SlideShare una empresa de Scribd logo
1 de 44
Descargar para leer sin conexión
Ice Induced Vibration Measurements
                       On MW scale wind turbines



Presented by:
Ville Lehtomäki, VTT
Matthew Wadham-Gagnon, TCE


2013-02-12
WinterWind 2013
Co-authors

V. Lehtomäki, VTT, Finland
S. Rissanen, VTT, Finland
T. Karlsson, VTT , Finland
M. Wadham-Gagnon, TCE, QC, Canada
D. Bolduc, TCE , QC, Canada
B. Boucher, TCE , QC, Canada
E. Bechoefer, NRG, VT, USA




                               2
Content
• Motivation
• Case Canada
   •   Infrastructure
   •   Icing Event no1: glaze
   •   Icing Event no2: rime
• Case Finland
   •   Site & measurement system description
   •   Ice detection: Finding icing cases from various databases
   •   Icing Event no3: light rime
   •   Loads on blades & tower
• Conclusions
• Future work




                                    3
Motivation

• Currently 60 GW of wind energy in cold and icing climate (CIC) [3]
• Global wind energy in CIC ≈ 3 x global offshore! [5]
• NREL estimate: 50% of US wind fleet in CIC by 2030 [4]

• Problem of production losses caused by iced blades “well known”.

• BUT no clear idea, how turbine lifetime is affected by iced
  blades.

• Thesis: Are premature failure of main components e.g.
  gearboxes & towers resulting to “hidden” financial penalties
  BIGGER than production losses?

• ULTIMATE GOAL: Increase knowledge & improve wind energy
  reliability in CIC.


                                 4
Work presented here

•   Preliminary analysis to feed in to:

•   IcedBlades – Research consortium with European partners to
    assess the effect of ice induced vibration on fatigue loads

•   TC88 Cold Climate Sub Committee to include ice load case in
    next edition of IEC61400-1




                                   5
Main questions to be answered:

1. Does icing of blades increase vibrations and loads?

2. Which turbine components are most affected?

3. What causes increased loads?




                          6
Case Canada

     7
TCE infrastructure location

                               TCE R&D wind farm




                 Over 900MW in operation


             8
TCE R&D Wind Farm
• Two 2.05 MW Repower
  MM92 wind turbines

• Located in Riviere-au-
  Renard, Québec, Canada

• Icing & complex terrain

• Commissionned in March
  2010

• Research, development
  and technology transfer
  projects involving
  northern climates and
  complex terrain.



                                          9
                                 www.eolien.qc.ca
TCE 126m Met Mast

    Compliant with
     CSA-S37-01

(DLC: 40 mm of ice
       and 57 m/s)




                     10
Infrastructure Topographic Layout




                11
Health Monitoring System

• Text




                     12
Vibration Data
• Measurement Campaign running since December 2011

• 2-axis sensor to measure nacelle accelerations

• Nacelle X (fore and aft) & Nacelle Y (side to side)




                                       13
Vibration Data
• Measurement Campaign running since December 2011

• 2-axis sensor to measure nacelle accelerations

• Nacelle X (fore and aft) & Nacelle Y (side to side)

• FFT1 = Normalised magnitude of first tower eigenvalue from FFT

• FFT1 data Normalised with respect to wind speed (WS) and turbulence
  intensity (TI) BIN matrix as follows:




                                       14
Vibration Data



1.4



1.2



 1



0.8



0.6



0.4



0.2



 0




             15
Vibration Data
      • Possibility of ice induced vibration when y-axis value exceeds 1


1.4



1.2



 1



0.8



0.6



0.4



0.2



 0




                                            16
Vibration Data
      • Not all values that exceed 1 are due to icing


1.4



1.2



 1



0.8



0.6



0.4



0.2



 0




                                            17
Icing Event example 1 (IE1) - Glaze
  • Freezing Rain




2012-01-14


                                   ~5mm of glaze
                                   2012-01-16
                              18
IE1 – Meteorological Icing
                                       Meteorological icing




0.35

 0.3

0.25

 0.2

0.15

 0.1

0.05

  0




       Event type                             Method          Duration
       Meteorological Icing                  Ice sensor       ~ 6 hours (15 hours)




