 8 then allocate 1 LAPD for each frequency band. • if x+y+z > 8 or x’+y’+z’ > 8 then use 1 LAPD for x,x’, another LAPD for y,y’, and a third LAPD for z,z’ Examples: S111 can have one, two or three LAPD channels. O8 has necessarily 1 LAPD channel. S444 can have 2 or 3 LAPD channels. S333 can have 2 or 3 LAPD channels. F If a site has several LAPD channels, they must be connected on different SICD ports unless the system will not be configured correctly.
  • 24. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 24/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 S8000 CBCF The maximum configurations are O16 for omnisectorial site , S161616 for multisectorial site and S444_444, S555_333, S666_222 for dualband site. There are only two engineering rules: v The number of DRX which can be handled by one LAPD channel is limited to 8. v A site has a maximum of 3 Abis LAPD channels. Examples: S111 can have one, two or three LAPD channels. O8 can have one, two or three LAPD channel. S444 can have 2 or 3 LAPD channels. In case of 2 LAPD channels, 6 TRxs can defined on each LAPD channels in order to split the load. S333 can have 2 or 3 LAPD channels. F If a site has several LAPD channels, they must be connected on different SICD ports unless the system will not be configured correctly.
  • 25. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 25/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 BSC limitations in term of real time processing The SICD board is the LAPD interface controller that manages the signalling interface between the BSC, the TCU, and the BTS. The SICD4 board (not the SICD8V) can be the bottleneck of the BSC. Several BSC outages in the past were due to an overload on the SICD4 card. The overload was either generated by high Handovers, Paging and Location Update rates or by particulary high voice traffic demands on certain sites (e.g. heavy load sites). An overload mechanism has been introduced on the SICD board. But if this overload mechanism is triggered, it will penalize the traffic (Q.O.S.) on all sites associated with the SICD. Therefore, it is really important to split the load on the different SICDs in order to avoid overload on one SICD. A site with less than 8 TRXs can easily be handled by a single LAPD channel. However associating one LAPD channel to one cell allows a finer balancing of the load on the available SICD boards. This implies that additional DCC/DSC cards may be required on the BTS and that additional timeslots on the Abis interface are also necessary. Please refer to the concerned BTS Product Engineering Information. But it could make sense not applying these engineering rules if the forecast site traffic is low, typically in rural area. Note 1: These engineering rules are applicable in a normal non-congested cell. They cannot be applied in a congestion situation (radio blocking rate > 5%). Note 2: For the other rules (BSCB, SICD) which apply on the BSC side, please refer to section 8 (BSC dimensioning). F One LAPD channel must be associated to one cell in high traffic zone (urban zone) for the sake of the SICD for the BSC 6000.
  • 26. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 26/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 5.2 PCM 5.2.1 ABIS TS DIMENSIONING On the Abis interface, two consecutive TS are used per TDMA and one TS per LAPD. example: S333 on 1 PCM: (3 + 3 + 3) * 2 = 18 Abis TS are required for traffic, 3 LAPD : 3 Abis TS are required for signalling, the total number of Abis TS is 21. If there are several PCMs, the number of required TS will be higher (for further information, please refer to section 6.1.4). S333 on 2 PCMs: 18 TS for traffic => 10 on the PCM1 and 8 on the PCM2, but the radioSiteMask reserves 10 TS on each PCM. 3 TS for LAPD on each PCM. The total number of TS is (10 + 3)*2 = 26 Abis TS 5.2.2 PCM CONFIGURATION RULES The configuration rules of this section apply to the BTS side. E1 configuration rules The TS0 of a E1 PCM is used for synchronization. The other TS will be configured according to several rules. vThe TS number carrying the primary LAPD, called Rendez-Vous TS (RV TS), obeys the following rule: TS number = TEIBCF + 1. (with TEIBCF<16) vThe TS associated to TRX are mapped by two on two consecutive TS. The convention is to use the higher TS of a PCM first, and then continue toward the lower. vThe secondary LAPD channels will be mapped on the free TS following the Traffic TS. vWhen several PCM link the BTS to the BSC, the traffic TS are equally shared on those PCM. SP : Signalling Link TS (Primary LAPD) T : Traffic TS SS : Signalling Link TS (Secondary LAPD) Table 4: PCM configuration for S333 (TEI 0) with 1 PCM TS # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 S333 T T T T T T T T T T T T T T T T T T SS SS SP
  • 27. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 27/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Table 5: PCM configuration for S333 (TEI 0) with 2 PCMs SP : Signalling Link TS (Primary LAPD) SS : Signalling Link TS (Secondary LAPD) T : Traffic TS T1 configuration rules Rules: For T1 configuration, the TS will be configured according to several rules: vThe TS number carrying the primary LAPD, called Rendez-Vous TS (RV TS), obeys the following rule: TS number = TEIBCF + 1. (with TEIBCF<16) But all the TEIs cannot be used for T1. TEIs number 3, 7, 11 and 15 are forbidden for T1. The association between the Abis TS on the BTS side and the possible TEI number is provided by the following table. For further information, please refer to the following explanations (next page). vThe TS associated to TRX are mapped by two on two consecutive TS. The convention is to use the higher TS of a PCM first, and then continue toward the lower. vThe secondary LAPD channels will be mapped on the free TS following the Traffic TS. vWhen several PCM link the BTS to the BSC, the traffic TS are equally shared on those PCM. TS # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 S333 T T T T T T T T T T SS SS SP T T T T T T T T Table 6: TEI to TS association TEI 0 1 2 4 5 6 8 9 10 12 13 14 TS 1 2 3 4 5 6 7 8 9 10 11 12
