Orifice Calibration

Y
Orifice Calibration:
Two Phase Small Air
BY: JESSICA CATLIN, DYLAN HELM , AND YEN NGUYEN
Objective
 Orifice Flow Calibration
 Future Experiments
 Develop Model
 𝑄 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏
 Flow Ranges (0-0.3 SCFM)
 a=0.0575, b=0.592
 Testing
Equipment
Gas Flow Meter Zero and Range Screws Control Valve
EHS&LP
 Air
 Leaks
 Water in Line
 Pressure Regulation
Data Model
 𝑄 𝑎 =
𝑉2−𝑉1
𝑡2−𝑡1
 𝑄𝑠 = (0.03531) ∗ 𝑄 𝑎 ∗ (
𝑇𝑠
𝑇
) ∗ (
𝑃
𝑃𝑠
)
 Constant is unit conversion from (L/min) to (SCFM)
 294.11= standard temperature (K)
 101.3= standard pressure (kPa)
Process Model
 𝑄 𝑎 = 𝐶 𝑜 𝐴 𝑜
2(∆𝑃)
𝜌(1−𝛽4)
 Horizontal pipe, steady state, inviscid, and incompressible
 𝑄𝑠 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏
 Notice Standard Flow
Uncertainty
 Variables with uncertainty
 𝑉1, 𝑉2, 𝑡1, 𝑡2, 𝑃𝑎𝑡𝑚, 𝑃, 𝑇
𝜀 𝑄,95% =
𝑑𝑄
𝑑𝑉1
2
∗ 𝜀 𝑉1
2 +
𝑑𝑄
𝑑𝑉2
2
∗ 𝜀 𝑉2
2 +
𝑑𝑄
𝑑𝑡1
2
∗ 𝜀𝑡1
2 +
𝑑𝑄
𝑑𝑡2
2
∗ 𝜀𝑡2
2 +
𝑑𝑄
𝑑𝑃𝑎𝑡𝑚
2
∗ 𝜀 𝑃 𝑎𝑡𝑚
2 +
𝑑𝑄
𝑑𝑃
2
∗ 𝜀 𝑃
2 +
𝑑𝑄
𝑑𝑇
2
∗ 𝜀 𝑇
2
Expectations
 Square root model
 Unknown constant a is positive
 Unknown constant b is close to 0.5
 Average residual close to zero 0
0.5
1
1.5
2
2.5
3
3.5
0 2 4 6 8 10 12
Q
i-io
Expected Plot of Q vs. (i-io)
Experimental Plan
 Open necessary valves
 Set pressure regulators
 Adjust zero (𝑖 𝑜) and range
 Flow must be turned off for zero
 Attach the flow meter
 Set valve at random operating %
 Record the current (i)
Experimental Plan (cont.)
 Measure (𝑉2 − 𝑉1), T, and P
 1 minute interval
 Repeat fifteen times
 Plug data into spreadsheet
 Determine a and b using solver
 Plug model into NI LabVIEW
 Test the model
 9 trials
Data
Run Experimental Flow (Liters) Time (min) Actual Flow (L/min) Temperature (C) Pressure (kPa) Standard Flow (SCFM) Current (mA) i-io (mA) Modeled Flow Rate Q (ACFM) Squared Deviation
13 0.92 1 0.92 21.5 108.3 0.035 4 0.8 0.050 0.000246701
1 1.55 1 1.55 21 108.8 0.059 4.8 1.6 0.076 0.000294121
7 2.4 1 2.40 21.5 108.8 0.091 5.1 1.9 0.084 4.63685E-05
10 2.65 1 2.65 21.5 108.8 0.100 5.3 2.1 0.089 0.00012422
5 2.59 1 2.59 21.5 110.3 0.099 5.6 2.4 0.097 8.33137E-06
11 2.5 1 2.50 21.5 108.8 0.095 5.7 2.5 0.099 1.7948E-05
8 3.32 1 3.32 21.5 109.1 0.126 6 2.8 0.106 0.000412202
2 3.2 1 3.20 21.5 109.3 0.122 6.3 3.1 0.112 8.83274E-05
3 3.18 1 3.18 21.5 110.1 0.122 7.7 4.5 0.140 0.000331658
6 4.2 1 4.20 21.5 109.2 0.160 8.5 5.3 0.154 2.82703E-05
15 4.79 1 4.79 21.5 109.6 0.183 11 7.8 0.194 0.000126736
12 5.78 1 5.78 21.5 108.8 0.219 14.3 11.1 0.239 0.000406417
9 7.75 1 7.75 21.5 109 0.294 16.4 13.2 0.265 0.000850742
14 7.72 1 7.72 21.5 109.8 0.295 17.7 14.5 0.280 0.000225965
