SlideShare a Scribd company logo
1 of 24
Download to read offline
Get Started with DesignKit

    Class D Audio Amplifier Using IRS2092

1
Contents
                                                                                                                    Slide #


    1.   DesignKit Simulations folders...........................................................................   3
    2.   How the initial condition are set?......................................................................   4-5
    3.   Example of Using Design Kit............................................................................    6
    4.   How to Estimate Design %Efficiency?..............................................................          7-8
    5.   How to Estimate Output THD?..........................................................................      9-11
    6.   How to Estimate Frequency Response?..........................................................              12-13
    7.   How to Create Reference Waveforms?............................................................             14-15
    8.   Change RIN (R2) and simulate to see change in GV.........................................                  16-17
    9.   Use Design Kit to select proper VR value.........................................................          18-19
    10. Use Design Kit to Predict Spike Voltage vs. Dead-time setting........................                       20-21
    11. Use Design Kit to Develop the Design (Change the FETs)..............................                        22-23
    12. MOSFET Professional Model...........................................................................        24




2                                 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
1. DesignKit Simulations folders
                                                   Ready to use simulation projects
                                                     Test conditions are set and
                                                      easily changeable.
                                                     Appropriate simulation settings
                                                      and Initial Condition (.IC).
                                                     .Option setting is done without
                                                      convergence problem.
                                                     Libraries are included and
                                                      added.
                                                     Simulation results (ex. Power
                                                      and %Efficiency) are calculated
                                                      and displayed.




3          All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
2. How the initial condition are set?
    1.   Open Project: ...¥Simulations¥StartUp¥StartUp.opj .
    2.   Set initial value of charged-up capacitors (C2, C3, C7, C8, C9, and C10) to be zero (IC=0).
    3.   Run the simulation (0-1sec. or until circuit is startup).




4                               All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
2. How the initial condition are set?
    4. Initial conditions are the startup voltage at each capacitor.
    5. Change the IC values ,then run the simulation (0-100usec. with maximum time step 10nsec.).

                                                C10:
                                               IC=15



                                               C9:
                                            IC=12.850




                                                 C2:
                                                IC=7



                                        C7:
                                        14>IC>(7+2.8)



                                           C8: IC=7

                                                   Class D Startup
                                                   @ 0.976second.




5                                 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
3. Example of Using Design Kit
       Estimate design specification.
           %Efficiency.
           %THD.
           Frequency response.
       Create reference waveforms.
       Change the design parameters and simulate to see
        results.
       Component stress test.
       Simulate switching losses.
       Simulate Short-circuit scenarios.



6                      All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
4. How to Estimate Design %Efficiency?
    1.   Open Project: ...¥Simulations¥Efficiency¥Efficiency.opj .
    2.   Enter test condition parameters: PO=25W, GV=15.85(24dB), RL=4ohm, and fin=1kHz.
    3.   Run the simulation from 1 to 3 ms. (about 3×1kHz output cycles )




7                             All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
4. How to Estimate Design %Efficiency?
    4. Add traces: “AVG(W(LOAD))” for PO[W],
                   “-(AVG(W(+B))+AVG(W(-B)))” for Supply power [W], and
                   “-100*AVG(W(LOAD))/(AVG(W(+B))+AVG(W(-B)))” for %Efficiency

                                                        VO=15.85VIN




                                                                                T=1/fin

                                                                                                Efficiency ≈
                                                                                                    93%


                                                                           %Efficiency
                                                                                 Supply power


                                                                           Output power: PO




8                        All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
5. How to Estimate Output THD?
    1.   Open Project: ...¥Simulations¥THD¥THD.opj .
    2.   Enter test condition parameters: PO=10W, GV=15.85(24dB), RL=4ohm, and fin=1kHz.




9                             All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
5. How to Estimate Output THD?
     3. THD is calculated by checking the box “Perform Fourier Analysis” in the Output File Options
        setting. Center Frequency is 1kHz same as fin and “V(OUT)” is the Output Variable(s).