  • 28. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 28/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Explanations: For T1 PCM, the SPCMI/PCMI/DTI converts internal PCMs (still in E1: 32 TS) to external PCMs (T1: 24 TS). See Table 7. Table 7: Internal E1 to external T1 conversion This means that there is no corresponding external TS for the internal TS4. Information on the internal TS4 never leaves the BTS. For the T1 PCM, the rule for RV TS calculation is still RV TS = TEI number + 1 but applies to internal PCM. So, if the TEI was configured to value 3, the used TS would be 4 and the BTS would still remain impossible to reach. Therefore, TEIs number 3, 7, 11, 15 cannot be used for T1. The association between the Abis TS on the BTS side and the possible TEI number is provided in the table 6. E1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 T1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
  • 29. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 29/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 5.3 DCC & DSC DIMENSIONING This part is not apllicable to S8000 CBCF, S2000H/L and S2000P. It is only relevant for S4000 and S8000 BCF. DCC/DSC concentrates LAPD signalling links onto a single one from the DRX and the BCF to the BSC. It performs the inverse processing in the opposite way. The rule used for dimensioning the DCC/DSC is: vOne DCC/DSC per LAPD (redundancy not taken into account). The following table summarises the number of used DCC/DSC depending on the number of cells and depending on the number of signalling concentrated links. Note1: Certain configurations listed in the above table can only be achieved with dualband configurations. Note2: If, at a given time, the number of available DCC/DSC runs under the threshold given in the table above, the whole site may be definitively lost (until the right number of DCC/DSC becomes available again). Therefore, it is strongly recommended to have a spare DCC/DSC (the "+ 1" in the table represents the redundancy board). Table 8: LAPD/DCC configuration LAPD link F 1 2 3 CELL H 1 1 + 1 2 1 + 1 2 + 1 3 1 + 1 2 + 1 3 + 1 4 2 + 1 3 + 1 5 2 + 1 3 + 1 6 2 + 1 3 + 1
  • 30. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 30/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 5.4 LOOK-UP TABLES These tables take only into account the hardware limitation for the LAPD dimensioning (one LAPD is enough if the total number of TRX is less than 8), because the engineering rules depend on too many parameters (rural or urban environment, SICD or SICD8V board, high mobility). These tables could be useful for a first high level assessment, but not for an accurate design of the network. Moreover, some specific cases occur. For example, the S22 configuration can be performed with the S2000H BTS. In this case the real configuration is 2 O2 BTS (not synchronnized) colocated on the same site and linked in a Drop and Insert configuration. Two LAPD channels are required to handle the 2 BCF signalling and 8 TS to handle the traffic of the four TDMA. Therefore, the number of required TS is 10 and not 9. PCM E1 (31 TS) / PCM T1 (24 TS) Blocking factor = 2.0% Table 9: Omnisectorial BTS Config Standard cell Extended cell E1 PCM T1 PCM Erlang TCH Erlang TCH Traffic TS LAPD required TS E1 required TS T1 DCC O1 2.9 7 0.6 3 2 1 3 1 3 1 1+1 O2 8.2 14 2.3 6 4 1 5 1 5 1 1+1 O3 14.0 21 5.1 10 6 1 7 1 7 1 1+1 O4 21.0 29 8.2 14 8 1 9 1 9 1 1+1 O5 27.3 36 11.5 18 10 1 11 1 11 1 1+1 O6 34.7 44 14.0 21 12 1 13 1 13 1 1+1 O7 42.1 52 17.5 25 14 1 15 1 15 1 1+1 O8 48.7 59 21.0 29 16 1 17 1 17 1 1+1 Table 10: Bisectorial BTS Config Standard cell Extended cell E1 PCM T1 PCM Erlang TCH Erlang TCH Traffic TS LAPD required TS E1 required TS T1 DCC S11 5.8 14 1.2 6 4 1 5 1 5 1 1+1 S22 16.4 28 4.56 12 8 1 9 1 9 1 1+1 S33 28 42 10.16 20 12 1 13 1 13 1 1+1 S44 42 58 16.4 28 16 1 17 1 17 1 1+1 S55 54.6 72 23 36 20 2 22 1 22 1 2+1 S66 69.4 88 28 42 24 2 26 1 14*2 2 2+1 S77 84.2 104 35 50 28 2 30 1 16*2 2 2+1 S88 97.4 118 42 58 32 2 18*2 2 18*2 2 2+1
  • 31. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 31/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Table 11: Tri and hexasectorial BTS Config Standard cell Extended cell E1 PCM T1 PCM Erlang TCH Erlang TCH Traffic TS LAPD required TS E1 required TS T1 DCC S111 8.79 21 1.8 9 6 1 7 1 7 1 1+1 S222 24.6 42 6.8 18 12 1 13 1 13 1 1+1 S333 42.0 63 15.2 30 18 3 21 1 21 1 3+1 S444 63.0 87 24.6 42 24 3 27 1 15*2 2 3+1 S555 81.9 108 34,5 54 30 3 19*2 2 19*2 2 3+1 S666 104.1 132 42.0 63 36 3 21*2 2 21*2 2 3+1 S777 126.3 156 52,5 75 42 3 25*2 2 17*3 3 3+1 S888 146.1 177 63.0 87 48 3 27*2 2 19*3 3 3+1 S111111 17.58 42 3.6 18 12 1 13 1 13 1 1+1 S222222 49.2 84 13.7 36 24 6 18*2 2 18*2 2 3+1 S333333 84.0 126 30.5 60 36 6 24*2 2 24*2 2 3+1 S444444 126.0 174 49.2 84 48 6 30*2 2 22*3 3 3+1
  • 32. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 32/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Page Intentionally Left Blank
  • 33. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 33/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 6 ABIS ARCHITECTURE 6.1 DROP&INSERT CONFIGURATIONS 6.1.1 POSSIBLE CONFIGURATIONS Different configurations are possible on the Abis interface. They are called Star, Drop&Insert, and Hub&Spoke configurations. The following figure presents these different configurations. Figure 1: Star, Drop&Insert and Hub&Spoke Configurations The loop and chain Drop&Insert configurations are guaranteed for up to 6 BTSs. The theorical limitation is 10 O1 BTSs on 1 E1 and 8 O1 BTSs on 1 T1, but R&D tests and guarantees up to 6 BTSs. Star BSC BTS Loop D&I BSC BTS BTS BTS Chain D&I BSC BTS BTS BTS BTS BTS PCM Redundant PCM. In case of loop, one side is considered as redundant PCM Hub&Spoke BSC BTS BTS BTS BTS
  • 34. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 34/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 6.1.2 TEI ISSUES When a BTS is in a chained configuration, the BCH TEI numbers assigned to each BTS must be in an ascending sequence. The rule for the chain configuration is x<y<z. The values do not need to be adjacent. Figure 2: Loop Drop&Insert configuration For the Hub&Spoke configuration the requirements are x<y<z and x<w. There is no constraint between w and the couple y,z (w and y can be equal). Note that the Hub&Spoke is not considered as a D&I configuration because of the fork. Figure 3: Hub&Spoke configuration. Note that all the TEI can not be higher than 15.
