SlideShare una empresa de Scribd logo
1 de 18
Descargar para leer sin conexión
Trilinear embedding for divergence-form
operators
Vjekoslav Kovač (U. of Zagreb, PMF–MO)
Joint work with
Andrea Carbonaro (U. of Genova),
Oliver Dragičević (U. of Ljubljana),
Kristina Ana Škreb (U. of Zagreb, Civil Eng.)
Supported by HRZZ UIP-2017-05-4129 (MUNHANAP)
Appl Math 20, Brijuni, Sep 15, 2020
1/18
Ellipticity and p-ellipticity
Ω ⊆ Rd an open set
A: Ω → Cd×d with L∞ coefficients (Note: non-smooth and complex)
A is elliptic if ∃λ, Λ ∈ (0, ∞) s.t.
Re 〈A(x)ξ, ξ〉Cd > λ|ξ|2
for ξ ∈ Cd
, for a.e. x ∈ Ω
⃒
⃒ 〈A(x)ξ, η〉Cd
⃒
⃒ 6 Λ |ξ| |η| for ξ, η ∈ Cd
, for a.e. x ∈ Ω
Take p ∈ (0, ∞], but think of p ∈ (1, ∞)
A is p-elliptic if additionally ∃c ∈ (0, ∞) s.t.
Re
⟨︀
A(x)ξ, ξ + |1 − 2/p|ξ̄
⟩︀
Cd > c|ξ|2
for ξ ∈ Cd
, for a.e. x ∈ Ω
(Carbonaro–Dragičević, 2016)
2/18
Properties of p-elliptic matrices
Δp(A) := ess inf
x∈Ω
min
ξ∈Cd
|ξ|=1
Re
⟨︀
A(x)ξ, ξ + |1 − 2/p|ξ̄
⟩︀
Cd
A is p-elliptic ⇐⇒ Δp(A) > 0
Δp0 (A) = Δp(A) where 1/p0 + 1/p = 1
Ap(Ω) = the class of p-elliptic matrix functions on Ω
Ap(Ω) decreases in p ∈ [2, ∞)
{elliptic on Ω} = A2(Ω)
{real elliptic on Ω} =
⋂︁
p∈[2,∞)
Ap(Ω)
3/18
Divergence-form operators
Boundary conditions reflect the choice of U :
• Dirichlet: U = H1
0
(Ω) = C∞
c
(Ω) in H1(Ω)
• Neumann: U = H1(Ω) = W1,2(Ω)
• mixed: U =
{︀
u|Ω : u ∈ C∞
c
(Rd)
}︀
in H1(Ω),  ⊆ ∂Ω closed
Divergence-form operator informally: “LA,U u = −div(A∇u)”
Rigorously:
〈LA,U u, v〉L2(Ω) =
∫︁
Ω
〈A∇u, ∇v〉Cd for u ∈ D (LA), v ∈ U ,
where D (LA,U ) :=
{︀
u ∈ U : RHS extends boundedly to L2(Ω)
}︀
(TA,U
t
)t>0 is the operator semigroup on L2(Ω) generated by −LA,U
4/18
Bilinear embeddings
A bilinear embedding is any estimate of the form
∫︁ ∞
0
∫︁
X
|∇Ttf(x)| |∇Ttg(x)| dμ(x) dt 6 C kfkLp(X) kgkLq(X) ,
where (X, μ) is a measure space, (Tt)t>0 is an operator semigroup,
and p, q ∈ (1, ∞) are s.t. 1/p + 1/q = 1
Some history of bilinear embeddings:
• Estimates for the Ahlfors–Beurling operator and iterated Riesz
transf. (Petermichl–Volberg, 2002; Nazarov–Volberg, 2003):
∫︁
R2
(R2
1
f)(x) g(x) dx = −2
∫︁ ∞
0
∫︁
R2
(︀
∂x1 Ttf(x)
)︀(︀
∂x1 Ttg(x)
)︀
dx dt,
where (Ttf)t>0 is the heat extension of f
5/18
More history of bilinear embeddings
• Dimension-free Littlewood–Paley estimates
(Dragičević–Volberg, 2006)
• Dimension-free estimates for Schrödinger operators
(Dragičević–Volberg, 2011, 2012)
• Dimension-free estimates for Riesz transforms associated with a
Riemannian manifold (Carbonaro–Dragičević, 2013)
• Functional calculus for generators of symmetric contraction
semigroups (Carbonaro–Dragičević, 2017)
• Bilinear embedding for divergence-form operators with
complex coefficients (Carbonaro–Dragičević, 2020)