                                                19
IE1 – Instrumental Icing
                                            Meteorological icing       Instr. Icing




           25


           20


           15
WS (m/s)




           10


            5


            0



                                                        WS1        WS2


                Event type                                 Method                     Duration
                Meteorological Icing                      Ice sensor                  ~ 6 hours (15 hours)
                Instrumental Icing               Heat/Unheat Anemometers              ~ 65 hours




                                                              20
IE1 – Production Loss
                                             Meteorological icing      Instr. Icing   Prod. Loss




             2 500


             2 000
Power (kW)




             1 500


             1 000


              500


                0



                                                               Power        CPC


                     Event type                                     Method                         Duration
                     Meteorological Icing                           Ice sensor                     ~ 6 hours (15 hours)
                     Instrumental Icing                   Heat/Unheat Anemometers                  ~ 65 hours
                     Production loss                       Actual vs expected power                ~ (1.5 hours)



                                                                       21
IE1 – Nacelle Y
                            Meteorological icing   Instr. Icing      Prod. Loss       Ice induced Vibration




6


5


4


3


2


1


0



    Event type                                                    Method                          Duration
    Meteorological Icing                                      Ice sensor                          ~ 6 hours (15 hours)
    Instrumental Icing                               Heat/Unheat Anemometers                      ~ 65 hours
    Production loss                                   Actual vs expected power                    ~ 1.5 hours
    Ice Induced Vibration                          Nacelle X and Y – FFT1 ice index               ~ 5 hours (50 hours)

                                                                   22
IE1 – Nacelle Y
                            Meteorological icing   Instr. Icing      Prod. Loss       Ice induced Vibration




6


5


4
                                                                        Ice Shed?
3


2


1


0



    Event type                                                    Method                          Duration
    Meteorological Icing                                      Ice sensor                          ~ 6 hours (15 hours)
    Instrumental Icing                               Heat/Unheat Anemometers                      ~ 65 hours
    Production loss                                   Actual vs expected power                    ~ 1.5 hours
    Ice Induced Vibration                          Nacelle X and Y – FFT1 ice index               ~ 5 hours (50 hours)

                                                                   23
IE1 – Nacelle X
                              Meteorological icing   Instr. Icing      Prod. Loss       Ice induced Vibration




 4

3.5

 3

2.5

 2

1.5

 1

0.5

 0



      Event type                                                    Method                          Duration
      Meteorological Icing                                      Ice sensor                          ~ 6 hours (15 hours)
      Instrumental Icing                               Heat/Unheat Anemometers                      ~ 65 hours
      Production loss                                   Actual vs expected power                    ~ 1.5 hours
      Ice Induced Vibration                          Nacelle X and Y – FFT1 ice index               ~ 5 hours (50 hours)

                                                                     24
Icing Event example 2 (IE2) - rime
Photos taken 2012/11/09 16:00
Estimated 15-20 cm of ice near tip




                                     25
IE2 – Meteorological Icing
                                                            Meteorological icing




            10                                                                                               150

                                                                                                             125




                                                                                                                   Cloud Height (m)
             5                                                                                               100
Temp (oC)




                                                                                                             75

             0                                                                                               50

                                                                                                             25

            -5                                                                                               0




                                           MMV2 78m T         WEC1 Temp       MMV2 11m Min CH

                 Event type                                      Method                         Duration
                 Meteorological Icing                   Cloud Height & Temperature              ~ 30 hours




                                                                   26
IE2 – Instrumental Icing
                                              Meteorological icing     Instr. Icing




           35

           30

           25
WS (m/s)




           20

           15

           10

            5

            0




                                           WEC1 WS cup           WEC1 WS heat avg


                Event type                                Method                      Duration
                Meteorological Icing            Cloud Height & Temperature            ~ 30 hours
                Instrumental Icing              Heat/Unheat Anemometers               ~ 60 hours




                                                            27
IE2 – Production Loss
                                             Meteorological icing         Instr. Icing   Prod. Loss