  • 35. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 35/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 6.1.3 DTI/PCMI ISSUES PCM interfacing is provided by the DTI board for 1G BTS (S4000, S2000, S2000E), and by the PCMI board for 2G BTS (S8000I/O, S2000H/L). DTI board handles the interface of 1 PCM digital trunks. PCMI board handles the interface of 2 PCM digital trunks. The following table presents the mapping between PCM ports and PCMI/DTI boards. The PCM links connecting the BSC to BTS must be arranged for synchronization reasons. A PCM crossing a BTS enters via an even PCM port and leaves via an odd PCM port. For the loop configuration, the opposite path can be set up. The following figure shows some different Drop&Insert configurations with or without PCMI board redundancy. Figure 4: PCMI configurations for drop&insert Table 12: PCM port PCM ports PCMI board DTI board 0 PCMI 0 port 0 DTI 0 1 PCMI 0 port 1 DTI 1 2 PCMI 1 port 0 DTI 2 3 PCMI 1 port 1 DTI 3 4 PCMI 2 port 0 DTI 4 5 PCMI 2 port 1 DTI 5 BSC 0 1 BTS PCMI0 0 1 BTS PCMI0 0 1 BTS PCMI0 D&I in chain without redundancy D&I in loop without board redundancy BSC 0 1 BTS PCMI0 0 1 BTS PCMI0 0 1 BTS PCMI0 BSC 0 1 BTS PCMI0 0 1 PCMI1 0 1 BTS PCMI0 0 1 PCMI1 0 1 BTS PCMI0 0 1 PCMI1 D&I in chain with board redundancy D&I in loop with board redundancy BSC 0 1 BTS PCMI0 0 1 PCMI1 0 1 BTS PCMI0 0 1 PCMI1 0 1 BTS PCMI0 0 1 PCMI1
  • 36. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 36/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 For 1G BTS in loop Drop&Insert without DTI redundancy (following figure), if a DTI failure occurs, only one PCM will be lost and the opposite path will be activated. For 2G BTS in the same configuration, if a PCMI failure occurs, two PCMs will be lost. Therefore as the two ways of connection will be impossible, the site will be lost. The PCMI redundancy avoid to lost the site in case of PCMI failure. Figure 5: D&I in loop without board redundancy: 1G versus 2G Therefore, changing a S4000 by a S8000 is not as easy as it appears. There are some impacts on redundancy, and then on reliability. D&I in loop without board redundancy BSC 0 1 BTS A PCMI0 0 1 BTS B PCMI0 0 1 BTS C PCMI0 BSC BTS D DTI0 BTS E BTS F DTI1 DTI0 DTI0 DTI1 DTI1
  • 37. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 37/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 6.1.4 RADIOSITEMASK CONFIGURATION Rules For each site, a parameter called RadioSiteMask is configured in order to define which TS are reserved. vThe same mask is applied to all the PCM connecting a BTS vThe primary LAPD is not included in the mask. The TS carrying the primary LAPD has a defined position on the BTS side: TS number = TEIBCF + 1. vThe traffic TS are mapped by two on two consecutive TS. A convention is to use first the higher TS of a PCM and then continue toward the lower one. The secondary LAPD follows the same rules as the traffic TS. vWhen several PCM link the BTS to the BSC, the traffic TS are equally shared on those PCM. Some engineering rules define the value of the RadioSiteMask (total number of timeslots set to 1): For 1 PCM connected: (Nb LAPD - 1) + Nb TRX *2 For 2 PCM connected: (Nb LAPD - 1) + Ent[(Nb TRX + 1)/2] * 2 For 3 PCM connected: (Nb LAPD - 1) + Ent[(Nb TRX + 2)/3] * 2 For n PCM connected: (Nb LAPD - 1) + Ent[(Nb TRX + (n-1))/n] * 2 MIf the TEI are not adjacent, it is strongly recommended not to use the TS between TS0 and the TS which carried the primary LAPD of the BTS with the bigger TEI.
