SlideShare una empresa de Scribd logo
1 de 12
ESCUELA SUPERIOR POLITÉCNICA DE
CHIMBORAZO
ESTADÍSTICA COMPUTACIONAL
TÉCNICAS DE MINERIA DE DATOS
TÍTULO
Las técnicas más representativas que se
utilizan en la minería de datos son
TÉCNICAS DE MINERIA DE DATOS
Las técnicas de minería de datos provienen de la
inteligencia artificial y de la propia estadística.
Se trata de algoritmos que se aplican sobre un
conjunto de datos con el objetivo de obtener
resultados
• Redes neuronales
• Árboles de decisión
• Algoritmos genéticos
• Clustering (agrupamiento)
• Aprendizaje automático
• Regresión lineal
• Reglas de inducción
• Modelos estadísticos
Las predictivas y descriptivas se emplean para el
descubrimiento, mientras que las técnicas auxiliares se
emplean para la verificación.
TÉCNICAS DE MINERIA DE DATOS
Data Mining permite la entrega de información prospectiva y proactiva,
bajo el soporte de tres tecnologías que son:
• Recolección masiva de datos.
• Potentes computadoras.
• Algoritmos de Data Mining.
TÉCNICAS DE MINERIA DE DATOS
REDES NEURONALES
Esta técnica de inteligencia artificial, en los últimos años se ha convertido en uno de los instrumentos de uso
frecuente para detectar categorías comunes en los datos, debido a que son capaces de detectar y aprender
complejos patrones, y características de los datos.
Además esta técnica posee dos formas de aprendizaje:
supervisado y no supervisado.
Una de las principales características de
las redes neuronales, es que son capaces
de trabajar con datos incompletos e
incluso paradójicos, que dependiendo
del problema puede resultar una ventaja
o un inconveniente
Algunos ejemplos de red neuronal son:
• El perceptrón.
• El perceptrón multicapa.
• Los mapas autoorganizados, también conocidos
como redes de Kohonen.
ÁRBOLES DE DECISIÓN
Está técnica se encuentra dentro
de una metodología de
aprendizaje supervisado.
Su representación es en forma de
árbol en donde cada nodo es una
decisión, los cuales a su vez
generan reglas para la clasificación
de un conjunto de datos.
Los árboles de decisión son fáciles
de usar, admiten atributos
discretos y continuos, tratan bien
los atributos no significativos y los
valores faltantes.
Su principal ventaja es la facilidad
de interpretación
ÁRBOLES DE
DECISIÓN
ALGORITMOS GENÉTICOS
Además los algoritmos
genéticos son inspirados en
el principio de la
supervivencia de los más
aptos.
Los algoritmos genéticos
imitan la evolución de las
especies mediante la
mutación, reproducción y
selección, como también
proporcionan programas y
optimizaciones que pueden
ser usadas en la
construcción y
entrenamiento de otras
estructuras como es el caso
de las redes neuronales.
CLUSTERING (Agrupamiento)
Agrupan datos dentro de un número de clases preestablecidas
o no, partiendo de criterios de distancia o similitud, de manera
que las clases sean similares entre sí y distintas con las otras
clases.
Su utilización ha proporcionado significativos resultados en lo
que respecta a los clasificadores o reconocedores de patrones,
como en el modelado de sistemas.
Este método debido a su naturaleza flexible se puede combinar
fácilmente con otro tipo de técnica de minería de datos, dando
como resultado un sistema híbrido.
CLUSTERING (Agrupamiento)
Un problema relacionado con el análisis de cluster es la
selección de factores en tareas de clasificación, debido a que
no todas las variables tienen la misma importancia a la hora de
agrupar los objetos.
Otro problema de gran importancia y que actualmente
despierta un gran interés es la fusión de conocimiento, ya que
existen múltiples fuentes de información sobre un mismo
tema, los cuales no utilizan una categorización homogénea de
los objetos.
Para poder solucionar estos inconvenientes es necesario
fusionar la información a la hora de recopilar, comparar o
resumir los datos.
APRENDIZAJE AUTOMÁTICO
Esta técnica de inteligencia artificial es utilizada
para inferir conocimiento del resultado de la
aplicación de alguna de las otras técnicas antes
mencionadas.
LA REGRESIÓN LINEAL
Es una de las técnicas más utilizadas para la
formación de relaciones entre datos. Se trata de
un sistema rápido y eficaz pero que a su vez
cuenta con insuficiencias en los espacios
multidisciplinarios donde puedan relacionarse
más de 2 variables.
LOS MODELOS ESTADÍSTICOS
Consiste en la agrupación de una serie de vectores según
determinados criterios que habitualmente son a distancia. Se
trata de la disposición de los vectores de entrada de manera
que estén más cercanos a los que tengan características
comunes.
Se trata de una expresión simbólica
en forma de igualdad que es
empleada en los diseños
experimentales y en la regresión, con
la intención de identificar los factores
que modifican la variable de
respuesta
EL AGRUPAMIENTO
REGLA DE INDUCCIÓN
Consiste en derivar un conjunto de reglas para clasificar casos, generan
un conjunto de reglas independientes que permiten contrastar árboles
de decisión y patrones a partir de los datos de entrada.
REFERENCIAS BIBLIOGRÁFICAS
Recuperado de: https://gamoreno.wordpress.com/2007/10/03/tecnicas-mas-usadas-en-la-mineria-de-datos/
Recuperado de: https://blog.es.logicalis.com/analytics/modelos-de-data-mining-y-las-herramientas-mas-
usadas
Recuperado de: http://culturacrm.com/data-mining/tecnicas-aplicacion-data-mining/
Recuperado de: http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/DM/introduccion-DM.pdf

