Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
The relative roles of individual forcings on large-scale climate variability remain difficult to disentangle within fully-coupled global climate model simulations. Here, we train an artificial neural network (ANN) to classify the climate forcings of a new set of CESM1 initial-condition large ensembles that are forced by different combinations of aerosol (industrial and biomass burning), greenhouse gas, and land-use/land-cover forcings. As a result of learning the regional responses of internal variability to the different external forcings, the ANN is able to successfully classify the dominant forcing for each model simulation. Using recently developed explainable AI methods, such as layerwise relevance propagation, we then compare the patterns of climate variability identified by the ANN between different external climate forcings that are learned by the neural network. Further, we apply this ANN architecture on additional climate simulations from the multi-model large ensemble archive, which include all anthropogenic and natural radiative forcings. From this collection of initial-condition ensembles, the ANN is also able to detect changes in atmospheric internal variability between the 20th and 21st centuries by training on climate fields after the mean forced signal has already been removed. This ANN framework and its associated visualization tools provide a novel approach to extract complex patterns of observable and projected climate variability and trends in Earth system models. (from https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379553)
The relative roles of individual forcings on large-scale climate variability remain difficult to disentangle within fully-coupled global climate model simulations. Here, we train an artificial neural network (ANN) to classify the climate forcings of a new set of CESM1 initial-condition large ensembles that are forced by different combinations of aerosol (industrial and biomass burning), greenhouse gas, and land-use/land-cover forcings. As a result of learning the regional responses of internal variability to the different external forcings, the ANN is able to successfully classify the dominant forcing for each model simulation. Using recently developed explainable AI methods, such as layerwise relevance propagation, we then compare the patterns of climate variability identified by the ANN between different external climate forcings that are learned by the neural network. Further, we apply this ANN architecture on additional climate simulations from the multi-model large ensemble archive, which include all anthropogenic and natural radiative forcings. From this collection of initial-condition ensembles, the ANN is also able to detect changes in atmospheric internal variability between the 20th and 21st centuries by training on climate fields after the mean forced signal has already been removed. This ANN framework and its associated visualization tools provide a novel approach to extract complex patterns of observable and projected climate variability and trends in Earth system models. (from https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379553)
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!