  • 38. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 38/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Example 1 This first example concerns a chain configuration. One S444 and one S222 are linked together in order to optimize the transmission link. Figure 6: Drop & Insert example In this example the PCM4 is a redundant PCM. Note that the TEI are in ascending sequence. The traffic of the BTS A is equally shared between the 2 PCMs. The secondary LAPD follow the TS supporting the traffic. The primary LAPD is not included in the radioSiteMask. The BSC is a BSC6000, then 3 LAPD channels are defined for the site B in order to be able to split the load on the different SICDs. Ta Traffic Ts site A Pa Primary LAPD site A Tb Traffic Ts site B Pb Primary LAPD site B Sa Secondary LAPD site A Sb Secondary LAPD site B Table 13: PCM E1 RadioSiteMask TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Sb Sb Pb Pa PCM 2 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta PCM 3 Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb Sb Sb Pb RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 Table 14: PCM T1 RadioSiteMask TS number 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Tb Tb Sb Sb Pb Pa PCM 2 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Tb Tb PCM 3 Tb Tb Tb Tb Tb Tb Sb Sb Pb PCM 4 Tb Tb Tb Tb Tb Tb RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 BSC S444 S222 PCM1 PCM2 PCM3 PCM4 Site A Site B TEI 0 TEI 1
  • 39. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 39/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Example 2 This other example concerns the Hub&Spoke configuration. Four omnisectorial BTSs are linked in order to save transmission costs. Figure 7: Hub&Spoke example The traffic of the BTS A is equally shared between the 2 PCMs, while the traffic of the other BTSs is supported by the PCM1 or the PCM2 but not shared. Table 15: PCM E1 RadioSiteMask TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PCM 1 Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Tb Tb Pb Pa PCM 2 Ta Ta Ta Ta Tc Tc Tc Tc Tc Tc Tc Tc Td Td Td Td Pd Pc RadioSiteMask Site A 1 1 1 1 1 1 RadioSiteMask Site B 1 1 1 1 1 1 RadioSiteMask Site C 1 1 1 1 1 1 1 1 RadioSiteMask Site D 1 1 1 1 Table 16: PCM T1 RadioSiteMask TS number 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 PCM 1 Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Tb Tb Pb Pa PCM 2 Ta Ta Ta Ta Tc Tc Tc Tc Tc Tc Tc Tc Td Td Td Td Pd Pc RadioSiteMask Site A 1 1 1 1 1 1 RadioSiteMask Site B 1 1 1 1 1 1 RadioSiteMask Site C 1 1 1 1 1 1 1 1 RadioSiteMask Site D 1 1 1 1 BSC O5 O3 PCM1 PCM2 PCM3 PCM4 Site A Site B TEI 0 TEI 1 O4 Site C TEI 1 O2 Site D TEI 2 PCM5
  • 40. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 40/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 6.1.5 RADIOSITEMASK EXTENSION STRATEGY The future expansion of the network may be taken into account when dimensioning the RadioSiteMask. It will make the network roll-out easier. The radioSiteMask parameter is a class 2 parameter located in the btsSiteManager Q3 object. It means that this parameter can only be set when the object is locked and the parent bsc object is unlocked. Therefore, the modification of the radioSiteMask will involve interruption of service. Moreover, forecasting the future extension will avoid some complex RadioSiteMask configurations that are difficult to manage. Different configuration strategies can be applied according to the knowledge of the extension politics of the operators. First strategy: Assumption: The number of the future additionnal DRXs in a BTS can be assessed. In this case, it will be of interest to increase the RadioSiteMask. This method allows extensions without requiring the reconfiguration of the RadioSiteMask (no interruption of service). Figure 8: Example The site A is composed of 6 DRXs in a cabinet. One cabinet can contain up to 8 DRXs. Therefore, it could make sense to foresee the introduction of the 2 other possible DRXs. It would facilitate their introduction and avoid any interruption of service for the two sites. BSC S222 O2PCM1 PCM2 Site A Site B TEI 0 TEI 1
  • 41. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 41/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Ta Traffic TS site A Tb Traffic TS site B Sa Secondary LAPD site A Pa Primary LAPD site A Pb Primary LAPD site B Of course, if Site A is composed of three radio cabinets, it does not make sense to dimension the RadioSiteMask for a 3S888. Another strategy has to be considered. Second strategy Assumptions:Nortel has no knowledge of the future number of added DRXs. Nortel is convinced that the operator will not add any other BTSs in a D&I configuration. In such case, the RadioSiteMask can be defined as indicated in Table 18. Ta Traffic TS site A Tb Traffic TS site B Sa Secondary LAPD site A Pa Primary LAPD site A Pb Primary LAPD site B This configuration allows to easily increase capacity in the both site. The introduction of additional DRX in a site will not perturb the other one, only one RadioSiteMask is impacted. Moreover the two RadioSiteMask stay simple and easy to manage. The drawback is that it will be difficult to add a BTS in a D&I configuration, because the RadioSiteMask of the site B must be modified (interruption of service). Table 17: RadioSiteMask (first strategy) TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Pb Pa PCM 2 Tb Tb Tb Tb Pb RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Table 18: RadioSiteMask (second strategy) TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Sa Sa Tb Tb Tb Tb Pb Pa PCM 2 Tb Tb Tb Tb Pb RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
  • 42. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 42/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Third strategy Assumption: Nortel has no information about the extension policy. If Nortel has any information, the two previous strategies are not recommended. The "normal" configuration with the engineering rules of page 37 may be followed. The BTS introduction in a Drop&Insert configuration will be easy. Moreover, it is also possible to introduce additional DRXs without interruption of service for the second site. Ta Traffic TS site A Pa Primary LAPD site A Tb Traffic TS site B Pb Primary LAPD site B Sa Secondary LAPD site A The drawback is that some RadioSiteMask can be quite complex and it will become more and more difficult to make them evolve. 6.1.6 ADDITINAL FEATURE OF TDMA/ABIS MAPPING CONFIGURATION FOR V11 A new V11 feature secures the Abis interface. FM844 "Traffic Channel Defense" allows to reconfigure the TDMA according to their priority in case of PCM failure for a multiPCM site, as long as one PCM is available (refer to [R04]). If the following requirements are fulfilled: • the PCMs are not full, • if the rentalfees are per used PCM and not per used TS, then it could make sense to increase the radioSiteMask. It will allow more TS reconfigurations and then to lose less traffic channels. Moreover it could facilitate the introduction of new DRXs. The drawback is that the evolution of the network could be more difficult (for example, adding a BTS in drop&insert). There is a trade-off between quality of service and flexibility. For further information on this feature, please refer to the V11 FEI [R04]. Table 19: RadioSiteMask (Third strategy) TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PCM 1 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Tb Tb Tb Tb Ta Ta Ta Ta Sa Sa Pb Pa PCM 2 Tb Tb Tb Tb Pb RadioSiteMask Site A 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 RadioSiteMask Site B 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • 43. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 43/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 6.2 HUBS 6.2.1 CROSS-CONNECT Since the V8 system release, a new feature is available: TEI decorrelation. It allows the simulation of a Drop&Insert function from the BSC point of view, without using the BTS in Drop&Insert configuration. The TEI of the BTS can be the same, then since V8, the TEI number and the "Rendez-vous TS" are decorrelated on the BSC side. The number of the "Rendez- vous TS" is configurated by the pcmTimeSlotNumber parameter on the MMI interface. pcmTimeSlotNumber is located in the btsSiteManager Q3 object. Figure 9: Cross-connect configuration For the BTS, the installation is easier because all the sites have the same configuration (Star with a TEI = 0). For the BSC, the 3 sites are in drop and insert so the drop and insert rules must be respected on the BSC side. The choice of the TS for the signalisation must be done in accordance with the crossconnect configuration. Figure 10: Crossconnect configuration
  • 44. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 44/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 The traffic TS must be at the same place (TS number) on the two sides of the crossconnect. This rule does not concern the primary signalling TS which has a fixed position on the BTS side (TEIBCF+1). Ta Traffic Ts site A Tb Traffic Ts site B Tc Traffic Ts site C Pa Primary LAPD site A Pb Primary LAPD site B Pc Primary LAPD site CSwitch 6.2.2 SWITCH Hubs can act as switch for redundancy purpose. The main advantage of this architecture is that in case of PCM1 failure, the hub1 is able to switch on the redundant PCM2 without loosing the communications. Figure 11: Architectuire with Switch It can be implemented with digital cross-connect such as PDMX-E (Nortel product). Table 20: RadioSiteMask configuration with crossconnect TS number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PCM A Ta Ta Ta Ta Pa PCM B Tb Tb Tb Tb Pb PCM C Tc Tc Tc Tc Pc PCM D Ta Ta Ta Ta Tb Tb Tb Tb Tc Tc Tc Tc Pc Pb Pa RadioSiteMask Site A 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RadioSiteMask Site B 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RadioSiteMask Site C 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BSC BTS BTS BTS Hub1 Hub2 PCM1 PCM2
  • 45. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 45/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Page Intentionally Left Blank
  • 46. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 46/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 7 TRANSMISSION MEDIUM 7.1 CLOCK Timing requirements according to G811 are: One characteristic defines the quality of the PCM clock for the BSS sub-systems and especially for the BTS. There are two requirements to consider: • The requirement for a PCM: 50 ppm (see G732). • The requirement for the BTS in order to generate a reference time for radio interface. The BTS uses the clock reference from the network to generate a 5*10 -8 precision timing reference for the radio interface. Long-term accuracy recommended for PCM E1 (2,048 MHz) and PCM T1 (1,544 MHz): | ∆f/f | = 10 -9 or 0,001 ppm This characteristic assures a good transmission quality for BTS frequencies allowing the mobile connections and avoiding the disturbance of the adjacent frequencies. Note: it is not necessary that all GSM sub-systems are synchronized with the same clock, but that they respect the recommendations defined above. Table 21: Timing requirements Time | ∆f/f | ≥ 98,89% | ∆f/f | ≤ 10 −11 ≤ 1% 10−11 < | ∆f/f | ≤ 2∗10−9 ≤ 0,1% 2∗10 −9 < | ∆f/f | ≤ 5∗10 −7 ≤ 0,01% 5∗10 −7 < | ∆f/f |
  • 47. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 47/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 7.2 TRANSMISSION QUALITY REQUIREMENTS To maintain the PCM quality to a good level, BER shall not exceed 10E-4. To not disturb the voice quality, BER shall be maintained at or above 10E-6. PCM unavailibility also has a big impact on the BSS. The unavailibility is determined by errors detected by the DDTI board. The different types of error are: For E1 PCM links : • No signal • Signal Indicator Alarm error • Frame alignment loss • Synchronization loss • Frame error • Distant alarm indicator error • CRC error For T1 PCM links : • No signal • Signal Indicator Alarm error • Frame alignment loss • Synchronization loss • Distant alarm indicator error The time duration of the PCM unavailibility is determined by the number of Errored Seconds (ES if at least an error occurs for 1 second). For example, if the signal is lost for 3.1 seconds, the PCM unavailibility time could be 5 seconds. SIGNAL SIGNAL ES ES ES ES ES
  • 48. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 48/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 The time duration of the PCM unavailability impacts the BTS in different ways: PCM unavailibility < 5 seconds When the BSC-BTS link is interrupted during less than 5 seconds (5 Errored Seconds), nothing happens. The communications are disturbed, but not lost. PCM unavailibility between 5 seconds and 30 minutes A timer exists that triggers a defense BSS mechanism. If the BSC-BTS link is interrupted for more than this timer, the BSC will try to find another PCM to reestablish the contact. When the contact is reestablished, the BSC will lead in the BTS to a reset of PCM boards and a BCF and TRX reconfiguration. Today this timer is set to 5 seconds, which allows fast recovery in case of a real failure, and fast alarm reporting, and however tolerates short transient link outages often encountered especially with microwaves links. This timer is therefore a trade- off between fast recovery and tolerance to transient faults. PCM unavailibility > 30 minutes If the interruption lasts for more than 30 minutes, the BTS resets itself, and will be redownloaded and reconfigured when the link is up again. In case of DRX (S8000 or S2000H/L) or AMNU/DCU4, the download procedure is reduced. In fact, the software is not downloaded, but only checked. The reconfiguration and reboot time depend on the BTS configuration. This kind of information can be found in the document "Performance Tests Results Report" ([R20]) which gives a summary of performance tests performed in PIV. F PCM unavailibility (BER > 10E-3) for less than 5 seconds leads to disturb the communications. F PCM unavailibility beween 5 seconds and 30 minutes leads to lose current com- munications plus a BTS reconfiguration time (BTS dependent, refer to [R20]). F PCM unavailibility of more than 30 minutes leads to a complete reboot of the BTS which could last several minutes depending on the configuration (refer to [R20]).