4 7.52 1 7.52 21.5 110.2 0.288 20.1 16.9 0.307 0.000329187
Sum of Squared Deviations 0.003537195
Solution:
a= 0.057506788
b= 0.59197892
Results
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 5 10 15 20
Q
(i-io)
Q vs. (i-io)
Model
Experiment
Data Model Testing
Q modeled
(SCFM)
Q measured (L/min)
Pressure
(KPa)
Temperature (K)
Q measured
(SCFM)
Percent Error
(%)
0.073 4.290 108.8 294.5 0.084317629 -15.5
0.072 4.280 108.8 294.5 0.084121084 -16.8
0.075 4.350 108.8 294.5 0.085496896 -14.0
0.083 4.940 109.3 294.5 0.097539227 -17.5
0.109 6.000 108.8 294.5 0.117926754 -8.2
0.105 5.910 108.8 294.5 0.116157852 -10.6
0.169 9.150 108.8 294.5 0.179838299 -6.4
0.176 8.700 108.8 294.5 0.170993793 2.8
0.166 8.41 108.8 294.5 0.165294 0.4
Statistical Test Results
Taken from Google Images
Statistical Test: Two-tailed t-test
Null Hypothesis r̄ = 0
Alternative Hypothesis r̄ ≠ 0
Significance level α = 0.05 (95% confidence level )
Mean of Residuals (r̄)
Sample Standard
Deviation (sr)
Number of random samples
(N)
Test Statistics
(t)
0.061217 0.0577 15 0.0781
Data from Student's t-Distribution Table
Two-tails (P-value) 0.5 0.5 < p-value < 1.0 1
Degree of freedom (14) 0.692 0.0781 0
Discussion
2σ = 0.03
Propagation of Uncertainty
εV1 (L) εV2 (L) εt1 (min) εt2 (min) εPatm (kPA) εPgage (kPA) εT (ᵒC)
0.2 0.2 0.016666667 0.016666667 1 1 1
dQ/dV1 dQ/dV2 dQ/dt1 dQ/dt2 dQ/dPatm dQ/dPgage dQ/dT Error (95%)
-0.0379 0.0379 0.0348 -0.0348 0.00032 0.00032 -0.00012 0.00860
-0.0381 0.0381 0.0591 -0.0591 0.00054 0.00054 -0.0002 0.00872
-0.0381 0.0381 0.0913 -0.0913 0.00084 0.00084 -0.00031 0.00884
-0.0381 0.0381 0.1008 -0.1008 0.00093 0.00093 -0.00034 0.00888
-0.0386 0.0386 0.0999 -0.0999 0.00091 0.00091 -0.00034 0.00899
-0.0381 0.0381 0.0951 -0.0951 0.00087 0.00087 -0.00032 0.00885
-0.0382 0.0382 0.1267 -0.1267 0.00116 0.00116 -0.00043 0.00906
-0.0382 0.0382 0.1223 -0.1223 0.00112 0.00112 -0.00042 0.00905
-0.0385 0.0385 0.1225 -0.1225 0.00111 0.00111 -0.00042 0.00911
-0.0382 0.0382 0.1604 -0.1604 0.00147 0.00147 -0.00054 0.00932
-0.0383 0.0383 0.1836 -0.1836 0.00168 0.00168 -0.00062 0.00954
-0.0381 0.0381 0.2199 -0.2199 0.00202 0.00202 -0.00075 0.00985
-0.0381 0.0381 0.2954 -0.2954 0.00271 0.00271 -0.001 0.01075
-0.0384 0.0384 0.2965 -0.2965 0.00270 0.00270 -0.00101 0.01080
-0.0385 0.0385 0.2898 -0.2898 0.00263 0.00263 -0.00098 0.01074
Average Error (95%) 0.00941
Conclusion
 Unknown Errors
 Volume Measurements
 Longer Time Intervals
 Operating Limits
Orifice Calibration:
Two Phase Small Air
JESSICA CATLIN, DYLAN HELM, AND YEN NGUYEN
Questions?
1 de 16