– concept of p-ellipticity
– connection with Lp
-dissipativity of sesquilinear forms
6/18
Trilinear embedding
Take p, q, r ∈ (1, ∞) s.t. 1/p + 1/q + 1/r = 1
Theorem (Carbonaro–Dragičević–K.–Škreb, 2020)
Suppose that A, B, C : Ω → Cd×d are mx{p, q, r}-elliptic. Then for
f ∈ (Lp ∩ L2)(Ω), g ∈ (Lq ∩ L2)(Ω) and h ∈ (Lr ∩ L2)(Ω) we have
∫︁ ∞
0
∫︁
Ω
⃒
⃒TA,U
t
f
⃒
⃒
⃒
⃒∇TB,V
t
g
⃒
⃒
⃒
⃒∇TC,W
t
h
⃒
⃒dx dt 6 C kfkLp(Ω) kgkLq(Ω) khkLr(Ω)
When Ω = Rd, the same conclusion holds if only: A is p-elliptic, B is
q-elliptic and (1 + q/r)-elliptic, C is r-elliptic and (1 + r/q)-elliptic.
The embedding constant C only depends on p, q, r and the
∗-ellipticity constants of A, B, C
7/18
The idea of proof
Let us illustrate it in the very special case d = 1, Ω = R,
A = B = C = I (one-dimensional heat semigroups)
Note that this special case is classical and accessible by tools from
harmonic analysis (boundedness of maximal and square functions)
The following proof by the so-called Bellman function technique was
given by K.–Škreb, 2018
The approach is direct, avoids the need for any classical tools, and
extends (after a lot of extra work) to the general case
8/18
Properties of B
Let us find a C1 and “piecewise” C2 function
B = B (u, v, w, U, V, W) of 6 real variables s.t.
(B 1) Domain:
u, v, w, U, V, W > 0, up
6 U, vq
6 V, wr
6 W
(B 2) Range:
0 6 B (u, v, w, U, V, W) 6 C
(︀ 1
p
U + 1
q
V + 1
r
W
)︀
(B 3) Certain concavity:
− 1
2
( d2
B
⏟ ⏞
quadratic form
) (u, v, w, U, V, W)
⏟ ⏞
at a point
(4u, 4v, 4w, 4U, 4V, 4W)
⏟ ⏞
on a vector
> u|4v||4w|
9/18
Construction of B
WLOG assume q > r and use the ansatz:
B (u, v, w, U, V, W) = C
(︀ 1
p
U + 1
q
V + 1
r
W
)︀
− α(u, v, w)
α(u, v, w) = up
γ
(︁ vq
up
⏟ ⏞
t
,
wr
up
⏟ ⏞
s
)︁
γ(t, s) =
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩
a1 + b1t + c1s; 1 6 s 6 t
a2 + b2t + c2s
1
p0
; s 6 1 6 t
a3 + b3t
1
p0
+ c3s
1
p0
; s 6 t 6 1
a4 + b4t
2
q s
1
r
− 1
q + c4s
1
p0
; t 6 s 6 1
a5 + b5t
2
q + c5t
2
q s1− 2
q + d5s; t 6 1 6 s
a6 + b6t + c6t
2
q s1− 2
q + d6s; 1 6 t 6 s
Adjust the coefficients so that γ is C1 on (0, ∞)2
10/18
Construction of B
γ(t, s) =
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩
a + bt + cs; 1 6 s 6 t
a(p−1)−c
p−1
+ bt + cp
p−1
s
1
p0
; s 6 1 6 t
a(p−1)−(b+c)
p−1
+ bp
p−1
t
1
p0
+ cp
p−1
s
1
p0
; s 6 t 6 1
a(p−1)−(b+c)
p−1
+ bq
2
t
2
q s
1
r
− 1
q + 2cpr−bp(q−r)
2r(p−1)
s
1
p0
; t 6 s 6 1
2ar(p−1)−b(q+r)
2r(p−1)
+ bq2
2p(q−2)
t
2
q + bq(q−r)
2r(q−2)
t
2
q s1− 2
q
+ 2cr−b(q−r)
2r
s; t 6 1 6 s
a + bq
p(q−2)
t + bq(q−r)
2r(q−2)
t
2
q s1− 2
q + 2cr−b(q−r)
2r
s; 1 6 t 6 s
Choose a, b, c appropriately
Similar to the function constructed by Nazarov–Treil, 1995, used in
bilinear embeddings
11/18
Finalizing the proof