  • 49. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 49/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 7.3 CSU The CSU equipment is designed to be inserted between the Abis link provided by the operator and the BCF subrack. Its purpose is to test and recalibrate the incoming and outgoing signal and ensure that it meets the recommendations. The equipment includes a set of alarms displayed on the CSU front panel. Any alarm condition (or power failure) releases a single pole alarm relay connected to the user alarms of the BTS. Three types of CSU equipment can be ordered: CSU T-serv II, CSU T-smart, and CSU MPATH. The MPATH CSU offers additional features (such as SNMP management) compared to other types of CSU. The CSU equipment is designed for T1 PCM and is mandatory for the US market. 7.4 HDSL 7.4.1 INTRODUCTION HDSL is a technology that allows to convey, on a few kilometers, a PCM signal over ordinary twisted pairs. This technology becomes more and more popular, as a cheap solution to provide PCM links to remote locations. This applies generally to the Abis link, including Drop&Insert configurations. Figure 12: HDSL solution For short distances (up to 1.5 Km), only one wires twisted pair is needed. Two wires twisted pairs are required for longer distance (up to 4 Km). The distances depend on the modems and on the quality of the twisted pair wires. Therefore the values given above are only for indication purposes and must not be communicated to customers. BSC BTS master HDSL modem slave HDSL modem 2 twisted pairs4 shielded pairs 4 shielded pairs PCM PCMHDSL
  • 50. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 50/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 7.4.2 HDSL ISSUES HDSL modems use a very complex synchronization scheme based on a master- slave configuration. The master HDSL modem is on the BSC side and the slave one is on the BTS side. The consequence is that any short link drop or click disturbancy leads to long link unstability. Depending on the modem, 1 second interruption may translate up to 15 seconds. The timer that triggers a defense BSS mechanism is set to 5 seconds (refer to section 7.2 ). This value may no longer be the right trade-off between fast recovery and tolerance to transient fault for the HDSL link. For the network that uses HDSL, a timer value of 15 seconds seems to be a better trade-off for the sake of the link stability (but QOS impact). This specific parameter setting of the BSS defense mechanism is not mandatory. Some HDSL modems work properly with the default configuration. Note that the timer value applies to all PCM links of the BSC and not only to the HDSL links. 7.4.3 HDSL MODEMS The HDSL modems are systematically tested by R&D in order to remove modems which are suspected to lead problems on the field. The list of the recommended HDSL modems and the list of the inadvisable ones can be found in the document "HDSL modem layer1 qualification" ([R21]). For all modems considered OK, a very short disturbance on the Abis line (i.e. : 1 second cut) leads to unavailability of the link for more than 10 seconds.
  • 51. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 51/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 7.5 MICROWAVES 7.5.1 MICROWAVE DESIGN GUIDELINES MW link have the following advantages over leased lines: Meet superior reliability, allow total control over them, easy expansion, and rapid deployment. However, the following design guidelines must be taken into account: • L.O.S (line of Sight), • Distance, • Parabolic antennas, • Frequency dependence, • Interference limitation. L.O.S. needed That means that a MW link is terrain dependant, and sometimes a link cannot be installed. Indeed the clearance has to be 60% of the first Fresnel zone, plus a security factor (5 or 6 m) for errors on terrain data. The 60% F1 is calculated for standard atmosphere (k=4/3) and the atmosphere can change, needing the link a better clearance. In this case a calculation can be done with k=2/3 and 50% F1. Distance The effects of rain and multipath limit the distance a link can cover, so that sometimes a repeater is needed to cover this distance. In order to calculate the unavailability due to rain, the rain zone where the link is going to be installed, has to be known ; this will give the rain rate that is exceeded the 0.01% of the annual time (i.e. k rain zone is 42 mm/h). Figure 13: Microwave solution
  • 52. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 52/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 When designing a link, the availability (unavailability) is an objective that is fixed by the operator in order to meet its quality requirements. For example, the availability due to propagation in a 1+0 (nonprotected) can be 99.99% of the annual time; for this objective, if the rain zone is k (42 mm/h), in 23 GHz up to 13 Km can be covered (0.6 m antennas at both sites and vertical polarization), and in 38 GHz up to 6 Km (0.6 m antennas at both sites and vertical polarization). Parabolic antennas Parabolic antennas must be installed. Wind loadings have to be considered on the tower, or the place where the antenna is going to be installed. The tilt and twist of the tower, that increases with the height, can affect the alignment of the antenna, reducing the receive signal level, and consequently the fade margin. Frequency dependence Sometimes it is difficult to get a channel from the local government; normally this depends on the working band (15 GHz, 23 GHz etc..). Interference limitation There is a limitation in the number of links that can converge at one point (concentrator) due to interference mechanism. In digital MW links the interference reduces the threshold, which means that the fade margin decreases and the link will be unavailable for more time than the time it was calculated for. Alternate polarization (cross polarization discrimination) and high gain antennas (more directivity) can offset these effects. For further information, please refer to the web pages of the transmissions group at the following URL address: http://136.147.68.68/ned/ND_AE/ND/Transmission/Transmission.html