10                            All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
5. How to Estimate Output THD?
        4. Run the simulation 0 to 3ms. (maximum time step 100ns. ).
        5. View Output File to see the simulated result THD(%)



                                                                  HARMONIC     FREQUENCY     FOURIER     NORMALIZED   PHASE    NORMALIZED
                                                                      NO          (HZ)      COMPONENT    COMPONENT    (DEG)      PHASE
                            V(OUT):
                           1kHz sine                                  1          1.00E+03     8.81E+00     1.00E+00 1.79E+02     0.00E+00
                                                                      2          2.00E+03     4.62E-04     5.25E-05 4.18E+01 -3.15E+02
                                                                      3          3.00E+03     2.78E-04     3.16E-05 8.49E+01 -4.51E+02
                                                                      4          4.00E+03     3.23E-04     3.67E-05 6.91E+01 -6.45E+02
                                                                      5          5.00E+03     3.73E-04     4.23E-05 8.66E+01 -8.06E+02
                                                                      6          6.00E+03     6.69E-04     7.60E-05 6.10E+01 -1.01E+03
                                                                      7          7.00E+03     2.85E-04     3.24E-05 8.09E+01 -1.17E+03
                                                                      8          8.00E+03     4.32E-04     4.91E-05 7.17E+01 -1.36E+03
                                                                      9          9.00E+03     5.95E-04     6.76E-05 2.70E+01 -1.58E+03


                                                                           TOTAL HARMONIC DISTORTION =       1.438206E-02 PERCENT




 Please note that the simulated result is only an estimate of %THD and the value is influenced by maximum step size.

  11                                   All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
6. How to Estimate Frequency Response?
     1.   Open Project: ...¥Simulations¥FrqRsp¥FreqResp.opj.
     2.   Enter test condition parameters: VOUT=2V, GV=15.85(24dB), RL=4/8 ohm, and fin=20kHz.
     3.   Run the simulation from 0 to 2 ms. (about 40×20kHz output cycles ). Use Parametric Sweep
          (Global parameter: RL with value = 4 and 8)




12                               All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
6. How to Estimate Frequency Response?
      4. Add traces: “ DB(RMS(V(OUT))/2)” for the frequency response of 2VRMS output in dB.




                                                            VO=2VRMS ,20kHz




                                                                                              Frequency
                                                                                            Response in dB

                                             Frequency Response @RL=8ohm



                                            Frequency Response @RL=4ohm




13                           All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
7. How to Create Reference Waveforms?
     1.   Open Project: ...¥Simulations¥Waveforms¥Waveform.opj .
     2.   Enter test condition parameters: VOUT=2V, GV=15.85(24dB), RL=4ohm, and fin=1kHz.
     3.   Run the simulation from 100n to 3 ms. (about 3×1kHz output cycles )
     4.   Put the Voltage/Level Marker (or Current Marker) to see the waveform(s).




14                              All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
7. How to Create Reference Waveforms?
     4. Set X and Y Data Range in Axis Setting according to oscilloscope scale.
     5. Use simulated waveforms as reference to compare with real circuit waveforms.


                              VO(Simulated)                              VO(Measured)




                                                                                                  Result are
                                                                                             correlated according
                                                                                              to simulated data.




                             VS(Simulated)                            VS(Measured)




15                            All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
8. Change RIN (R2) and simulate to see change in GV
     1.    Open Project: ...¥Simulations¥Gv¥Gv.opj.
     2.    Enter test condition parameters: VIN=100mVRMS(0.14142VPEAK), RIN=2.4 / 3 kohm, RL=8 ohm
           (speaker), and fin=1kHz.
     3.    Run the simulation from 0 to 1 ms. (about 1×1kHz output cycles ). Use Parametric Sweep (Global
           parameter: RIN with value = 2.4k and 3k)




          PARAMETERS: RIN=2.4k, 3k

16                                 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
8. Change RIN (R2) and simulate to see change in GV
     4. Simulated result shows Vo with different gain GV.
     5. Change parameter: RIN until you get a satisfied result.



                                                  VO with RIN=2.4kohm




                           VO with RIN=3kohm




17                            All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
9. Use Design Kit to select proper VR value
     1.   Open Project: ...¥Simulations¥OSC¥Waveform.opj.
     2.   Input voltage: VIN=0, RL=8 ohm (speaker).
     3.   fOSC=400kHz is chosen for this design, C4=C5=1nF, R4=220, a variable resistor:
          VR1 value will be varied.




