SlideShare a Scribd company logo
1 of 13
Download to read offline
OPSE: Online Per-Scene Encoding for Adaptive HTTP Live
Streaming
Vignesh V Menon1, Hadi Amirpour1, Christian Feldmann2, Mohammad Ghanbari1,3, and
Christian Timmerer1
1
Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria
2
Bitmovin, Klagenfurt, Austria
3
School of Computer Science and Electronic Engineering, University of Essex, UK
21 July 2022
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 1
Outline
1 Introduction
2 OPSE
3 Evaluation
4 Q & A
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 2
Introduction
Motivation
Per-scene encoding schemes are based on the fact that each resolution performs better
than others in a scene for a given bitrate range, and these regions depend on the video
complexity.
Increase the Quality of Experience (QoE) or decrease the bitrate of the representations as
introduced for VoD services.1
Figure: The bitrate ladder prediction envisioned using OPSE.
1
J. De Cock et al. “Complexity-based consistent-quality encoding in the cloud”. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016,
pp. 1484–1488. doi: 10.1109/ICIP.2016.7532605.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 3
Introduction
Why not in live yet?
Though per-title encoding schemes2 enhance the quality of video delivery, determining the
convex-hull is computationally expensive, making it suitable for only VoD streaming
applications.
Some methods pre-analyze the video contents3.
Katsenou et al.4
introduced a content-gnostic method that employs machine learning to find
the bitrate range for each resolution that outperforms other resolutions. Bhat et al.5
proposed a Random Forest (RF) classifier to decide encoding resolution best suited over
different quality ranges and studied machine learning based adaptive resolution prediction.
However, these approaches still yield latency much higher than the accepted latency in
live streaming.
2
De Cock et al., “Complexity-based consistent-quality encoding in the cloud”; Hadi Amirpour et al. “PSTR: Per-Title Encoding Using Spatio-Temporal
Resolutions”. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). 2021, pp. 1–6. doi: 10.1109/ICME51207.2021.9428247.
3
https://bitmovin.com/whitepapers/Bitmovin-Per-Title.pdf, last access: May 10, 2022.
4
A. V. Katsenou et al. “Content-gnostic Bitrate Ladder Prediction for Adaptive Video Streaming”. In: 2019 Picture Coding Symposium (PCS). 2019. doi:
10.1109/PCS48520.2019.8954529.
5
Madhukar Bhat et al. “Combining Video Quality Metrics To Select Perceptually Accurate Resolution In A Wide Quality Range: A Case Study”. In: 2021 IEEE
International Conference on Image Processing (ICIP). 2021, pp. 2164–2168. doi: 10.1109/ICIP42928.2021.9506310.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 4
OPSE
OPSE
Input Video
Video Complexity
Feature Extraction
Scene Detection
Resolution
Prediction
Resolutions (R)
Bitrates (B)
Per-Scene
Encoding
(E, h, ϵ)
(E, h)
Scenes (ˆ
r, b)
Figure: OPSE architecture.
E, h, and ϵ features are extracted using VCA open-source video complexity analyzer software.6
6
Vignesh V Menon et al. “VCA: Video Complexity Analyzer”. In: Proceedings of the 13th ACM Multimedia Systems Conference. 2022. isbn: 9781450392839.
doi: 10.1145/3524273.3532896. url: https://doi.org/10.1145/3524273.3532896.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 5
OPSE
OPSE
Phase 1: Feature Extraction
Compute texture energy per block
A DCT-based energy function is used to determine the block-wise feature of each frame
defined as:
Hk =
w−1
X
i=0
w−1
X
j=0
e|( ij
wh
)2−1|
|DCT(i, j)| (1)
where wxw is the size of the block, and DCT(i, j) is the (i, j)th DCT component when
i + j > 0, and 0 otherwise.
The energy values of blocks in a frame is averaged to determine the energy per frame.7
E =
C−1
X
k=0
Hp,k
C · w2
(2)
7
Michael King et al. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on Multimedia and Expo. 2007,
pp. 1647–1650. doi: 10.1109/ICME.2007.4284983.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 6
OPSE
OPSE
Phase 1: Feature Extraction
hp: SAD of the block level energy values of frame p to that of the previous frame p − 1.
hp =
C−1
X
k=0
| Hp,k, Hp−1,k |
C · w2
(3)
where C denotes the number of blocks in frame p.
The gradient of h per frame p, ϵp is also defined, which is given by:
ϵp =
hp−1 − hp
hp−1
(4)
Latency
Speed of feature extraction = 1480fps for Full HD (1080p) video with 8 CPU threads and x86
SIMD optimization
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 7
OPSE
OPSE
Phase 2: Scene Detection
Objective:
Detect the first picture of each shot and encode it as an Instantaneous Decoder Refresh
(IDR) frame.
Encode the subsequent frames of the new shot based on the first one via motion compen-
sation and prediction.
Shot transitions can be present in two ways:
hard shot-cuts
gradual shot transitions
The detection of gradual changes is much more difficult owing to the fact it is difficult to
determine the change in the visual information in a quantitative format.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 8
OPSE
OPSE
Phase 2: Scene Detection
Step 1: while Parsing all video frames do
if ϵk > T1 then
k ← IDR-frame, a new shot.
else if ϵk ≤ T2 then
k ← P-frame or B-frame, not a new shot.
T1 , T2 : maximum and minimum threshold for ϵk
f : video fps
Q : Q : set of frames where T1 ≥ ϵ > T2 and ∆h > T3
q0: current frame number in the set Q
q−1: previous frame number in the set Q
q1: next frame number in the set Q
Step 2: while Parsing Q do
if q0 − q−1 > f and q1 − q0 > f then
q0 ← IDR-frame, a new shot.
Eliminate q0 from Q.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 9
OPSE
OPSE
Phase 3: Resolution Prediction
For each detected scene, the optimized bitrate ladder is predicted using the E and h features
of the first GOP of each scene and the sets R and B. The optimized resolution ˆ
r is predicted
for each target bitrate b ∈ B. The resolution scaling factor s is defined as:
s =
 r
rmax