Recomendados

Vapor Combustor Improvement Project LinkedIn Presentation February 2016 por
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Tim Krimmel, MEM
191 vistas14 diapositivas
Enflasyon forecast por
Enflasyon forecastEnflasyon forecast
Enflasyon forecastmesut bayhan
94 vistas19 diapositivas
Tools of the Trade por
Tools of the TradeTools of the Trade
Tools of the TradePierre-Charles Bierly
240 vistas25 diapositivas
Analysis Of A Binary Outcome Variable por
Analysis Of A Binary Outcome VariableAnalysis Of A Binary Outcome Variable
Analysis Of A Binary Outcome VariableArthur8898
1.5K vistas62 diapositivas
Quaker final presentation por
Quaker final presentationQuaker final presentation
Quaker final presentationRichard Mastrorilli
411 vistas20 diapositivas
Practical Uncertainty Estimation in Load Cell Calibration por
Practical Uncertainty Estimation in Load Cell CalibrationPractical Uncertainty Estimation in Load Cell Calibration
Practical Uncertainty Estimation in Load Cell CalibrationInterface Inc.
7.1K vistas40 diapositivas

Más contenido relacionado

La actualidad más candente

Time Series proj final por
Time Series proj finalTime Series proj final
Time Series proj finalSandesh Shalavadi
175 vistas13 diapositivas
Right atrial pressure as back-pressure for venous return por
Right atrial pressure as back-pressure for venous returnRight atrial pressure as back-pressure for venous return
Right atrial pressure as back-pressure for venous returnscanFOAM
490 vistas20 diapositivas
Seepage new(2) por
Seepage new(2)Seepage new(2)
Seepage new(2)BashirAhmad91
68 vistas55 diapositivas
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and... por
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...J. García - Verdugo
701 vistas16 diapositivas
Process simulation introduction 2018 por
Process simulation introduction 2018Process simulation introduction 2018
Process simulation introduction 2018DJHPIDesign
493 vistas32 diapositivas
Batch Reactors. Chemcad Dynamic Simulation por
Batch Reactors. Chemcad Dynamic SimulationBatch Reactors. Chemcad Dynamic Simulation
Batch Reactors. Chemcad Dynamic SimulationDJHPIDesign
909 vistas30 diapositivas

La actualidad más candente(11)

Right atrial pressure as back-pressure for venous return por scanFOAM
Right atrial pressure as back-pressure for venous returnRight atrial pressure as back-pressure for venous return
Right atrial pressure as back-pressure for venous return
scanFOAM490 vistas
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and... por J. García - Verdugo
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Process simulation introduction 2018 por DJHPIDesign
Process simulation introduction 2018Process simulation introduction 2018
Process simulation introduction 2018
DJHPIDesign493 vistas
Batch Reactors. Chemcad Dynamic Simulation por DJHPIDesign
Batch Reactors. Chemcad Dynamic SimulationBatch Reactors. Chemcad Dynamic Simulation
Batch Reactors. Chemcad Dynamic Simulation
DJHPIDesign909 vistas
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression por J. García - Verdugo
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple RegressionJavier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech... por IRJET Journal
IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET Journal40 vistas
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton... por Ivan Ruchkin
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...
Ivan Ruchkin100 vistas
Ch04 por ajithsrc
Ch04Ch04
Ch04
ajithsrc1.4K vistas

Destacado

Test por
TestTest
TestJim Profil
73 vistas6 diapositivas
Ingeniería Comercial por
Ingeniería ComercialIngeniería Comercial
Ingeniería ComercialIngrid Fonseca
241 vistas10 diapositivas
Ecología, educación y conciencia ambientalista por
Ecología, educación y conciencia ambientalistaEcología, educación y conciencia ambientalista
Ecología, educación y conciencia ambientalistajoxela
55 vistas4 diapositivas
Pressure drop model presentation april 19th por
Pressure drop model presentation april 19thPressure drop model presentation april 19th
Pressure drop model presentation april 19thYen Nguyen
211 vistas28 diapositivas
Somejit chakraborty presentation por
Somejit chakraborty presentationSomejit chakraborty presentation
Somejit chakraborty presentationSomejit Chakraborty
59 vistas4 diapositivas
Tarea 2 por
Tarea 2Tarea 2
Tarea 2zulay yineth salazar cely
59 vistas5 diapositivas

Destacado(10)