18                           All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
9. Use Design Kit to select proper VR value
     4. Change VR1 value until simulation result with fOSC=400kHz (VR1=75ohm).
     5. Choose VR1 that value more than 100 ohm for the design (this time VR1:1k is chosen).




                                   VS(Simulated)                                             VS(Measured)




                                    VO(Simulated)                                             VO(Measured)




        Simulated waveform with VR1: Value=75                  Measured waveform from real circuit using VR1: 1k




19                            All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
10. Use Design Kit to Predict
               Spike Voltage vs. Dead-time setting
     1.   Open Project: ...¥Simulations¥DT¥Waveform.opj.
     2.   Input voltage: VIN=0, RL=8 ohm (speaker).
     3.   Select dead-time setting DT1: R20=3.3k / R21=8.2k, Simulate and compare result with
          dead-time setting DT3: R20=8.2k / R21=3.3k




20                           All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
10. Use Design Kit to Predict
               Spike Voltage vs. Dead-time setting
     4. Compare the results to see that spike voltages are acceptable or not for each dead-time
        setting.

                                                                                      Spike voltage
                Does spike voltage                                                 decrease with wider
                  acceptable?                                                       dead-time setting.




                      DT1(25ns)                                                          DT3(65ns)




21                                All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
11. Use Design Kit to Develop the Design (Change the FETs)
1.   Use the simulation files for the performance evaluation (ex. Efficiency, THD, and Waveform).
2.   Replace MOSFET model IRFIZ24N with IRFI4024H-117P.
3.   Run simulation file to check the design performance.




22                             All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
11. Use Design Kit to Develop the Design (Change the FETs)
3.   Compare the performance of the circuit with difference FET.




                                                                                              %Efficiency is
                                                                                               improved




                                                                     IRFIZ24N                 IRFI4024H-117P
                        Efficiency (@ 25W, 4Ω)                        93.505%                    94.578%
                        Distortion (@ 1kHz, 4Ω, 10W)              0.0144 %THD                  0.0201 %THD




23                             All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
12. MOSFET Professional Model
     Library and symbol files are in folder ...¥Parts¥IRFIZ24N¥IRFIZ24N(PRO)
     IRFIZ24N Professional Model consists of MOSFET Professional (MIRFIZ24N_P), body diode
      DIRFIZ24N, and body diode Professional DIRFIZ24N_P.
     Use MOSFET Professional model to improve an accuracy Gate Charge characteristics Qg of
      FET model.
     Use body diode Professional model to improve an accuracy Reverse Recovery Time
      characteristic TRR of FET’s body diode model.




                                                     DIRFIZ24N               DIRFIZ24N_P
                            MIRFIZ24N_P




    Using Professional model will slow down the simulation time and might cause some convergence error.

24                                  All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

More Related Content

What's hot

What's hot (17)

SPICE MODEL of DTA143EKA in SPICE PARK
SPICE MODEL of DTA143EKA in SPICE PARKSPICE MODEL of DTA143EKA in SPICE PARK
SPICE MODEL of DTA143EKA in SPICE PARK
 
SPICE MODEL of DTA143ESA in SPICE PARK
SPICE MODEL of DTA143ESA in SPICE PARKSPICE MODEL of DTA143ESA in SPICE PARK
SPICE MODEL of DTA143ESA in SPICE PARK
 
SPICE MODEL of DTC144WKA in SPICE PARK
SPICE MODEL of DTC144WKA in SPICE PARKSPICE MODEL of DTC144WKA in SPICE PARK
SPICE MODEL of DTC144WKA in SPICE PARK
 
SPICE MODEL of DTA143EM in SPICE PARK
SPICE MODEL of DTA143EM in SPICE PARKSPICE MODEL of DTA143EM in SPICE PARK
SPICE MODEL of DTA143EM in SPICE PARK
 
SPICE MODEL of DTA143EE in SPICE PARK
SPICE MODEL of DTA143EE in SPICE PARKSPICE MODEL of DTA143EE in SPICE PARK
SPICE MODEL of DTA143EE in SPICE PARK
 