             2500

             2000
Power (kW)




             1500

             1000

             500

               0




                                                      WEC1 Power              WEC1 CPC

                    Event type                                      Method                            Duration
                    Meteorological Icing               Cloud Height & Temperature                     ~ 30 hours
                    Instrumental Icing                 Heat/Unheat Anemometers                        ~ 60 hours
                    Production loss                     Actual vs expected power                      ~ 30 hours



                                                                     28
IE2 – Nacelle X
                              Meteorological icing    Instr. Icing    Prod. Loss   Ice induced Vibration




 3


2.5


 2


1.5


 1


0.5


 0




      Event type                                               Method                       Duration
      Meteorological Icing                           Cloud Height & Temperature             ~ 30 hours
      Instrumental Icing                             Heat/Unheat Anemometers                ~ 60 hours
      Production loss                                 Actual vs expected power              ~ 30 hours
      Ice Induced Vibration                               Nacelle X – FFT1                  ~ 30 hours

                                                                 29
IE2 – Nacelle Y
                              Meteorological icing    Instr. Icing    Prod. Loss   Ice induced Vibration




1.4

1.2

 1

0.8

0.6

0.4

0.2

 0




      Event type                                               Method                       Duration
      Meteorological Icing                           Cloud Height & Temperature             ~ 30 hours
      Instrumental Icing                             Heat/Unheat Anemometers                ~ 60 hours
      Production loss                                 Actual vs expected power              ~ 30 hours
      Ice Induced Vibration                               Nacelle X – FFT1                  ~ 30 hours

                                                                 30
Case Finland

      31
Case Finland
                -Site & measurement system description-
• Site location: Southern Finland
• MW-scale turbine (near shore)
• Meas. acc. to IEC 61400-1-12 (power) &
  -13 (loads)
• Measurement campaign: 9/2007-8/2009
• Load measurements at 50Hz
    •   Blade#1-2 root (flap&edge)
    •   Tower top (roll,pitch&yaw)




                                                                          Hub height: 100m asl

                                                                                                 Blade tip: 130m asl
    •   Tower base (s2s&fa)




                                                          Base: 30m asl
•   Met mast
    •   Heated & unheated cup anemometer
    •   No dedicated ice detectors



                                           32
Baseline values
•   Before looking at Icing Event (IE) power production or loads, a
    reference non-iced dataset is need as baseline values.
•   Baseline values are then compared to IE values.

1. Calculate baseline (non-iced) values taking into account:
    •   Wind speed [m/s]
    •   Turbulence intensity [%]                IEC 61400-13
    •   Turbine status (power production)              &
    •   Wind sector (wake or terrain effects)   IEC 61400-1-12
    •   Temperature (>0 C)
2. Calculate relative values for IE using formula (1)


                                                         (1)

• If relative = 1, then IE values = baseline values.

                                      33
Ice detection with multiple signals (9/2007-8/2009)




 Icing Event no3




                         34
Icing Event no3 (IE3): In-cloud light rime icing



            48h from start to finish with Ice
            Warning & cold cup anemo freezing.




                                                 Alarm hours
                                                 1+2: 19h
                                                 1+2 or 2+3: 19h


                             Cold (unheated)
                             anemo stops




                                           35
IE3: Blade & tower loads




                                  4% flap deviation between b2 & b3 result to
                                  aerodynamic imbalance of the rotor




                                                          Increase in tower
80% threshold of baseline                                 fatigue loads
limits in ”grey tube”




                                                 36
IE3: Blade & tower loads




Mean flap load              Tower fore-aft fatigue
decrease by 10…20%          DEL increased by 5..32%

Tower fore-aft mean
decreased by 15..45%



                       37
Conclusions (1/3)
• More reliable ice detection achieved with multiple methods.

• For both rime icing cases analyzed, the duration of:
   • Meteorological icing ≈ cloud base height & temperature* ≈
      production loss ≈ above threshold tower vibration.