Assume f, g, h > 0 and assume for simplicity that B ∈ C2 (mollify it)
u(x, t) := (Ttf)(x), . . . , U(x, t) := (Ttfp
)(x), . . .
b(x, t) := B
(︀
u(x, t), v(x, t), w(x, t), U(x, t), V(x, t), W(x, t)
)︀
=⇒
(︀
∂t − 1
2
∂2
x
)︀
b(x, t) = (∇B )(u, v, . . .) ·
(︀
∂t − 1
2
∂2
x
)︀
(u, v, . . .)
⏟ ⏞
=0
− 1
2
(d2
B )(u, v, . . .)(∂xu, ∂xv, . . .)
Using (B 3) we get
±u(x, t) ∂xv(x, t) ∂xw(x, t) 6
(︀
∂t − 1
2
∂2
x
)︀
b(x, t)
12/18
Finalizing the proof
Integrating by parts and using B > 0 we get for δ, T > 0:
±
∫︁
R×(δ,T−δ)
k(x, T − t) u(x, t) ∂xv(x, t) ∂xw(x, t) dx dt
6
∫︁
R
k(x, δ) b(x, T − δ) dx
Letting δ → 0 and using (B 2):
±
∫︁
R×(0,T)
k(x, T − t) u(x, t) ∂xv(x, t) ∂xw(x, t) dx dt 6 b(0, T)
6
C
p
2πT
(︁ 1
p
∫︁
R
f(y)p
e− y2
2T dy +
1
q
∫︁
R
g(y)q
e− y2
2T dy +
1
r
∫︁
R
h(y)r
e− y2
2T dy
)︁
Observe lim
T→∞
p
2πT k(x, T − t) = 1 uniformly over
(x, t) ∈ [−R, R] × (0, T1] and let T → ∞, R → ∞, T1 → ∞
13/18
Relation to p-ellipticity
For α: C3 → R, A, B, C ∈ Cd×d, (u, v, w) ∈ C3, and
(ζ, η, ξ) ∈ (Cd)3 we define the generalized Hessian form of α with
respect to (A, B, C),
HA,B,C
α [(u, v, w); (ζ, η, ξ)],
as the standard inner product of
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
ReA − ImA
ImA ReA
ReB − ImB
ImB ReB
ReC − ImC
ImC ReC
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
Re ζ
Im ζ
Re η
Im η
Re ξ
Im ξ
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
∈ (Rd
)6
14/18
Relation to p-ellipticity
and
(︀
Hess(α; (u, v, w)) ⊗ IRd
)︀
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
Re ζ
Im ζ
Re η
Im η
Re ξ
Im ξ
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
∈ (Rd
)6
Here one has to interpret Hess(α; (u, v, w)) as the 6 × 6 real
Hessian matrix of the function
R6
→ R, (ur, ui, vr, vi, wr, wi) 7→ α(ur + iui, vr + ivi, wr + iwi)
15/18
Relation to p-ellipticity
Lemma
If α is given by the formula α(u, v, w) := |u|a|v|b|w|c for some
a, b, c ∈ [0, ∞〉, then
HA,B,C
α [(u, v, w); (ζ, η, ξ)]
>
1
2
|u|a
|v|b
|w|c
(︁
a2
Δa(A)
⃒
⃒
⃒
ζ
u
⃒
⃒
⃒
2
+ b2
Δb(B)
⃒
⃒
⃒
η
v
⃒
⃒
⃒
2
+ c2
Δc(C)
⃒
⃒
⃒
ξ
w
⃒
⃒
⃒
2
− 2(Λ(A) + Λ(B))
⃒
⃒
⃒
ζ
u
⃒
⃒
⃒
⃒
⃒
⃒
η
v
⃒
⃒
⃒ − 2(Λ(A) + Λ(C))
⃒
⃒
⃒
ζ
u
⃒
⃒
⃒
⃒
⃒
⃒
ξ
w
⃒
⃒
⃒
− 2(Λ(B) + Λ(C))
⃒
⃒
⃒
η
v
⃒
⃒
⃒
⃒
⃒
⃒
ξ
w
⃒
⃒
⃒
)︁
16/18
A consequence
“Vertical” square function, defined as
(G A
f)(x) :=
(︂∫︁ ∞
0
⃒
⃒
⃒∇(TA
t
f)(x)
⃒
⃒
⃒
2
dt
)︂1/2
,
is only bounded in a very restrictive range even for real elliptic A
(Auscher, 2007)
“Conical” square function, defined as
(C A
f)(x) :=
(︂∫︁ ∫︁
{|x−y|<
p
t}
⃒
⃒
⃒∇(TA
t
f)(y)
⃒
⃒
⃒
2 dy dt
td/2
)︂1/2
,
is bounded in the full range for real elliptic A
(Auscher–Hofmann–Martell, 2012)
The main theorem here reproves and refines their result
17/18
Thank you for your attention!
18/18