SPICE MODEL of DTA143XSA in SPICE PARK
SPICE MODEL of DTA143XSA in SPICE PARKSPICE MODEL of DTA143XSA in SPICE PARK
SPICE MODEL of DTA143XSA in SPICE PARK
 
トランスのスパイスモデル(PART3)
トランスのスパイスモデル(PART3)トランスのスパイスモデル(PART3)
トランスのスパイスモデル(PART3)
 
Erlang Workshop at Dyncon 2011
Erlang Workshop at Dyncon 2011Erlang Workshop at Dyncon 2011
Erlang Workshop at Dyncon 2011
 
FEATool Multiphysics Matlab FEM and CFD Toolbox - v1.6 Quickstart Guide
FEATool Multiphysics Matlab FEM and CFD Toolbox - v1.6 Quickstart GuideFEATool Multiphysics Matlab FEM and CFD Toolbox - v1.6 Quickstart Guide
FEATool Multiphysics Matlab FEM and CFD Toolbox - v1.6 Quickstart Guide
 
SPICE MODEL of DTC123JM in SPICE PARK
SPICE MODEL of DTC123JM in SPICE PARKSPICE MODEL of DTC123JM in SPICE PARK
SPICE MODEL of DTC123JM in SPICE PARK
 
SPICE MODEL of M1FS4 (Standard Model) in SPICE PARK
SPICE MODEL of M1FS4 (Standard Model) in SPICE PARKSPICE MODEL of M1FS4 (Standard Model) in SPICE PARK
SPICE MODEL of M1FS4 (Standard Model) in SPICE PARK
 
SPICE MODEL of SST271 in SPICE PARK
SPICE MODEL of SST271 in SPICE PARKSPICE MODEL of SST271 in SPICE PARK
SPICE MODEL of SST271 in SPICE PARK
 
SPICE MODEL of RN1117FV in SPICE PARK
SPICE MODEL of RN1117FV in SPICE PARKSPICE MODEL of RN1117FV in SPICE PARK
SPICE MODEL of RN1117FV in SPICE PARK
 
SPICE MODEL of RN1118FT in SPICE PARK
SPICE MODEL of RN1118FT in SPICE PARKSPICE MODEL of RN1118FT in SPICE PARK
SPICE MODEL of RN1118FT in SPICE PARK
 
SPICE MODEL of TG6063 in SPICE PARK
SPICE MODEL of TG6063 in SPICE PARKSPICE MODEL of TG6063 in SPICE PARK
SPICE MODEL of TG6063 in SPICE PARK
 
SPICE MODEL of EK13 (Professional Model) in SPICE PARK
SPICE MODEL of EK13 (Professional Model) in SPICE PARKSPICE MODEL of EK13 (Professional Model) in SPICE PARK
SPICE MODEL of EK13 (Professional Model) in SPICE PARK
 
Example guide
Example guideExample guide
Example guide
 

Viewers also liked

Viewers also liked (20)

デザインキット・D級アンプの解説書
デザインキット・D級アンプの解説書デザインキット・D級アンプの解説書
デザインキット・D級アンプの解説書
 
デザインキット・D級アンプのスパイスモデル
デザインキット・D級アンプのスパイスモデルデザインキット・D級アンプのスパイスモデル
デザインキット・D級アンプのスパイスモデル
 
デザインキット・D級アンプの回路図
デザインキット・D級アンプの回路図デザインキット・D級アンプの回路図
デザインキット・D級アンプの回路図
 
デザインキット・D級アンプのインデックス
デザインキット・D級アンプのインデックスデザインキット・D級アンプのインデックス
デザインキット・D級アンプのインデックス
 
デバイスモデリングとは
デバイスモデリングとはデバイスモデリングとは
デバイスモデリングとは
 
トランスのスパイスモデルについて
トランスのスパイスモデルについてトランスのスパイスモデルについて
トランスのスパイスモデルについて
 
新規デザインキット計画(新サービス:株式会社ビー・テクノロジー)
新規デザインキット計画(新サービス:株式会社ビー・テクノロジー)新規デザインキット計画(新サービス:株式会社ビー・テクノロジー)
新規デザインキット計画(新サービス:株式会社ビー・テクノロジー)
 