  • 53. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 53/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 7.5.2 MICROWAVE QUALITY REQUIREMENTS The ITU-T G.821 defines different grades of service for the microwave transmissions: high grade (HG), medium grade (MG) and local grade (LG). Figure 14: Reference communication of ITU. The performance of the grade of service can be estimated by 3 parameters: F Degraded Minutes: DM if BER > 10-6 for 1 minute. F Severely Errored Seconds: SES if BER > 10-3 for 1 second. F Errored Seconds: ES if at least an error occurs for 1 second. The performance objectives of these 3 grades of service are: Figure 15: Performance objectives: 27500 km 1250 km1250 km 25000 km Local grade Local grade Medium grade Medium grade High grade Global < 10% < 0.2% < 8% HG < 4% < 0.04% * < 3.2% MG < 1.5% < 0.015% * < 1.2% LG < 1.5% < 0.015% < 1.2% Note*: 0.05% can be added if m/w is used. DM: Min. at 10E-6; SES: Sec. at 10E-3; ES: Sec. with errors. PERFORMANCE OBJECTIVES: Degraded Minutes Severely Errored Seconds Errored Seconds
  • 54. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 54/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Depending on the configuration local or medium grade links are recommended for Abis interface. Medium grade quality is 50% to 100% more expensive than local grade as it requires redundant equipment. It must be proposed only if specified by customer. 7.5.3 MICROWAVE CONFIGURATIONS It is possible to combine the drop and insert functionality of the BTS product and the microwaves product in order to insure the transmission security and capacity. The following configurations are given as example. Figure 16: Chain Drop&Insert with microwaves Figure 17: Loop Drop&Insert with microwaves Central Office BSC TCU medium or local grade DMS Switch BTS BTS BTS Central Office TCUDMS Switch BSC local grade ringlocal or medium grade BTS 1 BTS 2 BTS 3 BTS 5 BTS 4
  • 55. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 55/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Figure 18: Hub and Spoke with microwaves The minimum capacity of the microwaves equipment is 2 E1 PCM links. Therefore, from the BSC point of view, the Loop D&I implementation (fig. 17) is seen as below: Figure 19: Abis configuration with microwaves on BSC side local gradelocal or medium grade Central Office TCUDMS Switch BSC BTS BTSBTS BTS BTS BTS S222 BSC BTS 1 BTS 2 BTS 3 BTS 4 BTS 5
  • 56. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 56/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 7.5.4 MICROWAVE EQUIPMENT REDUNDANCY PCM link failure can be more diverse than for a cable support. Two main events can occur: either an equipment failure, either a signal fading due to rains or multipath. In all cases, all the PCM carried between the two radio systems are brought down. A failure of only one PCM link is not possible, contrary to the LL cable solution. PCM link failure due to equipment can be minimized by redundant configuration. Figure 20: Typical non-protected and protected microwave equipment architecture Two protected configurations can be considered: • The first one with redundant DIU and RFU with a single antennae (a wave guide coupler must be used). • The second one uses two antennas without wave guide coupler. It allows to avoid the PCM link failure due to antennea falling out of alignment.
  • 57. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 57/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Page Intentionally Left Blank
  • 58. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 58/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 8 BSC DIMENSIONING 8.1 BSC TYPE The following table gives the board configuration related to Abis interface for each available BSC type. *The BSCB board is optional for the BTS LAPD concentration. If this option is not chosen, the num- ber of BSCB boards required is zero. The number of BSCB boards shown in the table indicates the maximum number of BSCB boards for each type of BSC. The minimum number of BSCB boards is 2. The quantity of boards depends on the number of LAPD channels (or sites) to be concentrated. One board is reserved for redundancy purpose (+1). ** There is a maximum of 24 DDTI boards per BSC12000 (whatever the product version is: 1201/ 1202/1203/1204/1205). The basic configuration provides 10 DDTI boards. But, depending on the needs, it is possible to add DDTI units up to 24. For the BSC 6000 product family, there are 6/10/14/20/24 DDTI boards depending on the product version 602/604/606/608/610 respectively. These numbers are fixed. Table 22: Product range Architecture BSC 6000 BSC 12000 Type 1 2 3 4 5 1 2 3 4 5 DDTI(**) 6 10 14 20 24 24 24 24 24 24 BSCB(*) 0 0 0 11+1 11+1 11+1 11+1 11+1 11+1 11+1 SICD 2 4 6 8 10 SICD8 1 2 3 4 5
  • 59. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 59/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 8.2 SICD/SICD8V BOARDS 8.2.1 LIMITATION RULES SICD limitation rules The limitation rules for the SICD board are: vOne SICD board has 4 ports (hardware design). One SICD board can manage up to 4 physical channels of LAPD (concentrated with BSCB or non concentrated). vOne LAPD equipment (SICD ports) supports up to 10 TEI. Note that one TCU corresponds to one TEI, one BCF corresponds to one TEI, and one TRX corresponds to one TEI. v16 is the maximum number of TDMA per SICD due to traffic load. vAll the LAPD equipment are reserved for the Abis interface except the fourth port (port 3) of the SICD 0 which is used for the TCU (by convention). SICD8V limitation rules The limitation rules for the SICD8V board are: vOne SICD board has 8 ports (hardware design). One SICD board can manage up to 8 physical channels of LAPD (concentrated with BSCB or non concentrated). vOne LAPD equipment (SICD ports) supports up to 15 TEI. Note that one TCU corresponds to one TEI, one BCF corresponds to one TEI, and one TRX corresponds to one TEI. v64 is the maximum number of TDMA per SICD due to traffic load. vAll the LAPD equipment are reserved for the Abis interface except the fourth port (port 3) of the SICD8V 0 which is used for the TCU (by convention). 8.2.2 PARENTING RULES To avoid overload on one SICD due to high spot traffic, use the following rules for parenting. vTwo neighbor sites must be on two different SICDs. vTwo cells of a same site must be on two different SICDs. Of course this condition can only be applied if the two cells are mapped on two different LAPD channels. A SICD8V board does the same job as a SICD, but the processor is more powerful. Furthermore, the inhomogenous load on the various SICD8V has less impact with SICD8V than with SICD because the load is only split onto 5 boards as opposed to 10 for SICD.