; r ∈ R (5)
where rmax is the maximum resolution in R.
Hidden Layer
E R4
Hidden Layer
E R4
Input Layer
E R3
Output Layer
E R1
E
h
log(b)
ŝ
Figure: Neural network structure to predict optimized resolution scaling factor ŝ for a maximum
resolution rmax and framerate f .
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 10
Evaluation
Evaluation
R = {360p, 432p, 540p, 720p, 1080p}
B = {145, 300, 600, 900, 1600, 2400, 3400, 4500, 5800, 8100}.
Figure: BDRV results for scenes characterized by various average E and h.
BDRV : Bjøntegaard delta rate8 refers to the average increase in bitrate of the representations
compared with that of the fixed bitrate ladder encoding to maintain the same VMAF.
8
G. Bjontegaard. “Calculation of average PSNR differences between RD-curves”. In: VCEG-M33 (2001).
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 11
Evaluation
Evaluation
(a) Scene1 (b) Scene2
Figure: Comparison of RD curves for encoding two sample scenes, Scene1 (E = 31.96, h = 11.12) and
Scene2 (E = 67.96, h = 5.12) using the fixed bitrate ladder and OPSE.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 12
Q  A
Q  A
Thank you for your attention!
Vignesh V Menon (vignesh.menon@aau.at)
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 13

More Related Content

Similar to OPSE_Online Per-Scene Encoding for Adaptive HTTP Live Streaming.pdf

Green_VCA_presentation.pdf
Green_VCA_presentation.pdfGreen_VCA_presentation.pdf
Green_VCA_presentation.pdfVignesh V Menon
 
VCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdfVCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdfVignesh V Menon
 
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...Alpen-Adria-Universität
 
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdfETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdfVignesh V Menon
 
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live StreamingETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live StreamingAlpen-Adria-Universität
 
Efficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streamingEfficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streamingMinh Nguyen
 