Ecología, educación y conciencia ambientalista por joxela
Ecología, educación y conciencia ambientalistaEcología, educación y conciencia ambientalista
Ecología, educación y conciencia ambientalista
joxela55 vistas
Pressure drop model presentation april 19th por Yen Nguyen
Pressure drop model presentation april 19thPressure drop model presentation april 19th
Pressure drop model presentation april 19th
Yen Nguyen211 vistas
Geometría molecular por Analia Burgos
Geometría molecularGeometría molecular
Geometría molecular
Analia Burgos3.7K vistas
Ramadan 2016 corporate events por Hamada Mohsen
Ramadan 2016 corporate eventsRamadan 2016 corporate events
Ramadan 2016 corporate events
Hamada Mohsen1.3K vistas
Mixing Dynamics Non-ideal CST final Mar 7th por Yen Nguyen
Mixing Dynamics Non-ideal CST final Mar 7thMixing Dynamics Non-ideal CST final Mar 7th
Mixing Dynamics Non-ideal CST final Mar 7th
Yen Nguyen248 vistas

Similar a Orifice Calibration

Cobb-douglas production function por
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production functionSuniya Sheikh
4.6K vistas17 diapositivas
Cobb-douglas production function por
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production functionSuniya Sheikh
3.2K vistas17 diapositivas
LSBB_NOK_bob1 por
LSBB_NOK_bob1LSBB_NOK_bob1
LSBB_NOK_bob1THWIN BOB
162 vistas30 diapositivas
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf por
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdfDouglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdfLeonardoPassos39
57 vistas371 diapositivas
Solutions. Design and Analysis of Experiments. Montgomery por
Solutions. Design and Analysis of Experiments. MontgomerySolutions. Design and Analysis of Experiments. Montgomery
Solutions. Design and Analysis of Experiments. MontgomeryByron CZ
192.8K vistas371 diapositivas
ARIMA.pptx por
ARIMA.pptxARIMA.pptx
ARIMA.pptxbrahimNasibov
11 vistas55 diapositivas

Similar a Orifice Calibration(20)

Cobb-douglas production function por Suniya Sheikh
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
Suniya Sheikh4.6K vistas
Cobb-douglas production function por Suniya Sheikh
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
Suniya Sheikh3.2K vistas
LSBB_NOK_bob1 por THWIN BOB
LSBB_NOK_bob1LSBB_NOK_bob1
LSBB_NOK_bob1
THWIN BOB162 vistas
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf por LeonardoPassos39
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdfDouglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
LeonardoPassos3957 vistas
Solutions. Design and Analysis of Experiments. Montgomery por Byron CZ
Solutions. Design and Analysis of Experiments. MontgomerySolutions. Design and Analysis of Experiments. Montgomery
Solutions. Design and Analysis of Experiments. Montgomery
Byron CZ192.8K vistas
Vu_HPSC2012_02.pptx por QucngV
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptx
QucngV2 vistas
Quality Control Chart por Ashish Gupta
 Quality Control Chart Quality Control Chart
Quality Control Chart
Ashish Gupta12.2K vistas
Statistical process control ppt @ doms por Babasab Patil
Statistical process control ppt @ doms Statistical process control ppt @ doms
Statistical process control ppt @ doms
Babasab Patil2.2K vistas
Design of experiment methodology por CHUN-HAO KUNG
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodology
CHUN-HAO KUNG1.6K vistas
ONERA M6 "Defence Presentation" por Atin Kumar
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"
Atin Kumar316 vistas
Chap 9 A Process Capability & Spc Hk por ajithsrc
Chap 9 A Process Capability & Spc HkChap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc Hk
ajithsrc2.4K vistas
LISUN Compact Goniophotometer LSG-1200A por 世满 江
LISUN Compact Goniophotometer LSG-1200ALISUN Compact Goniophotometer LSG-1200A
LISUN Compact Goniophotometer LSG-1200A
世满 江23 vistas
Compact Goniophotometer por Lisun Group
Compact GoniophotometerCompact Goniophotometer
Compact Goniophotometer
Lisun Group62 vistas
Motor speeed Erdi Karaçal Mechanical Engineer por Erdi Karaçal
Motor speeed  Erdi Karaçal Mechanical EngineerMotor speeed  Erdi Karaçal Mechanical Engineer
Motor speeed Erdi Karaçal Mechanical Engineer
Erdi Karaçal1K vistas
ATE_MAO_2010_Jun por MDO_Lab
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
MDO_Lab443 vistas
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems por Koorosh Aslansefat
A Novel Extended Adaptive Thresholding for Industrial Alarm SystemsA Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
Koorosh Aslansefat141 vistas

