SlideShare a Scribd company logo
Shah Abhishek P   ID no: 2012H14166P
INTRODUCTION
 It has become a very tedious, expensive and time consuming task to
  collect and handle huge pharmacokinetic data.

 It is therefore, useful to develop pharmacokinetic simulation models
  for the prediction of pharmacokinetic parameters.

 Pharmacokinetic simulation model is defined as a computational
  and/or mathematical tool that interprets drug kinetics in living
  environment under specific conditions .

 A predictive IVIVC can empower in vitro dissolution as a surrogate
  for in vivo bioavailability / bioequivalence.
INTRODUCTION
 IVIVCs can decrease regulatory burden by decreasing the number of

  bio-studies required in support of a drug product.

 This article presents a comprehensive overview of systematic

  procedure for establishing and validating an in vitro - in vivo
  correlation (IVIVC) level A, B, and C.

 A Level A IVIVC is an important mathematical tool that can help to

  save time & cost during and after the development of a formulation.

 The IVIVC for a formulation is a mathematical relationship between

  an in vitro property of the formulation and its in vivo act.
BCS classification and
                expectation for IVIVC
Class              Example                 Solubility   Permeability       IVIV correlation expectation

                                                                        IVIV correlation if dissolution rate is
           Verapamil, Proparanolol,                                       slower than gastric emptying rate.
 1                                           High          High
                  Metoprolol                                             Otherwise limited or no correlation
                                                                                      expected.

                                                                        IVIV correlation expected If in vitro
         Carbamazepine, Ketoprofen,
 2                                           Low           High          dissolution rate is similar to in vivo
                   Naproxen
                                                                       dissolution rate unless dose is very high

                                                                          Absorption (permeability) is rate
 3      Ranitidine, Cimetidine, Atenolol     High           Low            determining otherwise no IVIV
                                                                           correlation with dissolution rate

                 Furosemide,                                              Limited or no IVIV correlation is
 4                                           Low            Low
             Hydrochlorothiazide                                                      expected.
INTRODUCTION
 The Biopharmaceutics Classification System (BCS) is a predictive
  approach for developing correlation between physicochemical
  characteristics of a drug formulation and in vivo bioavailability. The
  BCS is not a direct IVIVC.

  The IVIVC is divided into five categories.

  1. Level A correlation 2. Level B correlation

  3. Level C correlation 4. Level D correlation

  5. Multiple level C correlation
 Level A correlation, a higher level of correlation, elaborates point to
  point relationship between in vitro dissolution and in vivo absorption
  rate of drug from the formulation.

 level B correlation which compares MDTin vitro to MDTin vivo

 Level C correlation is a weak single point relationship having no
  reflection of dissolution or plasma profile and compares the amount
  of drug dissolved at one dissolution time-point to one
  pharmacokinetic parameter like t60% to AUC.
 Due to the involvement of multiple time points multiple times,
  multiple level C is more producible than level C. It relates more than
  one parameters.

 Level D correlation is helping in the development of a formulation.
Fast Release Formulation

Time(h)   Plasma drug conc   AUC       K*AUC         Cp +(K*AUC)   PDA   PDR
               (mg/l)
  0              0             0           0               0        0     0

  0.5           0.18         0.045       0.006           0.19      9.5   39.62


  1             0.35         0.178       0.025           0.38      19    48.91

  2             0.66         0.683       0.096           0.75      38    59.07

  3             0.91         1.468       0.210           1.12      56    67.74

  4             1.12         2.483       0.350           1.47      78    79.64

  5             1.27         3.678       0.520           1.79      90    90.71

  6             1.28         4.953       0.693           1.97      99    93.98

  8             0.99         7.223       0.85            2.00      100   98.36

  10            0.75         8.963       1.01            2.00      100   99.07

  12            0.57         10.283      1.71            1.71      100   99.60

  15            0.38         11.708      1.75            1.75      100   99.61

  24            0.11         13.912      1.40            1.40      100   99.86
METHODOLOGY
 Formulations
The formulations are abbreviated as follows:
 1. Fast release formulation
 2. Medium release formulation
 3. Slow release formulation
 For the establishment of an IVIVC, the release governing excipients
  in the formulations should be similar. Preferably.
 in vitro dissolution profiles should be determined with different
  dissolution test conditions. The in vitro dissolution profiles leading to
  an IVIVC with the smallest prediction error (%).
 The values of determination coefficients for IVIVC level A for fast,
  medium and slow release formulations were 0.9273, 0.9616 and
  0.9641, respectively.

 while 0.9885 and 0.9996 were the values of determination
  coefficients in case of IVIVC level B and C, respectively.
 A sensitive and reliable in vitro dissolution method is used for
  determining the quality of a formulation.
 Such a dissolution method can be developed by serial modifications
  in dissolution medium like the addition of a surfactant. After
  development of a reasonable dissolution medium, the in vitro
  dissolution testing is performed for suitable time period on the
  formulations selected. The dissolution samples are analyzed
  spectrophotometrically or chromatographically, to find out the
  amount of drug released.
where, Rt and Tt are the cumulative             where m stands for the
percentage dissolved at time point “t” for      amount of drug dissolved at
reference and test products, respectively and   time “t”.
“p” is the number of pool points.
 Out of model independent approaches, similarity factor analysis (a
  pair wise procedure) is commonly chosen to compare the dissolution
  profiles.