• Above threshold tower vibrations in:
   • IE1 (glaze) for 50h
   • IE2 (rime) for 30h
   • IE3 (light rime) for 14h

• IE1 (glaze) led to significant increase in nacelle-X and -Y
  vibrations

• IE2 (rime) led to significant increase in nacelle-X vibration but
  NO apparent vibration in nacelle-Y

            * www.WindPowerIcingAtlas.com,   38
            online soon
Conclusions (2/3)


• In IE1-2, tower vibrations continue at increased levels even
  when power production is returned to baseline levels.

• Mean blade & tower loads decrease during IE3

• Tower base fatigue loads increase in IE3




           * www.WindPowerIcingAtlas.com,   39
           online soon
Conclusions (3/3)
                 -Main takeaways-

1. Does icing of blades increase vibrations and loads?
   • Yes, during IE1-3.

2. Which turbine components are most affected?
   • Blade fatigue loads decrease, tower base
     fatigue loads increase.

3. What causes increased loads?
   • In IE3 (light rime), aerodynamic imbalance.


                          40
Future Work
•   More icing events need to be analyzed in order to get a thorough statistical
    view on the long-term impacts.

•   Analyse P2P, RMS and RPM data

•   Analyse gearbox higher speed shafts

•   Determine fatigue loads for other components

•   Replicate icing events with multi body dynamics simulation (e.g. NREL FAST
    and FLEX5)




                                          41
Thanks, Kiitos, Tack, Merci!




Åre, 9.2.2013
Ville Lehtomäki, M.Sc. (Tech)                                  Matthew Wadham-Gagnon, eng, M.eng
Research Scientist                                             Project Lead
Ville.Lehtomaki@vtt.fi                                         mgagnon@eolien.qc.ca

Vuorimiehentie 5, Espoo, P.O. Box 1000, FI-02044 VTT Finland   70, rue Bolduc, Gaspé (Québec) G4X 1G2
Tél. : +358 40 176 3147                                        Canada
                                                               Tél. : +1 418 368-6162
 Finnish Funding Agency for
 Technology and Innovation
References
[1] Lehtomäki, V. et al., IcedBlades - Modelling of ice accretion on rotor blades in a coupled
wind turbine tool, WinterWind 2012 conference, Skellefteå, Sweden

[2] IEC 61400-1:2005 ed3, Wind Turbines – Part 1: Design requirements, International
Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20,
Switzerland

[3] IEA WIND TASK 19, EXPERT GROUP STUDY ON RECOMMENDED PRACTICES: 13.
WIND ENERGY PROJECTS IN COLD CLIMATES, 1. EDITION 2011, Approved by the
Executive Committee of IEA Wind May 22, 2012.

[4] Baring-Gould, I. US Wind Market Overview, WinterWind 2011 conference

[5] Laakso, T. et al., IEA WIND TASK 19 WIND ENERGY IN COLD CLIMATES: Cold Climate
Challenges, EWEA 2011 side event, Brussels, Belgium




                                               44

Más contenido relacionado

Similar a Lehtomäki ville

Ice profile classification - Matthew Wadham-Gagnon
Ice profile classification - Matthew Wadham-GagnonIce profile classification - Matthew Wadham-Gagnon
Ice profile classification - Matthew Wadham-GagnonWinterwind
 
WinWind, Ice prevention system – operating experience and future development
WinWind, Ice prevention system – operating experience and future developmentWinWind, Ice prevention system – operating experience and future development
WinWind, Ice prevention system – operating experience and future developmentWinterwind
 
Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...Winterwind
 
Comparison of visibility observations at a meteorological tower to cloud base...
Comparison of visibility observations at a meteorological tower to cloud base...Comparison of visibility observations at a meteorological tower to cloud base...
Comparison of visibility observations at a meteorological tower to cloud base...Winterwind
 
Boyd - High Speed Monitoring
Boyd - High Speed MonitoringBoyd - High Speed Monitoring
Boyd - High Speed MonitoringMatthew Boyd
 
Update on TIMES-NZ modelling
Update on TIMES-NZ modellingUpdate on TIMES-NZ modelling
Update on TIMES-NZ modellingIEA-ETSAP
 
UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector James Ericson
 
Titan tracker company profile
Titan tracker company profileTitan tracker company profile
Titan tracker company profileCarlos Garcia
 