Más contenido relacionado

La actualidad más candente

A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theoremJamesMa54
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 

La actualidad más candente (20)

A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 

Similar a Trilinear embedding for divergence-form operators with complex coefficients

A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceAlexander Decker
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...Alexander Decker
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2IJEMM
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfRTEFGDFGJU
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final reportJamesMa54
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 

Similar a Trilinear embedding for divergence-form operators with complex coefficients (20)

Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
Ec gate 13
Ec gate 13Ec gate 13
Ec gate 13
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
cswiercz-general-presentation
cswiercz-general-presentationcswiercz-general-presentation
cswiercz-general-presentation
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Lecture6 svdd
Lecture6 svddLecture6 svdd
Lecture6 svdd
 
kactl.pdf
kactl.pdfkactl.pdf
kactl.pdf
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
PCA on graph/network
PCA on graph/networkPCA on graph/network
PCA on graph/network
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 
Maths04
Maths04Maths04
Maths04
 

Último

Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squaresusmanzain586
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalMAESTRELLAMesa2
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 

Último (20)

Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squares
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and Vertical
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 

Trilinear embedding for divergence-form operators with complex coefficients

  • 1. Trilinear embedding for divergence-form operators Vjekoslav Kovač (U. of Zagreb, PMF–MO) Joint work with Andrea Carbonaro (U. of Genova), Oliver Dragičević (U. of Ljubljana), Kristina Ana Škreb (U. of Zagreb, Civil Eng.) Supported by HRZZ UIP-2017-05-4129 (MUNHANAP) Appl Math 20, Brijuni, Sep 15, 2020 1/18
  • 2. Ellipticity and p-ellipticity Ω ⊆ Rd an open set A: Ω → Cd×d with L∞ coefficients (Note: non-smooth and complex) A is elliptic if ∃λ, Λ ∈ (0, ∞) s.t. Re 〈A(x)ξ, ξ〉Cd > λ|ξ|2 for ξ ∈ Cd , for a.e. x ∈ Ω ⃒ ⃒ 〈A(x)ξ, η〉Cd ⃒ ⃒ 6 Λ |ξ| |η| for ξ, η ∈ Cd , for a.e. x ∈ Ω Take p ∈ (0, ∞], but think of p ∈ (1, ∞) A is p-elliptic if additionally ∃c ∈ (0, ∞) s.t. Re ⟨︀ A(x)ξ, ξ + |1 − 2/p|ξ̄ ⟩︀ Cd > c|ξ|2 for ξ ∈ Cd , for a.e. x ∈ Ω (Carbonaro–Dragičević, 2016) 2/18