  • 60. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 60/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 8.2.3 LOOK-UP TABLES *This number can be worked out from nb SICD * max TDMA per SICD. 8.3 BSCB AND TSCB BOARDS Use of BSCB is optional. If this option is not chosen, the number of BSCB boards required is zero. The minimum number of BSCB boards is 2. The quantity of boards depends on the number of LAPD channels (or sites) to be concentrated. The associated parameter is a class 0 parameter (xSCBConfiguration in the bsc object). Therefore, every time a board is added, the BDA needs to be rebuilt. The BSC does not have a dedicated board used for redundancy, but manages a pool of BSCB boards. When one BSCB fails, the BSC reconfigures the whole configuration of the failed BSCB onto a free BSCB board (one without any LAPD mapped on it). When new concentrated LAPD terminals are declared and LAPD channel locations are moved from one SICD to another, it is very important to check that a BSCB remains free. Table 23: SICD limitations Architecture BSC 6000 BSC 12000 Type 1 2 3 4 5 1 2 3 4 5 SICD/SICD8V board 2 4 6 8 10 1 2 3 4 5 LAPD eqpt 8 16 24 32 40 8 16 24 32 40 LAPD eqpt for Abis 7 15 23 31 39 7 15 23 31 39 TEI per LAPD eqpt 10 10 10 10 10 15 15 15 15 15 TDMA per SICD/SICD8V 16 16 16 16 16 64 64 64 64 64 TDMA* 32 64 96 128 160 64 128 192 256 320 F The BSCB boards can be the bottleneck of the BSC in some configurations. Therefore it is very important to follow the rules describe in the document "BSCB Eng’g Information: Load monitoring and optimization" ([R22]).
  • 61. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 61/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 Figure 21: Dimensioning the Abis interface with LAPD concentration A BSCB board processes the concentration of 12 unconcentrated links to 3 (3 times 4 LAPD unconcentrated into 1 LAPD concentrated). The limit of 10 TEIs per SICD port (BCF+TRX) or 15 TEIs per SICD8V port is still in effect. *Number of sites per BSC, depending on the number of SICD and BSCB (with BSCB redundancy). Table 24: Maximum number of sites per BSC Architecture BSC 6000 BSC 12000 Type 1 2 3 4 5 1 2 3 4 5 SICD/SICD8V board 2 4 6 8 10 1 2 3 4 5 LAPD eqpt 8 16 24 32 40 8 16 24 32 40 LAPD eqpt for Abis 7 15 23 31 39 7 15 23 31 39 BSCB 0 0 0 11+1 11+1 11+1 11+1 11+1 11+1 11+1 max number of sites (*) 7 15 23 124 138 28 60 92 124 138 BTS sites BSCB BSCB BSCB SICD8V SICD8V Abis Interface + BSC internal connectivity Max. of 12 non-concentrated LapD channels used per BSCB board Max. of 3 concentrated LapD channels used per BSCB board Max. of 8 LapD Equipment used per SICD8V board (4 LapD equipment per SICD board)
  • 62. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 62/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 8.4 DDTI BOARDS Since the BSC extracts the synchronization clock from PCM 0, 2, 4, and 6, these spans are used only for the Ater interface. The others can be used indiscriminately either for the Abis or the Ater interface but must use some spread convention. Spread convention nc. 1 In order to minimize the number of remainning PCMs when a board fails, it is best to spread the spans of a BTS on different DDTIs. Spread convention nc. 2 Use the same previous rule when configuring Ater PCMs. Avoid the configuration of two Ater PCMs on a same DDTI board. A DDTI board handles two PCMs which are connected to port 0 and port 1. PCM_Number = 2*DDTI_Number + Port_Number Table 25: PCM allocation for the BSC6000 Type5 PCM Number Allocation 0, 2, 4, 6 Ater 1, 3, 5, 7 to 47 Ater or Abis F The use of PCM 0, 2, 4, 6 for Abis interface may lead serious synchronization problems for the whole BSS. So, this configuration is forbiden.
  • 63. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 63/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 9 APPENDIX This configuration has been tested in a network. This interesting configuration uses cross-connect and Hub&Spoke configuration. Figure 22: Example of complex configuration BSC S11 Cross-connect S111 S111 S111 S111 S11 S111 S11 S111TEI0 TEI1 TEI1 TEI2 TEI3 TEI4 TEI3 TEI2 TEI4
  • 64. This confidential document is the property of NORTEL MATRA CELLULAR and may not be copied or circulated without permission Ce document confidentiel est la propriété de NORTEL MATRA CELLULAR et ne peut être reproduit ou communiqué sans autorisation Abis Interface Engineering Guide Page 64/64 PE /IRC/APP/0079 01.08 / EN 12/04/99 END OF DOCUMENT