Más contenido relacionado

La actualidad más candente

Acceso a datos en aplicaciones web del entorno servidor
Acceso a datos en aplicaciones web del entorno servidorAcceso a datos en aplicaciones web del entorno servidor
Acceso a datos en aplicaciones web del entorno servidorJomicast
 
Diseño de entradas para sistemas de información
Diseño de entradas para sistemas de informaciónDiseño de entradas para sistemas de información
Diseño de entradas para sistemas de informaciónYaskelly Yedra
 
Ejercicios de entidad relacion extendida
Ejercicios de entidad relacion extendidaEjercicios de entidad relacion extendida
Ejercicios de entidad relacion extendidaDavid Rocha Bardales
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBESCOM
 
Herramientas De Control, Monitoreo Y Acceso A Base De Datos
Herramientas De Control, Monitoreo Y Acceso A Base De DatosHerramientas De Control, Monitoreo Y Acceso A Base De Datos
Herramientas De Control, Monitoreo Y Acceso A Base De DatosYazmin Ibarra
 
Diagrama de Flujo de Datos
Diagrama de Flujo de DatosDiagrama de Flujo de Datos
Diagrama de Flujo de DatosInés Andara
 
Heap sort (Monticulos)
Heap sort (Monticulos)Heap sort (Monticulos)
Heap sort (Monticulos)leidy2220
 
Tipos de búsqueda en Inteligencia Artificial
Tipos de búsqueda en Inteligencia ArtificialTipos de búsqueda en Inteligencia Artificial
Tipos de búsqueda en Inteligencia ArtificialJuank Grifin
 
Base de datos_zapateria_merida
Base de datos_zapateria_meridaBase de datos_zapateria_merida
Base de datos_zapateria_meridayohaeve
 
Estructura de Datos Unidad - V: Métodos de Ordenamiento
Estructura de Datos Unidad - V: Métodos de OrdenamientoEstructura de Datos Unidad - V: Métodos de Ordenamiento
Estructura de Datos Unidad - V: Métodos de OrdenamientoJosé Antonio Sandoval Acosta
 
Analizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesos
Analizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesosAnalizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesos
Analizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesosJose Armando Velazquez Mijangos
 
Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Osiris Mirerus
 
Simulación - Unidad 3 generacion de variables aleatorias
Simulación - Unidad 3 generacion de variables aleatoriasSimulación - Unidad 3 generacion de variables aleatorias
Simulación - Unidad 3 generacion de variables aleatoriasJosé Antonio Sandoval Acosta
 
REDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo CooperativoREDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo CooperativoESCOM
 
Técnicas para la Obtención de Requerimientos
Técnicas para la Obtención de RequerimientosTécnicas para la Obtención de Requerimientos
Técnicas para la Obtención de RequerimientosJuan Carlos Olivares Rojas
 
Tecnicas de busqueda en inteligencia artificial
Tecnicas de busqueda en inteligencia artificialTecnicas de busqueda en inteligencia artificial
Tecnicas de busqueda en inteligencia artificialDamelysCarrillo2
 

La actualidad más candente (20)

Acceso a datos en aplicaciones web del entorno servidor
Acceso a datos en aplicaciones web del entorno servidorAcceso a datos en aplicaciones web del entorno servidor
Acceso a datos en aplicaciones web del entorno servidor
 
Diseño de entradas para sistemas de información
Diseño de entradas para sistemas de informaciónDiseño de entradas para sistemas de información
Diseño de entradas para sistemas de información
 
Ejercicios de entidad relacion extendida
Ejercicios de entidad relacion extendidaEjercicios de entidad relacion extendida
Ejercicios de entidad relacion extendida
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
 
Herramientas De Control, Monitoreo Y Acceso A Base De Datos
Herramientas De Control, Monitoreo Y Acceso A Base De DatosHerramientas De Control, Monitoreo Y Acceso A Base De Datos
Herramientas De Control, Monitoreo Y Acceso A Base De Datos
 
Diagrama de Flujo de Datos
Diagrama de Flujo de DatosDiagrama de Flujo de Datos
Diagrama de Flujo de Datos
 
Heap sort (Monticulos)
Heap sort (Monticulos)Heap sort (Monticulos)
Heap sort (Monticulos)
 
Tipos de búsqueda en Inteligencia Artificial
Tipos de búsqueda en Inteligencia ArtificialTipos de búsqueda en Inteligencia Artificial
Tipos de búsqueda en Inteligencia Artificial
 
Base de datos_zapateria_merida
Base de datos_zapateria_meridaBase de datos_zapateria_merida
Base de datos_zapateria_merida
 
Estructura de Datos Unidad - V: Métodos de Ordenamiento
Estructura de Datos Unidad - V: Métodos de OrdenamientoEstructura de Datos Unidad - V: Métodos de Ordenamiento
Estructura de Datos Unidad - V: Métodos de Ordenamiento
 
Metodologia orientada a objeto
Metodologia orientada a objetoMetodologia orientada a objeto
Metodologia orientada a objeto
 
Analizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesos
Analizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesosAnalizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesos
Analizar mediante-ejemplos-de-la-vida-real-el-concepto-de-procesos
 
Analisis Semantico
Analisis Semantico Analisis Semantico
Analisis Semantico
 
Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1
 
Roles desarrollo del software
Roles desarrollo del softwareRoles desarrollo del software
Roles desarrollo del software
 
Simulación - Unidad 3 generacion de variables aleatorias
Simulación - Unidad 3 generacion de variables aleatoriasSimulación - Unidad 3 generacion de variables aleatorias
Simulación - Unidad 3 generacion de variables aleatorias
 
REDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo CooperativoREDES NEURONALES Aprendizaje Competitivo Cooperativo
REDES NEURONALES Aprendizaje Competitivo Cooperativo
 
Técnicas para la Obtención de Requerimientos
Técnicas para la Obtención de RequerimientosTécnicas para la Obtención de Requerimientos
Técnicas para la Obtención de Requerimientos
 
Tecnicas de busqueda en inteligencia artificial
Tecnicas de busqueda en inteligencia artificialTecnicas de busqueda en inteligencia artificial
Tecnicas de busqueda en inteligencia artificial
 
Analizador léxico
Analizador léxicoAnalizador léxico
Analizador léxico
 

Similar a Técnicas más usadas en la mineria de datos

Técnicas de minería de datos
Técnicas de minería de datosTécnicas de minería de datos
Técnicas de minería de datosDavidAcurio2
 