CODA_presentation.pdf
CODA_presentation.pdfCODA_presentation.pdf
CODA_presentation.pdfJunZhao68
 
LiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdfLiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdfVignesh V Menon
 
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVCIEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVCVignesh V Menon
 
INCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVCINCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVCAlpen-Adria-Universität
 
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...Vignesh V Menon
 
Online Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC StreamingOnline Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC StreamingVignesh V Menon
 
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...Vignesh V Menon
 
Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...IJECEIAES
 
Introduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainIntroduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainVideoguy
 
Motion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet CoefficientsMotion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet CoefficientsIJERA Editor
 
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive StreamingMachine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive StreamingAlpen-Adria-Universität
 
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...Ijripublishers Ijri
 

Similar to OPSE_Online Per-Scene Encoding for Adaptive HTTP Live Streaming.pdf (20)

Green_VCA_presentation.pdf
Green_VCA_presentation.pdfGreen_VCA_presentation.pdf
Green_VCA_presentation.pdf
 
VCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdfVCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdf
 
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
 
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdfETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
 
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live StreamingETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
 
Efficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streamingEfficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streaming
 
CODA_presentation.pdf
CODA_presentation.pdfCODA_presentation.pdf
CODA_presentation.pdf
 
LiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdfLiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdf
 
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVCIEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
 
INCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVCINCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVC
 
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
 
JASLA_presentation.pdf
JASLA_presentation.pdfJASLA_presentation.pdf
JASLA_presentation.pdf
 
Online Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC StreamingOnline Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC Streaming
 
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
 
Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...
 
Introduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainIntroduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag Jain
 
Motion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet CoefficientsMotion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet Coefficients
 
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive StreamingMachine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
 
Cuda project paper
Cuda project paperCuda project paper
Cuda project paper
 
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
 

More from Vignesh V Menon

Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...
Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...
Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...Vignesh V Menon
 
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdf
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdfContent_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdf
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdfVignesh V Menon
 
Green Variable framerate encoding for Adaptive Live Streaming
Green Variable framerate encoding  for Adaptive Live StreamingGreen Variable framerate encoding  for Adaptive Live Streaming
Green Variable framerate encoding for Adaptive Live StreamingVignesh V Menon
 
Doctoral Symposium presentation.pdf
Doctoral Symposium presentation.pdfDoctoral Symposium presentation.pdf
Doctoral Symposium presentation.pdfVignesh V Menon
 
Research@Lunch_Presentation.pdf
Research@Lunch_Presentation.pdfResearch@Lunch_Presentation.pdf
Research@Lunch_Presentation.pdfVignesh V Menon
 
Video Complexity Dataset (VCD).pdf
Video Complexity Dataset (VCD).pdfVideo Complexity Dataset (VCD).pdf
Video Complexity Dataset (VCD).pdfVignesh V Menon
 
Live-PSTR: Live Per-Title Encoding for Ultra HD Adaptive Streaming
Live-PSTR: Live Per-Title Encoding for Ultra HD Adaptive StreamingLive-PSTR: Live Per-Title Encoding for Ultra HD Adaptive Streaming
Live-PSTR: Live Per-Title Encoding for Ultra HD Adaptive StreamingVignesh V Menon
 
IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...
IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...
IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...Vignesh V Menon
 

More from Vignesh V Menon (8)

Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...
Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...
Gain of Grain: A Film Grain Handling Toolchain for VVC-based Open Implementat...
 