  • 3. Properties of p-elliptic matrices Δp(A) := ess inf x∈Ω min ξ∈Cd |ξ|=1 Re ⟨︀ A(x)ξ, ξ + |1 − 2/p|ξ̄ ⟩︀ Cd A is p-elliptic ⇐⇒ Δp(A) > 0 Δp0 (A) = Δp(A) where 1/p0 + 1/p = 1 Ap(Ω) = the class of p-elliptic matrix functions on Ω Ap(Ω) decreases in p ∈ [2, ∞) {elliptic on Ω} = A2(Ω) {real elliptic on Ω} = ⋂︁ p∈[2,∞) Ap(Ω) 3/18
  • 4. Divergence-form operators Boundary conditions reflect the choice of U : • Dirichlet: U = H1 0 (Ω) = C∞ c (Ω) in H1(Ω) • Neumann: U = H1(Ω) = W1,2(Ω) • mixed: U = {︀ u|Ω : u ∈ C∞ c (Rd) }︀ in H1(Ω),  ⊆ ∂Ω closed Divergence-form operator informally: “LA,U u = −div(A∇u)” Rigorously: 〈LA,U u, v〉L2(Ω) = ∫︁ Ω 〈A∇u, ∇v〉Cd for u ∈ D (LA), v ∈ U , where D (LA,U ) := {︀ u ∈ U : RHS extends boundedly to L2(Ω) }︀ (TA,U t )t>0 is the operator semigroup on L2(Ω) generated by −LA,U 4/18
  • 5. Bilinear embeddings A bilinear embedding is any estimate of the form ∫︁ ∞ 0 ∫︁ X |∇Ttf(x)| |∇Ttg(x)| dμ(x) dt 6 C kfkLp(X) kgkLq(X) , where (X, μ) is a measure space, (Tt)t>0 is an operator semigroup, and p, q ∈ (1, ∞) are s.t. 1/p + 1/q = 1 Some history of bilinear embeddings: • Estimates for the Ahlfors–Beurling operator and iterated Riesz transf. (Petermichl–Volberg, 2002; Nazarov–Volberg, 2003): ∫︁ R2 (R2 1 f)(x) g(x) dx = −2 ∫︁ ∞ 0 ∫︁ R2 (︀ ∂x1 Ttf(x) )︀(︀ ∂x1 Ttg(x) )︀ dx dt, where (Ttf)t>0 is the heat extension of f 5/18
  • 6. More history of bilinear embeddings • Dimension-free Littlewood–Paley estimates (Dragičević–Volberg, 2006) • Dimension-free estimates for Schrödinger operators (Dragičević–Volberg, 2011, 2012) • Dimension-free estimates for Riesz transforms associated with a Riemannian manifold (Carbonaro–Dragičević, 2013) • Functional calculus for generators of symmetric contraction semigroups (Carbonaro–Dragičević, 2017) • Bilinear embedding for divergence-form operators with complex coefficients (Carbonaro–Dragičević, 2020) – concept of p-ellipticity – connection with Lp -dissipativity of sesquilinear forms 6/18
  • 7. Trilinear embedding Take p, q, r ∈ (1, ∞) s.t. 1/p + 1/q + 1/r = 1 Theorem (Carbonaro–Dragičević–K.–Škreb, 2020) Suppose that A, B, C : Ω → Cd×d are mx{p, q, r}-elliptic. Then for f ∈ (Lp ∩ L2)(Ω), g ∈ (Lq ∩ L2)(Ω) and h ∈ (Lr ∩ L2)(Ω) we have ∫︁ ∞ 0 ∫︁ Ω ⃒ ⃒TA,U t f ⃒ ⃒ ⃒ ⃒∇TB,V t g ⃒ ⃒ ⃒ ⃒∇TC,W t h ⃒ ⃒dx dt 6 C kfkLp(Ω) kgkLq(Ω) khkLr(Ω) When Ω = Rd, the same conclusion holds if only: A is p-elliptic, B is q-elliptic and (1 + q/r)-elliptic, C is r-elliptic and (1 + r/q)-elliptic. The embedding constant C only depends on p, q, r and the ∗-ellipticity constants of A, B, C 7/18