Métodos predictivos y Descriptivos - MINERÍA DE DATOS
Métodos predictivos y Descriptivos - MINERÍA DE DATOSMétodos predictivos y Descriptivos - MINERÍA DE DATOS
Métodos predictivos y Descriptivos - MINERÍA DE DATOSlalopg
 
Técnicas de minería de datos
Técnicas de minería de datosTécnicas de minería de datos
Técnicas de minería de datosBryan Barragan
 
Minería de datos
Minería de datosMinería de datos
Minería de datosanag catal
 
Técnicas mineria de datos
Técnicas mineria de datosTécnicas mineria de datos
Técnicas mineria de datoslalopg
 
Tecnicas de Mineria de Datos
Tecnicas de Mineria de DatosTecnicas de Mineria de Datos
Tecnicas de Mineria de DatosEly Garcés
 
Presentacion mineria
Presentacion mineriaPresentacion mineria
Presentacion mineriaviktor93
 
Electiva iii parcial 2 - 02-minería de datos
Electiva iii   parcial 2 - 02-minería de datosElectiva iii   parcial 2 - 02-minería de datos
Electiva iii parcial 2 - 02-minería de datosArlin11
 
Mineria de datos ensayo
Mineria de datos ensayoMineria de datos ensayo
Mineria de datos ensayocarimi
 
Mecanismos de conocimiento en I.A
Mecanismos de conocimiento en I.AMecanismos de conocimiento en I.A
Mecanismos de conocimiento en I.Abetzabethperez2
 
Trabajo colaborativo 3
Trabajo colaborativo 3Trabajo colaborativo 3
Trabajo colaborativo 3Vivy Castro
 

Similar a Técnicas más usadas en la mineria de datos (20)

Técnicas de minería de datos
Técnicas de minería de datosTécnicas de minería de datos
Técnicas de minería de datos
 
Métodos predictivos y Descriptivos - MINERÍA DE DATOS
Métodos predictivos y Descriptivos - MINERÍA DE DATOSMétodos predictivos y Descriptivos - MINERÍA DE DATOS
Métodos predictivos y Descriptivos - MINERÍA DE DATOS
 
Técnicas de minería de datos
Técnicas de minería de datosTécnicas de minería de datos
Técnicas de minería de datos
 
Minería de datos
Minería de datosMinería de datos
Minería de datos
 
Data mining
Data miningData mining
Data mining
 
Data mining
Data miningData mining
Data mining
 
Data mining
Data miningData mining
Data mining
 
Data mining
Data miningData mining
Data mining
 
Data mining
Data miningData mining
Data mining
 
Técnicas mineria de datos
Técnicas mineria de datosTécnicas mineria de datos
Técnicas mineria de datos
 
Mineria de datos
Mineria de datosMineria de datos
Mineria de datos
 
Mineria de datos
Mineria de datosMineria de datos
Mineria de datos
 
Mineria de datos
Mineria de datosMineria de datos
Mineria de datos
 
Tecnicas de Mineria de Datos
Tecnicas de Mineria de DatosTecnicas de Mineria de Datos
Tecnicas de Mineria de Datos
 
Presentacion mineria
Presentacion mineriaPresentacion mineria
Presentacion mineria
 
Electiva iii parcial 2 - 02-minería de datos
Electiva iii   parcial 2 - 02-minería de datosElectiva iii   parcial 2 - 02-minería de datos
Electiva iii parcial 2 - 02-minería de datos
 
Mineria de datos ensayo
Mineria de datos ensayoMineria de datos ensayo
Mineria de datos ensayo
 
Mineria de datos ok
Mineria de datos okMineria de datos ok
Mineria de datos ok
 
Mecanismos de conocimiento en I.A
Mecanismos de conocimiento en I.AMecanismos de conocimiento en I.A
Mecanismos de conocimiento en I.A
 
Trabajo colaborativo 3
Trabajo colaborativo 3Trabajo colaborativo 3
Trabajo colaborativo 3
 