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdf
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdfContent_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdf
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdf
 
Green Variable framerate encoding for Adaptive Live Streaming
Green Variable framerate encoding  for Adaptive Live StreamingGreen Variable framerate encoding  for Adaptive Live Streaming
Green Variable framerate encoding for Adaptive Live Streaming
 
Doctoral Symposium presentation.pdf
Doctoral Symposium presentation.pdfDoctoral Symposium presentation.pdf
Doctoral Symposium presentation.pdf
 
Research@Lunch_Presentation.pdf
Research@Lunch_Presentation.pdfResearch@Lunch_Presentation.pdf
Research@Lunch_Presentation.pdf
 
Video Complexity Dataset (VCD).pdf
Video Complexity Dataset (VCD).pdfVideo Complexity Dataset (VCD).pdf
Video Complexity Dataset (VCD).pdf
 
Live-PSTR: Live Per-Title Encoding for Ultra HD Adaptive Streaming
Live-PSTR: Live Per-Title Encoding for Ultra HD Adaptive StreamingLive-PSTR: Live Per-Title Encoding for Ultra HD Adaptive Streaming
Live-PSTR: Live Per-Title Encoding for Ultra HD Adaptive Streaming
 
IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...
IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...
IEEE PCS'21: Efficient multi-encoding for large-scale HTTP Adaptive Streaming...
 

Recently uploaded

Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdfssuserdda66b
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 

Recently uploaded (20)

Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 

OPSE_Online Per-Scene Encoding for Adaptive HTTP Live Streaming.pdf

  • 1. OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming Vignesh V Menon1, Hadi Amirpour1, Christian Feldmann2, Mohammad Ghanbari1,3, and Christian Timmerer1 1 Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria 2 Bitmovin, Klagenfurt, Austria 3 School of Computer Science and Electronic Engineering, University of Essex, UK 21 July 2022 Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 1
  • 2. Outline 1 Introduction 2 OPSE 3 Evaluation 4 Q & A Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 2
  • 3. Introduction Motivation Per-scene encoding schemes are based on the fact that each resolution performs better than others in a scene for a given bitrate range, and these regions depend on the video complexity. Increase the Quality of Experience (QoE) or decrease the bitrate of the representations as introduced for VoD services.1 Figure: The bitrate ladder prediction envisioned using OPSE. 1 J. De Cock et al. “Complexity-based consistent-quality encoding in the cloud”. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016, pp. 1484–1488. doi: 10.1109/ICIP.2016.7532605. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 3
  • 4. Introduction Why not in live yet? Though per-title encoding schemes2 enhance the quality of video delivery, determining the convex-hull is computationally expensive, making it suitable for only VoD streaming applications. Some methods pre-analyze the video contents3. Katsenou et al.4 introduced a content-gnostic method that employs machine learning to find the bitrate range for each resolution that outperforms other resolutions. Bhat et al.5 proposed a Random Forest (RF) classifier to decide encoding resolution best suited over different quality ranges and studied machine learning based adaptive resolution prediction. However, these approaches still yield latency much higher than the accepted latency in live streaming. 2 De Cock et al., “Complexity-based consistent-quality encoding in the cloud”; Hadi Amirpour et al. “PSTR: Per-Title Encoding Using Spatio-Temporal Resolutions”. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). 2021, pp. 1–6. doi: 10.1109/ICME51207.2021.9428247. 3 https://bitmovin.com/whitepapers/Bitmovin-Per-Title.pdf, last access: May 10, 2022. 4 A. V. Katsenou et al. “Content-gnostic Bitrate Ladder Prediction for Adaptive Video Streaming”. In: 2019 Picture Coding Symposium (PCS). 2019. doi: 10.1109/PCS48520.2019.8954529. 5 Madhukar Bhat et al. “Combining Video Quality Metrics To Select Perceptually Accurate Resolution In A Wide Quality Range: A Case Study”. In: 2021 IEEE International Conference on Image Processing (ICIP). 2021, pp. 2164–2168. doi: 10.1109/ICIP42928.2021.9506310. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 4
  • 5. OPSE OPSE Input Video Video Complexity Feature Extraction Scene Detection Resolution Prediction Resolutions (R) Bitrates (B) Per-Scene Encoding (E, h, ϵ) (E, h) Scenes (ˆ r, b) Figure: OPSE architecture. E, h, and ϵ features are extracted using VCA open-source video complexity analyzer software.6 6 Vignesh V Menon et al. “VCA: Video Complexity Analyzer”. In: Proceedings of the 13th ACM Multimedia Systems Conference. 2022. isbn: 9781450392839. doi: 10.1145/3524273.3532896. url: https://doi.org/10.1145/3524273.3532896. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 5
  • 6. OPSE OPSE Phase 1: Feature Extraction Compute texture energy per block A DCT-based energy function is used to determine the block-wise feature of each frame defined as: Hk = w−1 X i=0 w−1 X j=0 e|( ij wh )2−1| |DCT(i, j)| (1) where wxw is the size of the block, and DCT(i, j) is the (i, j)th DCT component when i + j > 0, and 0 otherwise. The energy values of blocks in a frame is averaged to determine the energy per frame.7 E = C−1 X k=0 Hp,k C · w2 (2) 7 Michael King et al. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on Multimedia and Expo. 2007, pp. 1647–1650. doi: 10.1109/ICME.2007.4284983. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 6
  • 7. OPSE OPSE Phase 1: Feature Extraction hp: SAD of the block level energy values of frame p to that of the previous frame p − 1. hp = C−1 X k=0 | Hp,k, Hp−1,k | C · w2 (3) where C denotes the number of blocks in frame p. The gradient of h per frame p, ϵp is also defined, which is given by: ϵp = hp−1 − hp hp−1 (4) Latency Speed of feature extraction = 1480fps for Full HD (1080p) video with 8 CPU threads and x86 SIMD optimization Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 7
  • 8. OPSE OPSE Phase 2: Scene Detection Objective: Detect the first picture of each shot and encode it as an Instantaneous Decoder Refresh (IDR) frame. Encode the subsequent frames of the new shot based on the first one via motion compen- sation and prediction. Shot transitions can be present in two ways: hard shot-cuts gradual shot transitions The detection of gradual changes is much more difficult owing to the fact it is difficult to determine the change in the visual information in a quantitative format. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 8
  • 9. OPSE OPSE Phase 2: Scene Detection Step 1: while Parsing all video frames do if ϵk > T1 then k ← IDR-frame, a new shot. else if ϵk ≤ T2 then k ← P-frame or B-frame, not a new shot. T1 , T2 : maximum and minimum threshold for ϵk f : video fps Q : Q : set of frames where T1 ≥ ϵ > T2 and ∆h > T3 q0: current frame number in the set Q q−1: previous frame number in the set Q q1: next frame number in the set Q Step 2: while Parsing Q do if q0 − q−1 > f and q1 − q0 > f then q0 ← IDR-frame, a new shot. Eliminate q0 from Q. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 9
  • 10. OPSE OPSE Phase 3: Resolution Prediction For each detected scene, the optimized bitrate ladder is predicted using the E and h features of the first GOP of each scene and the sets R and B. The optimized resolution ˆ r is predicted for each target bitrate b ∈ B. The resolution scaling factor s is defined as: s = r rmax ; r ∈ R (5) where rmax is the maximum resolution in R. Hidden Layer E R4 Hidden Layer E R4 Input Layer E R3 Output Layer E R1 E h log(b) ŝ Figure: Neural network structure to predict optimized resolution scaling factor ŝ for a maximum resolution rmax and framerate f . Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 10
  • 11. Evaluation Evaluation R = {360p, 432p, 540p, 720p, 1080p} B = {145, 300, 600, 900, 1600, 2400, 3400, 4500, 5800, 8100}. Figure: BDRV results for scenes characterized by various average E and h. BDRV : Bjøntegaard delta rate8 refers to the average increase in bitrate of the representations compared with that of the fixed bitrate ladder encoding to maintain the same VMAF. 8 G. Bjontegaard. “Calculation of average PSNR differences between RD-curves”. In: VCEG-M33 (2001). Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 11
  • 12. Evaluation Evaluation (a) Scene1 (b) Scene2 Figure: Comparison of RD curves for encoding two sample scenes, Scene1 (E = 31.96, h = 11.12) and Scene2 (E = 67.96, h = 5.12) using the fixed bitrate ladder and OPSE. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 12
  • 13. Q A Q A Thank you for your attention! Vignesh V Menon (vignesh.menon@aau.at) Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 13