  • 8. The idea of proof Let us illustrate it in the very special case d = 1, Ω = R, A = B = C = I (one-dimensional heat semigroups) Note that this special case is classical and accessible by tools from harmonic analysis (boundedness of maximal and square functions) The following proof by the so-called Bellman function technique was given by K.–Škreb, 2018 The approach is direct, avoids the need for any classical tools, and extends (after a lot of extra work) to the general case 8/18
  • 9. Properties of B Let us find a C1 and “piecewise” C2 function B = B (u, v, w, U, V, W) of 6 real variables s.t. (B 1) Domain: u, v, w, U, V, W > 0, up 6 U, vq 6 V, wr 6 W (B 2) Range: 0 6 B (u, v, w, U, V, W) 6 C (︀ 1 p U + 1 q V + 1 r W )︀ (B 3) Certain concavity: − 1 2 ( d2 B ⏟ ⏞ quadratic form ) (u, v, w, U, V, W) ⏟ ⏞ at a point (4u, 4v, 4w, 4U, 4V, 4W) ⏟ ⏞ on a vector > u|4v||4w| 9/18
  • 10. Construction of B WLOG assume q > r and use the ansatz: B (u, v, w, U, V, W) = C (︀ 1 p U + 1 q V + 1 r W )︀ − α(u, v, w) α(u, v, w) = up γ (︁ vq up ⏟ ⏞ t , wr up ⏟ ⏞ s )︁ γ(t, s) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a1 + b1t + c1s; 1 6 s 6 t a2 + b2t + c2s 1 p0 ; s 6 1 6 t a3 + b3t 1 p0 + c3s 1 p0 ; s 6 t 6 1 a4 + b4t 2 q s 1 r − 1 q + c4s 1 p0 ; t 6 s 6 1 a5 + b5t 2 q + c5t 2 q s1− 2 q + d5s; t 6 1 6 s a6 + b6t + c6t 2 q s1− 2 q + d6s; 1 6 t 6 s Adjust the coefficients so that γ is C1 on (0, ∞)2 10/18
  • 11. Construction of B γ(t, s) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a + bt + cs; 1 6 s 6 t a(p−1)−c p−1 + bt + cp p−1 s 1 p0 ; s 6 1 6 t a(p−1)−(b+c) p−1 + bp p−1 t 1 p0 + cp p−1 s 1 p0 ; s 6 t 6 1 a(p−1)−(b+c) p−1 + bq 2 t 2 q s 1 r − 1 q + 2cpr−bp(q−r) 2r(p−1) s 1 p0 ; t 6 s 6 1 2ar(p−1)−b(q+r) 2r(p−1) + bq2 2p(q−2) t 2 q + bq(q−r) 2r(q−2) t 2 q s1− 2 q + 2cr−b(q−r) 2r s; t 6 1 6 s a + bq p(q−2) t + bq(q−r) 2r(q−2) t 2 q s1− 2 q + 2cr−b(q−r) 2r s; 1 6 t 6 s Choose a, b, c appropriately Similar to the function constructed by Nazarov–Treil, 1995, used in bilinear embeddings 11/18
  • 12. Finalizing the proof Assume f, g, h > 0 and assume for simplicity that B ∈ C2 (mollify it) u(x, t) := (Ttf)(x), . . . , U(x, t) := (Ttfp )(x), . . . b(x, t) := B (︀ u(x, t), v(x, t), w(x, t), U(x, t), V(x, t), W(x, t) )︀ =⇒ (︀ ∂t − 1 2 ∂2 x )︀ b(x, t) = (∇B )(u, v, . . .) · (︀ ∂t − 1 2 ∂2 x )︀ (u, v, . . .) ⏟ ⏞ =0 − 1 2 (d2 B )(u, v, . . .)(∂xu, ∂xv, . . .) Using (B 3) we get ±u(x, t) ∂xv(x, t) ∂xw(x, t) 6 (︀ ∂t − 1 2 ∂2 x )︀ b(x, t) 12/18