Orifice Calibration

  • 1. Orifice Calibration: Two Phase Small Air BY: JESSICA CATLIN, DYLAN HELM , AND YEN NGUYEN
  • 2. Objective  Orifice Flow Calibration  Future Experiments  Develop Model  𝑄 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏  Flow Ranges (0-0.3 SCFM)  a=0.0575, b=0.592  Testing
  • 3. Equipment Gas Flow Meter Zero and Range Screws Control Valve
  • 4. EHS&LP  Air  Leaks  Water in Line  Pressure Regulation
  • 5. Data Model  𝑄 𝑎 = 𝑉2−𝑉1 𝑡2−𝑡1  𝑄𝑠 = (0.03531) ∗ 𝑄 𝑎 ∗ ( 𝑇𝑠 𝑇 ) ∗ ( 𝑃 𝑃𝑠 )  Constant is unit conversion from (L/min) to (SCFM)  294.11= standard temperature (K)  101.3= standard pressure (kPa)
  • 6. Process Model  𝑄 𝑎 = 𝐶 𝑜 𝐴 𝑜 2(∆𝑃) 𝜌(1−𝛽4)  Horizontal pipe, steady state, inviscid, and incompressible  𝑄𝑠 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏  Notice Standard Flow
  • 7. Uncertainty  Variables with uncertainty  𝑉1, 𝑉2, 𝑡1, 𝑡2, 𝑃𝑎𝑡𝑚, 𝑃, 𝑇 𝜀 𝑄,95% = 𝑑𝑄 𝑑𝑉1 2 ∗ 𝜀 𝑉1 2 + 𝑑𝑄 𝑑𝑉2 2 ∗ 𝜀 𝑉2 2 + 𝑑𝑄 𝑑𝑡1 2 ∗ 𝜀𝑡1 2 + 𝑑𝑄 𝑑𝑡2 2 ∗ 𝜀𝑡2 2 + 𝑑𝑄 𝑑𝑃𝑎𝑡𝑚 2 ∗ 𝜀 𝑃 𝑎𝑡𝑚 2 + 𝑑𝑄 𝑑𝑃 2 ∗ 𝜀 𝑃 2 + 𝑑𝑄 𝑑𝑇 2 ∗ 𝜀 𝑇 2
  • 8. Expectations  Square root model  Unknown constant a is positive  Unknown constant b is close to 0.5  Average residual close to zero 0 0.5 1 1.5 2 2.5 3 3.5 0 2 4 6 8 10 12 Q i-io Expected Plot of Q vs. (i-io)
  • 9. Experimental Plan  Open necessary valves  Set pressure regulators  Adjust zero (𝑖 𝑜) and range  Flow must be turned off for zero  Attach the flow meter  Set valve at random operating %  Record the current (i)
  • 10. Experimental Plan (cont.)  Measure (𝑉2 − 𝑉1), T, and P  1 minute interval  Repeat fifteen times  Plug data into spreadsheet  Determine a and b using solver  Plug model into NI LabVIEW  Test the model  9 trials
  • 11. Data Run Experimental Flow (Liters) Time (min) Actual Flow (L/min) Temperature (C) Pressure (kPa) Standard Flow (SCFM) Current (mA) i-io (mA) Modeled Flow Rate Q (ACFM) Squared Deviation 13 0.92 1 0.92 21.5 108.3 0.035 4 0.8 0.050 0.000246701 1 1.55 1 1.55 21 108.8 0.059 4.8 1.6 0.076 0.000294121 7 2.4 1 2.40 21.5 108.8 0.091 5.1 1.9 0.084 4.63685E-05 10 2.65 1 2.65 21.5 108.8 0.100 5.3 2.1 0.089 0.00012422 5 2.59 1 2.59 21.5 110.3 0.099 5.6 2.4 0.097 8.33137E-06 11 2.5 1 2.50 21.5 108.8 0.095 5.7 2.5 0.099 1.7948E-05 8 3.32 1 3.32 21.5 109.1 0.126 6 2.8 0.106 0.000412202 2 3.2 1 3.20 21.5 109.3 0.122 6.3 3.1 0.112 8.83274E-05 3 3.18 1 3.18 21.5 110.1 0.122 7.7 4.5 0.140 0.000331658 6 4.2 1 4.20 21.5 109.2 0.160 8.5 5.3 0.154 2.82703E-05 15 4.79 1 4.79 21.5 109.6 0.183 11 7.8 0.194 0.000126736 12 5.78 1 5.78 21.5 108.8 0.219 14.3 11.1 0.239 0.000406417 9 7.75 1 7.75 21.5 109 0.294 16.4 13.2 0.265 0.000850742 14 7.72 1 7.72 21.5 109.8 0.295 17.7 14.5 0.280 0.000225965 4 7.52 1 7.52 21.5 110.2 0.288 20.1 16.9 0.307 0.000329187 Sum of Squared Deviations 0.003537195 Solution: a= 0.057506788 b= 0.59197892