デザインキットのラインナップ
デザインキットのラインナップデザインキットのラインナップ
デザインキットのラインナップ
 
SPICEを活用した研究開発支援
SPICEを活用した研究開発支援SPICEを活用した研究開発支援
SPICEを活用した研究開発支援
 
デバイスモデリング教材の主旨
デバイスモデリング教材の主旨デバイスモデリング教材の主旨
デバイスモデリング教材の主旨
 
Clock Controlled Unipolar Stepping Motor Driver TB67S149FTG (Device Modeling ...
Clock Controlled Unipolar Stepping Motor Driver TB67S149FTG (Device Modeling ...Clock Controlled Unipolar Stepping Motor Driver TB67S149FTG (Device Modeling ...
Clock Controlled Unipolar Stepping Motor Driver TB67S149FTG (Device Modeling ...
 
自動車業界向けSPICE(MATLAB)を活用したEV・HEVシミュレーションセミナー資料
自動車業界向けSPICE(MATLAB)を活用したEV・HEVシミュレーションセミナー資料自動車業界向けSPICE(MATLAB)を活用したEV・HEVシミュレーションセミナー資料
自動車業界向けSPICE(MATLAB)を活用したEV・HEVシミュレーションセミナー資料
 
デバイスモデリングサービス(適応分野)
デバイスモデリングサービス(適応分野)デバイスモデリングサービス(適応分野)
デバイスモデリングサービス(適応分野)
 
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
 
Device Modeling of Diode 3-type SPICE Models by Bee Technologies
Device Modeling of Diode 3-type SPICE Models by Bee TechnologiesDevice Modeling of Diode 3-type SPICE Models by Bee Technologies
Device Modeling of Diode 3-type SPICE Models by Bee Technologies
 
SPICE MATLABユーザー向け二次電池シミュレーションセミナー資料(05JUN2015)
SPICE MATLABユーザー向け二次電池シミュレーションセミナー資料(05JUN2015)SPICE MATLABユーザー向け二次電池シミュレーションセミナー資料(05JUN2015)
SPICE MATLABユーザー向け二次電池シミュレーションセミナー資料(05JUN2015)
 
TRS10A65C(SiC SBD)を活用した FCC回路シミュレーション(回路定数の最適化)
TRS10A65C(SiC SBD)を活用した FCC回路シミュレーション(回路定数の最適化)TRS10A65C(SiC SBD)を活用した FCC回路シミュレーション(回路定数の最適化)
TRS10A65C(SiC SBD)を活用した FCC回路シミュレーション(回路定数の最適化)
 
All List of SPICE PARK AUG2015 4,412 models
All List of SPICE PARK AUG2015  4,412 modelsAll List of SPICE PARK AUG2015  4,412 models
All List of SPICE PARK AUG2015 4,412 models
 
LTspiceを活用したダイオードの4直列接続の順方向特性シミュレーション
LTspiceを活用したダイオードの4直列接続の順方向特性シミュレーションLTspiceを活用したダイオードの4直列接続の順方向特性シミュレーション
LTspiceを活用したダイオードの4直列接続の順方向特性シミュレーション
 
一定電力負荷モデル
一定電力負荷モデル一定電力負荷モデル
一定電力負荷モデル
 

Similar to デザインキット・D級アンプのスタートアップガイド

EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docxEELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
toltonkendal
 
Resume mixed signal
Resume mixed signalResume mixed signal
Resume mixed signal
tarora1
 
Resume mixed signal
Resume mixed signalResume mixed signal
Resume mixed signal
tarora1
 
20081114 Friday Food iLabt Bart Joris
20081114 Friday Food iLabt Bart Joris20081114 Friday Food iLabt Bart Joris
20081114 Friday Food iLabt Bart Joris
imec.archive
 

Similar to デザインキット・D級アンプのスタートアップガイド (20)

Class D Audio Amplifier using PSpice
Class D Audio Amplifier using PSpiceClass D Audio Amplifier using PSpice
Class D Audio Amplifier using PSpice
 
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docxEELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
 