Último

Esmerling de la Cruz (Proyecto de Programación)
Esmerling de la Cruz (Proyecto de Programación)Esmerling de la Cruz (Proyecto de Programación)
Esmerling de la Cruz (Proyecto de Programación)esmerling14
 
LABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdf
LABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdfLABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdf
LABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdfPeraltaFrank
 
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptxLICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptxLucindaMy
 
METROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdf
METROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdfMETROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdf
METROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdfesparzadaniela548
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana5extraviado
 
1. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf2373743353471. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf237374335347vd110501
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosJeanCarlosLorenzo1
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesjohannyrmnatejeda
 
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdfINSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdfautomatechcv
 
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdfLIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdfManuelVillarreal44
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCarlos Delgado
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptxEfrain Yungan
 
JimyPomalaza vivienda rural huancavelica .pdf
JimyPomalaza vivienda rural huancavelica .pdfJimyPomalaza vivienda rural huancavelica .pdf
JimyPomalaza vivienda rural huancavelica .pdfJimyPomalaza
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaSebastianQP1
 
Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)dianamateo1513
 
Informe Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docxInforme Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docxTAKESHISAC
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......dianamontserratmayor
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasAhmedMontaoSnchez1
 

Último (20)

Esmerling de la Cruz (Proyecto de Programación)
Esmerling de la Cruz (Proyecto de Programación)Esmerling de la Cruz (Proyecto de Programación)
Esmerling de la Cruz (Proyecto de Programación)
 
LABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdf
LABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdfLABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdf
LABORATORIO CALIFICADO 01 CONTENIDO DE HUMEDAD MÉTODO DE SECADO AL HORNO.pdf
 
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptxLICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
 
METROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdf
METROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdfMETROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdf
METROLOGÍA ÓPTICA E INSTRUMENTACIÓN BÁSICA.pdf
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana
 
1. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf2373743353471. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf237374335347
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
 
UNIDAD 2 CLASIFICACION DE LOS MATERIALES.pptx
UNIDAD 2 CLASIFICACION DE LOS  MATERIALES.pptxUNIDAD 2 CLASIFICACION DE LOS  MATERIALES.pptx
UNIDAD 2 CLASIFICACION DE LOS MATERIALES.pptx
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajes
 
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdfINSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
 
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdfLIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric Project
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx
 
JimyPomalaza vivienda rural huancavelica .pdf
JimyPomalaza vivienda rural huancavelica .pdfJimyPomalaza vivienda rural huancavelica .pdf
JimyPomalaza vivienda rural huancavelica .pdf
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieria
 
Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)
 
Informe Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docxInforme Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docx
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnas
 