Nidec asi service dry ice blasting
Nidec asi service dry ice blastingNidec asi service dry ice blasting
Nidec asi service dry ice blastingNidec Corporation
 
Simulation of icing events over Gaspé region
Simulation of icing events over Gaspé regionSimulation of icing events over Gaspé region
Simulation of icing events over Gaspé regionWinterwind
 
The need for ice detection standards Jarkko Latonen, Labkotec
The need for ice detection standards Jarkko Latonen, Labkotec The need for ice detection standards Jarkko Latonen, Labkotec
The need for ice detection standards Jarkko Latonen, Labkotec Winterwind
 

Similar a Lehtomäki ville (13)

Ice profile classification - Matthew Wadham-Gagnon
Ice profile classification - Matthew Wadham-GagnonIce profile classification - Matthew Wadham-Gagnon
Ice profile classification - Matthew Wadham-Gagnon
 
WinWind, Ice prevention system – operating experience and future development
WinWind, Ice prevention system – operating experience and future developmentWinWind, Ice prevention system – operating experience and future development
WinWind, Ice prevention system – operating experience and future development
 
Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...
 
PRESENTATION SEEP
PRESENTATION SEEPPRESENTATION SEEP
PRESENTATION SEEP
 
Comparison of visibility observations at a meteorological tower to cloud base...
Comparison of visibility observations at a meteorological tower to cloud base...Comparison of visibility observations at a meteorological tower to cloud base...
Comparison of visibility observations at a meteorological tower to cloud base...
 
61 boyd high_speed_monitoring
61 boyd high_speed_monitoring61 boyd high_speed_monitoring
61 boyd high_speed_monitoring
 
Boyd - High Speed Monitoring
Boyd - High Speed MonitoringBoyd - High Speed Monitoring
Boyd - High Speed Monitoring
 
Update on TIMES-NZ modelling
Update on TIMES-NZ modellingUpdate on TIMES-NZ modelling
Update on TIMES-NZ modelling
 
UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector
 
Titan tracker company profile
Titan tracker company profileTitan tracker company profile
Titan tracker company profile
 
Nidec asi service dry ice blasting
Nidec asi service dry ice blastingNidec asi service dry ice blasting
Nidec asi service dry ice blasting
 
Simulation of icing events over Gaspé region
Simulation of icing events over Gaspé regionSimulation of icing events over Gaspé region
Simulation of icing events over Gaspé region
 
The need for ice detection standards Jarkko Latonen, Labkotec
The need for ice detection standards Jarkko Latonen, Labkotec The need for ice detection standards Jarkko Latonen, Labkotec
The need for ice detection standards Jarkko Latonen, Labkotec
 

Más de Winterwind

Kvt mapping of_icing
Kvt mapping of_icingKvt mapping of_icing
Kvt mapping of_icingWinterwind
 
Bergström hans
Bergström hansBergström hans
Bergström hansWinterwind
 
Bergström fredrik
Bergström fredrikBergström fredrik
Bergström fredrikWinterwind
 
Delle monache luca
Delle monache lucaDelle monache luca
Delle monache lucaWinterwind
 
Hietanen jarmo
Hietanen jarmoHietanen jarmo
Hietanen jarmoWinterwind
 
Hudecz adriana
Hudecz adrianaHudecz adriana
Hudecz adrianaWinterwind
 
Huttunen saara
Huttunen saaraHuttunen saara
Huttunen saaraWinterwind
 
Jordaens pieter jan
Jordaens pieter janJordaens pieter jan
Jordaens pieter janWinterwind
 
Meyer sebastian
Meyer sebastianMeyer sebastian
Meyer sebastianWinterwind
 
Olsson esbjörn
Olsson esbjörnOlsson esbjörn
Olsson esbjörnWinterwind
 
Sell dr. stephan
Sell dr. stephanSell dr. stephan
Sell dr. stephanWinterwind
 

Más de Winterwind (20)

Kvt mapping of_icing
Kvt mapping of_icingKvt mapping of_icing
Kvt mapping of_icing
 