Abhi monal
Abhi monalAbhi monal
Abhi monal
 
manual-pe-2017_compress.pdf
manual-pe-2017_compress.pdfmanual-pe-2017_compress.pdf
manual-pe-2017_compress.pdf
 
SIP PRESENTATION
SIP PRESENTATIONSIP PRESENTATION
SIP PRESENTATION
 
Resume mixed signal
Resume mixed signalResume mixed signal
Resume mixed signal
 
Resume mixed signal
Resume mixed signalResume mixed signal
Resume mixed signal
 
dft
dftdft
dft
 
1SS272 PSpice Model (Free SPICE Model)
1SS272 PSpice Model (Free SPICE Model)1SS272 PSpice Model (Free SPICE Model)
1SS272 PSpice Model (Free SPICE Model)
 
1SS272 LTspice Model (Free SPICE Model)
1SS272 LTspice Model (Free SPICE Model)1SS272 LTspice Model (Free SPICE Model)
1SS272 LTspice Model (Free SPICE Model)
 
20081114 Friday Food iLabt Bart Joris
20081114 Friday Food iLabt Bart Joris20081114 Friday Food iLabt Bart Joris
20081114 Friday Food iLabt Bart Joris
 
DC/DC Converter (PSpice Model)
DC/DC Converter (PSpice Model) DC/DC Converter (PSpice Model)
DC/DC Converter (PSpice Model)
 
CE150--Hongyi Huang
CE150--Hongyi HuangCE150--Hongyi Huang
CE150--Hongyi Huang
 
Analog to Digital Converter
Analog to Digital ConverterAnalog to Digital Converter
Analog to Digital Converter
 
Verilog Test Bench
Verilog Test BenchVerilog Test Bench
Verilog Test Bench
 
Fx570 ms 991ms_e
Fx570 ms 991ms_eFx570 ms 991ms_e
Fx570 ms 991ms_e
 
DC/DC Converter (LTspice Model)
DC/DC Converter (LTspice Model)DC/DC Converter (LTspice Model)
DC/DC Converter (LTspice Model)
 
Implementasi Pemodelan Sistem Ke TeeChart 2
Implementasi Pemodelan Sistem Ke TeeChart  2Implementasi Pemodelan Sistem Ke TeeChart  2
Implementasi Pemodelan Sistem Ke TeeChart 2
 
ECET 365 Entire Course NEW
ECET 365 Entire Course NEWECET 365 Entire Course NEW
ECET 365 Entire Course NEW
 
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLABElectric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
 

More from Tsuyoshi Horigome

More from Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Recently uploaded

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
giselly40
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Recently uploaded (20)