  • 12. Results 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 5 10 15 20 Q (i-io) Q vs. (i-io) Model Experiment Data Model Testing Q modeled (SCFM) Q measured (L/min) Pressure (KPa) Temperature (K) Q measured (SCFM) Percent Error (%) 0.073 4.290 108.8 294.5 0.084317629 -15.5 0.072 4.280 108.8 294.5 0.084121084 -16.8 0.075 4.350 108.8 294.5 0.085496896 -14.0 0.083 4.940 109.3 294.5 0.097539227 -17.5 0.109 6.000 108.8 294.5 0.117926754 -8.2 0.105 5.910 108.8 294.5 0.116157852 -10.6 0.169 9.150 108.8 294.5 0.179838299 -6.4 0.176 8.700 108.8 294.5 0.170993793 2.8 0.166 8.41 108.8 294.5 0.165294 0.4
  • 13. Statistical Test Results Taken from Google Images Statistical Test: Two-tailed t-test Null Hypothesis r̄ = 0 Alternative Hypothesis r̄ ≠ 0 Significance level α = 0.05 (95% confidence level ) Mean of Residuals (r̄) Sample Standard Deviation (sr) Number of random samples (N) Test Statistics (t) 0.061217 0.0577 15 0.0781 Data from Student's t-Distribution Table Two-tails (P-value) 0.5 0.5 < p-value < 1.0 1 Degree of freedom (14) 0.692 0.0781 0
  • 14. Discussion 2σ = 0.03 Propagation of Uncertainty εV1 (L) εV2 (L) εt1 (min) εt2 (min) εPatm (kPA) εPgage (kPA) εT (ᵒC) 0.2 0.2 0.016666667 0.016666667 1 1 1 dQ/dV1 dQ/dV2 dQ/dt1 dQ/dt2 dQ/dPatm dQ/dPgage dQ/dT Error (95%) -0.0379 0.0379 0.0348 -0.0348 0.00032 0.00032 -0.00012 0.00860 -0.0381 0.0381 0.0591 -0.0591 0.00054 0.00054 -0.0002 0.00872 -0.0381 0.0381 0.0913 -0.0913 0.00084 0.00084 -0.00031 0.00884 -0.0381 0.0381 0.1008 -0.1008 0.00093 0.00093 -0.00034 0.00888 -0.0386 0.0386 0.0999 -0.0999 0.00091 0.00091 -0.00034 0.00899 -0.0381 0.0381 0.0951 -0.0951 0.00087 0.00087 -0.00032 0.00885 -0.0382 0.0382 0.1267 -0.1267 0.00116 0.00116 -0.00043 0.00906 -0.0382 0.0382 0.1223 -0.1223 0.00112 0.00112 -0.00042 0.00905 -0.0385 0.0385 0.1225 -0.1225 0.00111 0.00111 -0.00042 0.00911 -0.0382 0.0382 0.1604 -0.1604 0.00147 0.00147 -0.00054 0.00932 -0.0383 0.0383 0.1836 -0.1836 0.00168 0.00168 -0.00062 0.00954 -0.0381 0.0381 0.2199 -0.2199 0.00202 0.00202 -0.00075 0.00985 -0.0381 0.0381 0.2954 -0.2954 0.00271 0.00271 -0.001 0.01075 -0.0384 0.0384 0.2965 -0.2965 0.00270 0.00270 -0.00101 0.01080 -0.0385 0.0385 0.2898 -0.2898 0.00263 0.00263 -0.00098 0.01074 Average Error (95%) 0.00941
  • 15. Conclusion  Unknown Errors  Volume Measurements  Longer Time Intervals  Operating Limits
  • 16. Orifice Calibration: Two Phase Small Air JESSICA CATLIN, DYLAN HELM, AND YEN NGUYEN Questions?