  • 13. Finalizing the proof Integrating by parts and using B > 0 we get for δ, T > 0: ± ∫︁ R×(δ,T−δ) k(x, T − t) u(x, t) ∂xv(x, t) ∂xw(x, t) dx dt 6 ∫︁ R k(x, δ) b(x, T − δ) dx Letting δ → 0 and using (B 2): ± ∫︁ R×(0,T) k(x, T − t) u(x, t) ∂xv(x, t) ∂xw(x, t) dx dt 6 b(0, T) 6 C p 2πT (︁ 1 p ∫︁ R f(y)p e− y2 2T dy + 1 q ∫︁ R g(y)q e− y2 2T dy + 1 r ∫︁ R h(y)r e− y2 2T dy )︁ Observe lim T→∞ p 2πT k(x, T − t) = 1 uniformly over (x, t) ∈ [−R, R] × (0, T1] and let T → ∞, R → ∞, T1 → ∞ 13/18
  • 14. Relation to p-ellipticity For α: C3 → R, A, B, C ∈ Cd×d, (u, v, w) ∈ C3, and (ζ, η, ξ) ∈ (Cd)3 we define the generalized Hessian form of α with respect to (A, B, C), HA,B,C α [(u, v, w); (ζ, η, ξ)], as the standard inner product of ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ReA − ImA ImA ReA ReB − ImB ImB ReB ReC − ImC ImC ReC ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Re ζ Im ζ Re η Im η Re ξ Im ξ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ∈ (Rd )6 14/18
  • 15. Relation to p-ellipticity and (︀ Hess(α; (u, v, w)) ⊗ IRd )︀ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Re ζ Im ζ Re η Im η Re ξ Im ξ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ∈ (Rd )6 Here one has to interpret Hess(α; (u, v, w)) as the 6 × 6 real Hessian matrix of the function R6 → R, (ur, ui, vr, vi, wr, wi) 7→ α(ur + iui, vr + ivi, wr + iwi) 15/18
  • 16. Relation to p-ellipticity Lemma If α is given by the formula α(u, v, w) := |u|a|v|b|w|c for some a, b, c ∈ [0, ∞〉, then HA,B,C α [(u, v, w); (ζ, η, ξ)] > 1 2 |u|a |v|b |w|c (︁ a2 Δa(A) ⃒ ⃒ ⃒ ζ u ⃒ ⃒ ⃒ 2 + b2 Δb(B) ⃒ ⃒ ⃒ η v ⃒ ⃒ ⃒ 2 + c2 Δc(C) ⃒ ⃒ ⃒ ξ w ⃒ ⃒ ⃒ 2 − 2(Λ(A) + Λ(B)) ⃒ ⃒ ⃒ ζ u ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ η v ⃒ ⃒ ⃒ − 2(Λ(A) + Λ(C)) ⃒ ⃒ ⃒ ζ u ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ξ w ⃒ ⃒ ⃒ − 2(Λ(B) + Λ(C)) ⃒ ⃒ ⃒ η v ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ξ w ⃒ ⃒ ⃒ )︁ 16/18
  • 17. A consequence “Vertical” square function, defined as (G A f)(x) := (︂∫︁ ∞ 0 ⃒ ⃒ ⃒∇(TA t f)(x) ⃒ ⃒ ⃒ 2 dt )︂1/2 , is only bounded in a very restrictive range even for real elliptic A (Auscher, 2007) “Conical” square function, defined as (C A f)(x) := (︂∫︁ ∫︁ {|x−y|< p t} ⃒ ⃒ ⃒∇(TA t f)(y) ⃒ ⃒ ⃒ 2 dy dt td/2 )︂1/2 , is bounded in the full range for real elliptic A (Auscher–Hofmann–Martell, 2012) The main theorem here reproves and refines their result 17/18
  • 18. Thank you for your attention! 18/18