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 

デザインキット・D級アンプのスタートアップガイド

  • 1. Get Started with DesignKit Class D Audio Amplifier Using IRS2092 1
  • 2. Contents Slide # 1. DesignKit Simulations folders........................................................................... 3 2. How the initial condition are set?...................................................................... 4-5 3. Example of Using Design Kit............................................................................ 6 4. How to Estimate Design %Efficiency?.............................................................. 7-8 5. How to Estimate Output THD?.......................................................................... 9-11 6. How to Estimate Frequency Response?.......................................................... 12-13 7. How to Create Reference Waveforms?............................................................ 14-15 8. Change RIN (R2) and simulate to see change in GV......................................... 16-17 9. Use Design Kit to select proper VR value......................................................... 18-19 10. Use Design Kit to Predict Spike Voltage vs. Dead-time setting........................ 20-21 11. Use Design Kit to Develop the Design (Change the FETs).............................. 22-23 12. MOSFET Professional Model........................................................................... 24 2 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 3. 1. DesignKit Simulations folders  Ready to use simulation projects  Test conditions are set and easily changeable.  Appropriate simulation settings and Initial Condition (.IC).  .Option setting is done without convergence problem.  Libraries are included and added.  Simulation results (ex. Power and %Efficiency) are calculated and displayed. 3 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 4. 2. How the initial condition are set? 1. Open Project: ...¥Simulations¥StartUp¥StartUp.opj . 2. Set initial value of charged-up capacitors (C2, C3, C7, C8, C9, and C10) to be zero (IC=0). 3. Run the simulation (0-1sec. or until circuit is startup). 4 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 5. 2. How the initial condition are set? 4. Initial conditions are the startup voltage at each capacitor. 5. Change the IC values ,then run the simulation (0-100usec. with maximum time step 10nsec.). C10: IC=15 C9: IC=12.850 C2: IC=7 C7: 14>IC>(7+2.8) C8: IC=7 Class D Startup @ 0.976second. 5 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 6. 3. Example of Using Design Kit  Estimate design specification.  %Efficiency.  %THD.  Frequency response.  Create reference waveforms.  Change the design parameters and simulate to see results.  Component stress test.  Simulate switching losses.  Simulate Short-circuit scenarios. 6 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 7. 4. How to Estimate Design %Efficiency? 1. Open Project: ...¥Simulations¥Efficiency¥Efficiency.opj . 2. Enter test condition parameters: PO=25W, GV=15.85(24dB), RL=4ohm, and fin=1kHz. 3. Run the simulation from 1 to 3 ms. (about 3×1kHz output cycles ) 7 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 8. 4. How to Estimate Design %Efficiency? 4. Add traces: “AVG(W(LOAD))” for PO[W], “-(AVG(W(+B))+AVG(W(-B)))” for Supply power [W], and “-100*AVG(W(LOAD))/(AVG(W(+B))+AVG(W(-B)))” for %Efficiency VO=15.85VIN T=1/fin Efficiency ≈ 93% %Efficiency Supply power Output power: PO 8 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 9. 5. How to Estimate Output THD? 1. Open Project: ...¥Simulations¥THD¥THD.opj . 2. Enter test condition parameters: PO=10W, GV=15.85(24dB), RL=4ohm, and fin=1kHz. 9 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 10. 5. How to Estimate Output THD? 3. THD is calculated by checking the box “Perform Fourier Analysis” in the Output File Options setting. Center Frequency is 1kHz same as fin and “V(OUT)” is the Output Variable(s). 10 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 11. 5. How to Estimate Output THD? 4. Run the simulation 0 to 3ms. (maximum time step 100ns. ). 5. View Output File to see the simulated result THD(%) HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE V(OUT): 1kHz sine 1 1.00E+03 8.81E+00 1.00E+00 1.79E+02 0.00E+00 2 2.00E+03 4.62E-04 5.25E-05 4.18E+01 -3.15E+02 3 3.00E+03 2.78E-04 3.16E-05 8.49E+01 -4.51E+02 4 4.00E+03 3.23E-04 3.67E-05 6.91E+01 -6.45E+02 5 5.00E+03 3.73E-04 4.23E-05 8.66E+01 -8.06E+02 6 6.00E+03 6.69E-04 7.60E-05 6.10E+01 -1.01E+03 7 7.00E+03 2.85E-04 3.24E-05 8.09E+01 -1.17E+03 8 8.00E+03 4.32E-04 4.91E-05 7.17E+01 -1.36E+03 9 9.00E+03 5.95E-04 6.76E-05 2.70E+01 -1.58E+03 TOTAL HARMONIC DISTORTION = 1.438206E-02 PERCENT  Please note that the simulated result is only an estimate of %THD and the value is influenced by maximum step size. 11 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 12. 