Bergström hans
Bergström hansBergström hans
Bergström hans
 
Bergström fredrik
Bergström fredrikBergström fredrik
Bergström fredrik
 
Campbell iain
Campbell iainCampbell iain
Campbell iain
 
Davis neil
Davis neilDavis neil
Davis neil
 
Delle monache luca
Delle monache lucaDelle monache luca
Delle monache luca
 
Derrick alan
Derrick alanDerrick alan
Derrick alan
 
Hietanen jarmo
Hietanen jarmoHietanen jarmo
Hietanen jarmo
 
Hudecz adriana
Hudecz adrianaHudecz adriana
Hudecz adriana
 
Hutton gail
Hutton gailHutton gail
Hutton gail
 
Huttunen saara
Huttunen saaraHuttunen saara
Huttunen saara
 
Jeffs justin
Jeffs justinJeffs justin
Jeffs justin
 
Jordaens pieter jan
Jordaens pieter janJordaens pieter jan
Jordaens pieter jan
 
Karlsson timo
Karlsson timoKarlsson timo
Karlsson timo
 
Meyer sebastian
Meyer sebastianMeyer sebastian
Meyer sebastian
 
Olsson esbjörn
Olsson esbjörnOlsson esbjörn
Olsson esbjörn
 
Ribeiro carla
Ribeiro carlaRibeiro carla
Ribeiro carla
 
Sell dr. stephan
Sell dr. stephanSell dr. stephan
Sell dr. stephan
 
Sukosd attila
Sukosd attilaSukosd attila
Sukosd attila
 
Szasz robert
Szasz robertSzasz robert
Szasz robert
 

Último

New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 

Último (20)