Técnicas más usadas en la mineria de datos

  • 1. ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO ESTADÍSTICA COMPUTACIONAL TÉCNICAS DE MINERIA DE DATOS TÍTULO
  • 2. Las técnicas más representativas que se utilizan en la minería de datos son TÉCNICAS DE MINERIA DE DATOS Las técnicas de minería de datos provienen de la inteligencia artificial y de la propia estadística. Se trata de algoritmos que se aplican sobre un conjunto de datos con el objetivo de obtener resultados • Redes neuronales • Árboles de decisión • Algoritmos genéticos • Clustering (agrupamiento) • Aprendizaje automático • Regresión lineal • Reglas de inducción • Modelos estadísticos
  • 3. Las predictivas y descriptivas se emplean para el descubrimiento, mientras que las técnicas auxiliares se emplean para la verificación. TÉCNICAS DE MINERIA DE DATOS Data Mining permite la entrega de información prospectiva y proactiva, bajo el soporte de tres tecnologías que son: • Recolección masiva de datos. • Potentes computadoras. • Algoritmos de Data Mining.
  • 4. TÉCNICAS DE MINERIA DE DATOS REDES NEURONALES Esta técnica de inteligencia artificial, en los últimos años se ha convertido en uno de los instrumentos de uso frecuente para detectar categorías comunes en los datos, debido a que son capaces de detectar y aprender complejos patrones, y características de los datos. Además esta técnica posee dos formas de aprendizaje: supervisado y no supervisado. Una de las principales características de las redes neuronales, es que son capaces de trabajar con datos incompletos e incluso paradójicos, que dependiendo del problema puede resultar una ventaja o un inconveniente Algunos ejemplos de red neuronal son: • El perceptrón. • El perceptrón multicapa. • Los mapas autoorganizados, también conocidos como redes de Kohonen.
  • 5. ÁRBOLES DE DECISIÓN Está técnica se encuentra dentro de una metodología de aprendizaje supervisado. Su representación es en forma de árbol en donde cada nodo es una decisión, los cuales a su vez generan reglas para la clasificación de un conjunto de datos. Los árboles de decisión son fáciles de usar, admiten atributos discretos y continuos, tratan bien los atributos no significativos y los valores faltantes. Su principal ventaja es la facilidad de interpretación ÁRBOLES DE DECISIÓN
  • 6. ALGORITMOS GENÉTICOS Además los algoritmos genéticos son inspirados en el principio de la supervivencia de los más aptos. Los algoritmos genéticos imitan la evolución de las especies mediante la mutación, reproducción y selección, como también proporcionan programas y optimizaciones que pueden ser usadas en la construcción y entrenamiento de otras estructuras como es el caso de las redes neuronales.
  • 7. CLUSTERING (Agrupamiento) Agrupan datos dentro de un número de clases preestablecidas o no, partiendo de criterios de distancia o similitud, de manera que las clases sean similares entre sí y distintas con las otras clases. Su utilización ha proporcionado significativos resultados en lo que respecta a los clasificadores o reconocedores de patrones, como en el modelado de sistemas. Este método debido a su naturaleza flexible se puede combinar fácilmente con otro tipo de técnica de minería de datos, dando como resultado un sistema híbrido.
  • 8. CLUSTERING (Agrupamiento) Un problema relacionado con el análisis de cluster es la selección de factores en tareas de clasificación, debido a que no todas las variables tienen la misma importancia a la hora de agrupar los objetos. Otro problema de gran importancia y que actualmente despierta un gran interés es la fusión de conocimiento, ya que existen múltiples fuentes de información sobre un mismo tema, los cuales no utilizan una categorización homogénea de los objetos. Para poder solucionar estos inconvenientes es necesario fusionar la información a la hora de recopilar, comparar o resumir los datos.
  • 9. APRENDIZAJE AUTOMÁTICO Esta técnica de inteligencia artificial es utilizada para inferir conocimiento del resultado de la aplicación de alguna de las otras técnicas antes mencionadas. LA REGRESIÓN LINEAL Es una de las técnicas más utilizadas para la formación de relaciones entre datos. Se trata de un sistema rápido y eficaz pero que a su vez cuenta con insuficiencias en los espacios multidisciplinarios donde puedan relacionarse más de 2 variables.
  • 10. LOS MODELOS ESTADÍSTICOS Consiste en la agrupación de una serie de vectores según determinados criterios que habitualmente son a distancia. Se trata de la disposición de los vectores de entrada de manera que estén más cercanos a los que tengan características comunes. Se trata de una expresión simbólica en forma de igualdad que es empleada en los diseños experimentales y en la regresión, con la intención de identificar los factores que modifican la variable de respuesta EL AGRUPAMIENTO
  • 11. REGLA DE INDUCCIÓN Consiste en derivar un conjunto de reglas para clasificar casos, generan un conjunto de reglas independientes que permiten contrastar árboles de decisión y patrones a partir de los datos de entrada.
  • 12. REFERENCIAS BIBLIOGRÁFICAS Recuperado de: https://gamoreno.wordpress.com/2007/10/03/tecnicas-mas-usadas-en-la-mineria-de-datos/ Recuperado de: https://blog.es.logicalis.com/analytics/modelos-de-data-mining-y-las-herramientas-mas- usadas Recuperado de: http://culturacrm.com/data-mining/tecnicas-aplicacion-data-mining/ Recuperado de: http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/DM/introduccion-DM.pdf