6. How to Estimate Frequency Response? 1. Open Project: ...¥Simulations¥FrqRsp¥FreqResp.opj. 2. Enter test condition parameters: VOUT=2V, GV=15.85(24dB), RL=4/8 ohm, and fin=20kHz. 3. Run the simulation from 0 to 2 ms. (about 40×20kHz output cycles ). Use Parametric Sweep (Global parameter: RL with value = 4 and 8) 12 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 13. 6. How to Estimate Frequency Response? 4. Add traces: “ DB(RMS(V(OUT))/2)” for the frequency response of 2VRMS output in dB. VO=2VRMS ,20kHz Frequency Response in dB Frequency Response @RL=8ohm Frequency Response @RL=4ohm 13 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 14. 7. How to Create Reference Waveforms? 1. Open Project: ...¥Simulations¥Waveforms¥Waveform.opj . 2. Enter test condition parameters: VOUT=2V, GV=15.85(24dB), RL=4ohm, and fin=1kHz. 3. Run the simulation from 100n to 3 ms. (about 3×1kHz output cycles ) 4. Put the Voltage/Level Marker (or Current Marker) to see the waveform(s). 14 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 15. 7. How to Create Reference Waveforms? 4. Set X and Y Data Range in Axis Setting according to oscilloscope scale. 5. Use simulated waveforms as reference to compare with real circuit waveforms. VO(Simulated) VO(Measured) Result are correlated according to simulated data. VS(Simulated) VS(Measured) 15 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 16. 8. Change RIN (R2) and simulate to see change in GV 1. Open Project: ...¥Simulations¥Gv¥Gv.opj. 2. Enter test condition parameters: VIN=100mVRMS(0.14142VPEAK), RIN=2.4 / 3 kohm, RL=8 ohm (speaker), and fin=1kHz. 3. Run the simulation from 0 to 1 ms. (about 1×1kHz output cycles ). Use Parametric Sweep (Global parameter: RIN with value = 2.4k and 3k) PARAMETERS: RIN=2.4k, 3k 16 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 17. 8. Change RIN (R2) and simulate to see change in GV 4. Simulated result shows Vo with different gain GV. 5. Change parameter: RIN until you get a satisfied result. VO with RIN=2.4kohm VO with RIN=3kohm 17 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 18. 9. Use Design Kit to select proper VR value 1. Open Project: ...¥Simulations¥OSC¥Waveform.opj. 2. Input voltage: VIN=0, RL=8 ohm (speaker). 3. fOSC=400kHz is chosen for this design, C4=C5=1nF, R4=220, a variable resistor: VR1 value will be varied. 18 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 19. 9. Use Design Kit to select proper VR value 4. Change VR1 value until simulation result with fOSC=400kHz (VR1=75ohm). 5. Choose VR1 that value more than 100 ohm for the design (this time VR1:1k is chosen). VS(Simulated) VS(Measured) VO(Simulated) VO(Measured) Simulated waveform with VR1: Value=75 Measured waveform from real circuit using VR1: 1k 19 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 20. 10. Use Design Kit to Predict Spike Voltage vs. Dead-time setting 1. Open Project: ...¥Simulations¥DT¥Waveform.opj. 2. Input voltage: VIN=0, RL=8 ohm (speaker). 3. Select dead-time setting DT1: R20=3.3k / R21=8.2k, Simulate and compare result with dead-time setting DT3: R20=8.2k / R21=3.3k 20 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 21. 10. Use Design Kit to Predict Spike Voltage vs. Dead-time setting 4. Compare the results to see that spike voltages are acceptable or not for each dead-time setting. Spike voltage Does spike voltage decrease with wider acceptable? dead-time setting. DT1(25ns) DT3(65ns) 21 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 22. 11. Use Design Kit to Develop the Design (Change the FETs) 1. Use the simulation files for the performance evaluation (ex. Efficiency, THD, and Waveform). 2. Replace MOSFET model IRFIZ24N with IRFI4024H-117P. 3. Run simulation file to check the design performance. 22 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 23. 11. Use Design Kit to Develop the Design (Change the FETs) 3. Compare the performance of the circuit with difference FET. %Efficiency is improved IRFIZ24N IRFI4024H-117P Efficiency (@ 25W, 4Ω) 93.505% 94.578% Distortion (@ 1kHz, 4Ω, 10W) 0.0144 %THD 0.0201 %THD 23 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009
  • 24. 12. MOSFET Professional Model  Library and symbol files are in folder ...¥Parts¥IRFIZ24N¥IRFIZ24N(PRO)  IRFIZ24N Professional Model consists of MOSFET Professional (MIRFIZ24N_P), body diode DIRFIZ24N, and body diode Professional DIRFIZ24N_P.  Use MOSFET Professional model to improve an accuracy Gate Charge characteristics Qg of FET model.  Use body diode Professional model to improve an accuracy Reverse Recovery Time characteristic TRR of FET’s body diode model. DIRFIZ24N DIRFIZ24N_P MIRFIZ24N_P  Using Professional model will slow down the simulation time and might cause some convergence error. 24 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009