New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 

Lehtomäki ville

  • 1. Ice Induced Vibration Measurements On MW scale wind turbines Presented by: Ville Lehtomäki, VTT Matthew Wadham-Gagnon, TCE 2013-02-12 WinterWind 2013
  • 2. Co-authors V. Lehtomäki, VTT, Finland S. Rissanen, VTT, Finland T. Karlsson, VTT , Finland M. Wadham-Gagnon, TCE, QC, Canada D. Bolduc, TCE , QC, Canada B. Boucher, TCE , QC, Canada E. Bechoefer, NRG, VT, USA 2
  • 3. Content • Motivation • Case Canada • Infrastructure • Icing Event no1: glaze • Icing Event no2: rime • Case Finland • Site & measurement system description • Ice detection: Finding icing cases from various databases • Icing Event no3: light rime • Loads on blades & tower • Conclusions • Future work 3
  • 4. Motivation • Currently 60 GW of wind energy in cold and icing climate (CIC) [3] • Global wind energy in CIC ≈ 3 x global offshore! [5] • NREL estimate: 50% of US wind fleet in CIC by 2030 [4] • Problem of production losses caused by iced blades “well known”. • BUT no clear idea, how turbine lifetime is affected by iced blades. • Thesis: Are premature failure of main components e.g. gearboxes & towers resulting to “hidden” financial penalties BIGGER than production losses? • ULTIMATE GOAL: Increase knowledge & improve wind energy reliability in CIC. 4
  • 5. Work presented here • Preliminary analysis to feed in to: • IcedBlades – Research consortium with European partners to assess the effect of ice induced vibration on fatigue loads • TC88 Cold Climate Sub Committee to include ice load case in next edition of IEC61400-1 5
  • 6. Main questions to be answered: 1. Does icing of blades increase vibrations and loads? 2. Which turbine components are most affected? 3. What causes increased loads? 6
  • 8. TCE infrastructure location TCE R&D wind farm Over 900MW in operation 8
  • 9. TCE R&D Wind Farm • Two 2.05 MW Repower MM92 wind turbines • Located in Riviere-au- Renard, Québec, Canada • Icing & complex terrain • Commissionned in March 2010 • Research, development and technology transfer projects involving northern climates and complex terrain. 9 www.eolien.qc.ca
  • 10. TCE 126m Met Mast Compliant with CSA-S37-01 (DLC: 40 mm of ice and 57 m/s) 10
  • 13. Vibration Data • Measurement Campaign running since December 2011 • 2-axis sensor to measure nacelle accelerations • Nacelle X (fore and aft) & Nacelle Y (side to side) 13
  • 14. Vibration Data • Measurement Campaign running since December 2011 • 2-axis sensor to measure nacelle accelerations • Nacelle X (fore and aft) & Nacelle Y (side to side) • FFT1 = Normalised magnitude of first tower eigenvalue from FFT • FFT1 data Normalised with respect to wind speed (WS) and turbulence intensity (TI) BIN matrix as follows: 14
  • 16. Vibration Data • Possibility of ice induced vibration when y-axis value exceeds 1 1.4 1.2 1 0.8 0.6 0.4 0.2 0 16
  • 17. Vibration Data • Not all values that exceed 1 are due to icing 1.4 1.2 1 0.8 0.6 0.4 0.2 0 17
  • 18. Icing Event example 1 (IE1) - Glaze • Freezing Rain 2012-01-14 ~5mm of glaze 2012-01-16 18
  • 19. IE1 – Meteorological Icing Meteorological icing 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) 19
  • 20. IE1 – Instrumental Icing Meteorological icing Instr. Icing 25 20 15 WS (m/s) 10 5 0 WS1 WS2 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours 20
  • 21. IE1 – Production Loss Meteorological icing Instr. Icing Prod. Loss 2 500 2 000 Power (kW) 1 500 1 000 500 0 Power CPC Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ (1.5 hours) 21
  • 22. IE1 – Nacelle Y Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 6 5 4 3 2 1 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ 1.5 hours Ice Induced Vibration Nacelle X and Y – FFT1 ice index ~ 5 hours (50 hours) 22
  • 23. IE1 – Nacelle Y Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 6 5 4 Ice Shed? 3 2 1 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ 1.5 hours Ice Induced Vibration Nacelle X and Y – FFT1 ice index ~ 5 hours (50 hours) 23
  • 24. IE1 – Nacelle X Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 4 3.5 3 2.5 2 1.5 1 0.5 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ 1.5 hours Ice Induced Vibration Nacelle X and Y – FFT1 ice index ~ 5 hours (50 hours) 24
  • 25. Icing Event example 2 (IE2) - rime Photos taken 2012/11/09 16:00 Estimated 15-20 cm of ice near tip 25
  • 26. IE2 – Meteorological Icing Meteorological icing 10 150 125 Cloud Height (m) 5 100 Temp (oC) 75 0 50 25 -5 0 MMV2 78m T WEC1 Temp MMV2 11m Min CH Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours 26
  • 27. IE2 – Instrumental Icing Meteorological icing Instr. Icing 35 30 25 WS (m/s) 20 15 10 5 0 WEC1 WS cup WEC1 WS heat avg Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours 27
  • 28. IE2 – Production Loss Meteorological icing Instr. Icing Prod. Loss 2500 2000 Power (kW) 1500 1000 500 0 WEC1 Power WEC1 CPC Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours Production loss Actual vs expected power ~ 30 hours 28
  • 29. IE2 – Nacelle X Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 3 2.5 2 1.5 1 0.5 0 Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours Production loss Actual vs expected power ~ 30 hours Ice Induced Vibration Nacelle X – FFT1 ~ 30 hours 29
  • 30. IE2 – Nacelle Y Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours Production loss Actual vs expected power ~ 30 hours Ice Induced Vibration Nacelle X – FFT1 ~ 30 hours 30
  • 32. Case Finland -Site & measurement system description- • Site location: Southern Finland • MW-scale turbine (near shore) • Meas. acc. to IEC 61400-1-12 (power) & -13 (loads) • Measurement campaign: 9/2007-8/2009 • Load measurements at 50Hz • Blade#1-2 root (flap&edge) • Tower top (roll,pitch&yaw) Hub height: 100m asl Blade tip: 130m asl • Tower base (s2s&fa) Base: 30m asl • Met mast • Heated & unheated cup anemometer • No dedicated ice detectors 32
  • 33. Baseline values • Before looking at Icing Event (IE) power production or loads, a reference non-iced dataset is need as baseline values. • Baseline values are then compared to IE values. 1. Calculate baseline (non-iced) values taking into account: • Wind speed [m/s] • Turbulence intensity [%] IEC 61400-13 • Turbine status (power production) & • Wind sector (wake or terrain effects) IEC 61400-1-12 • Temperature (>0 C) 2. Calculate relative values for IE using formula (1) (1) • If relative = 1, then IE values = baseline values. 33
  • 34. Ice detection with multiple signals (9/2007-8/2009) Icing Event no3 34
  • 35. Icing Event no3 (IE3): In-cloud light rime icing 48h from start to finish with Ice Warning & cold cup anemo freezing. Alarm hours 1+2: 19h 1+2 or 2+3: 19h Cold (unheated) anemo stops 35
  • 36. IE3: Blade & tower loads 4% flap deviation between b2 & b3 result to aerodynamic imbalance of the rotor Increase in tower 80% threshold of baseline fatigue loads limits in ”grey tube” 36
  • 37. IE3: Blade & tower loads Mean flap load Tower fore-aft fatigue decrease by 10…20% DEL increased by 5..32% Tower fore-aft mean decreased by 15..45% 37
  • 38. Conclusions (1/3) • More reliable ice detection achieved with multiple methods. • For both rime icing cases analyzed, the duration of: • Meteorological icing ≈ cloud base height & temperature* ≈ production loss ≈ above threshold tower vibration. • Above threshold tower vibrations in: • IE1 (glaze) for 50h • IE2 (rime) for 30h • IE3 (light rime) for 14h • IE1 (glaze) led to significant increase in nacelle-X and -Y vibrations • IE2 (rime) led to significant increase in nacelle-X vibration but NO apparent vibration in nacelle-Y * www.WindPowerIcingAtlas.com, 38 online soon
  • 39. Conclusions (2/3) • In IE1-2, tower vibrations continue at increased levels even when power production is returned to baseline levels. • Mean blade & tower loads decrease during IE3 • Tower base fatigue loads increase in IE3 * www.WindPowerIcingAtlas.com, 39 online soon
  • 40. Conclusions (3/3) -Main takeaways- 1. Does icing of blades increase vibrations and loads? • Yes, during IE1-3. 2. Which turbine components are most affected? • Blade fatigue loads decrease, tower base fatigue loads increase. 3. What causes increased loads? • In IE3 (light rime), aerodynamic imbalance. 40
  • 41. Future Work • More icing events need to be analyzed in order to get a thorough statistical view on the long-term impacts. • Analyse P2P, RMS and RPM data • Analyse gearbox higher speed shafts • Determine fatigue loads for other components • Replicate icing events with multi body dynamics simulation (e.g. NREL FAST and FLEX5) 41
  • 42. Thanks, Kiitos, Tack, Merci! Åre, 9.2.2013
  • 43. Ville Lehtomäki, M.Sc. (Tech) Matthew Wadham-Gagnon, eng, M.eng Research Scientist Project Lead Ville.Lehtomaki@vtt.fi mgagnon@eolien.qc.ca Vuorimiehentie 5, Espoo, P.O. Box 1000, FI-02044 VTT Finland 70, rue Bolduc, Gaspé (Québec) G4X 1G2 Tél. : +358 40 176 3147 Canada Tél. : +1 418 368-6162 Finnish Funding Agency for Technology and Innovation
  • 44. References [1] Lehtomäki, V. et al., IcedBlades - Modelling of ice accretion on rotor blades in a coupled wind turbine tool, WinterWind 2012 conference, Skellefteå, Sweden [2] IEC 61400-1:2005 ed3, Wind Turbines – Part 1: Design requirements, International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland [3] IEA WIND TASK 19, EXPERT GROUP STUDY ON RECOMMENDED PRACTICES: 13. WIND ENERGY PROJECTS IN COLD CLIMATES, 1. EDITION 2011, Approved by the Executive Committee of IEA Wind May 22, 2012. [4] Baring-Gould, I. US Wind Market Overview, WinterWind 2011 conference [5] Laakso, T. et al., IEA WIND TASK 19 WIND ENERGY IN COLD CLIMATES: Cold Climate Challenges, EWEA 2011 side event, Brussels, Belgium 44