 The two compared dissolution profiles are considered similar if f2 >
  50, and the mean difference between any dissolution sample not
  being greater than 15% (U.S. Department of Health and Human
  Services, 1997).
 Mean dissolution time, a model independent approach, would be
  calculated from dissolution data to determine . level B correlation

 For level C correlation, time required for a specific value of mean
  dissolution like t50% (time required to dissolve 50% of total drug) is
  required which is calculated from the curve of zero order equation
Obtention of in vivo
               absorption data
 To establish IVIVC, in vivo absorption data is also required which
  means that pharmacokinetic and bioavailability study is also to be
  done. Pharmacokinetic study reflects the performance of drug in
  body. It involves the study of the influence of body on the drug, that
  is, absorption, distribution, metabolism and excretion. Where as the
  bioavailability indicates the extent to which a drug reaches systemic
  circulation and is commonly assessed by evaluating AUC (area under
  plasma drug concentration-time curve), Cmax (maximum plasma
  drug concentration) and tmax (time required to achieve Cmax).
 Generally, single dose cross over experimental design with a washout
  period of one week, is adopted to obtain absorption data for
  establishing IVIVC. Thus for three formulations with different
  release rates, a three treatment cross over study design is allocated.
Analysis of in vivo data
 The association between the in vitro and in vivo data is stated
  mathematically by a linear or nonlinear correlation.
 But, the plasma drug concentration data cannot be related directly to
  the obtained in vitro release data; they are needed to be converted
  first to the fundamental in vivo release data using pharmacokinetic
  compartment model analysis or linear system analysis.
 Based on a pharmacokinetic compartment analysis, the in vivo
  absorption kinetics can be evaluated using various pharmacokinetic
  parameters.
 To develop level A correlation, in vivo absorption profiles of the
  formulations from the individual plasma concentration versus time
  data are also evaluated using Wagner-Nelson equation.
For the establishment of level B correlation, mean residence time
(MRT) is calculated from AUC and AUMC as the following




MRT is the first moment of drug distribution phase in body. It indicates
the mean time for drug substance to transit through the body and
involves in many kinetic processes
 While level C correlation is established using a pharmacokinetic
  parameter like AUC, Cmax or tmax.
IVIVC development and its
                 analysis
 Level A IVIVC correlates the entire in vitro and in vivo profiles
  (Rasool et al., 2010). In order to develop level A correlation, the
  fraction of drug absorbed (Fa) for a formulation is plotted against its
  fraction of drug dissolved (Fd), where Fa and Fd are plotted along x-

  axis and y-axis, respectively.
 This curve provides basic information of the relationship between Fa
  and Fd, either it is linear or non-linear. Also plots can also be plotted
  in the form of combination of two formulations like (a) slow/
  moderate (b) moderate / fast and (c) slow / fast or in combination of
  three formulations like fast/moderate/slow.

 Finally the regression analysis is performed for each curve to
  evaluate strength of correlation. The correlation is considered as
  efficient as the value of determination coefficient is closer to 1.
 The predictability of the correlation is analyzed by calculating its
  prediction error (%).

 The deviation between prediction and observation is assessed either
  with internal validation or with external validation.

 Internal validation elaborates the predictability of data that has been
  employed in the model development and is recommended for all
  IVIVC analysis External validation depends on how efficiently the
  IVIVC predicts additional data sets.

 This predictability is considered better than the internal one. External
  predictability is analyzed in the following conditions.
1. When no conclusion is obtained from internal prediction.

2. When correlation is established for drugs having narrow therapeutic
  window.

3. When two formulations with different release rates are involved in
  correlation development
 The predictability of a correlation in regulatory context is
  characterized in terms of the prediction error (%) using AUC and
  Cmax as the following:
 According to FDA guidelines, the correlation is considered
  predictive if mean prediction error across formulations is less than
  10% for AUC and Cmax and the prediction error (%) for any
  formulation is less than 15 for AUC and Cmax.

 Level B correlation is developed between MDT and MRT of a
  formulation. The MDT and MRT are plotted along x-axis and y-axis,
  respectively. The regression analysis is performed for this curve.
 Level C correlation, a single point correlation, can be established by
  drawing a curve between t50% and pharmacokinetic parameter are
  plotted along x-axis and y-axis, respectively following regression

  analysis.
Conclusion
 A Level A IVIVC is an important mathematical tool that can help to
  save time and cost during and after the development of a
  formulation.
What the caterpillar calls THE END,
                      Butterfly calls it….THE BEGINNING !!!

More Related Content

What's hot

Bcs classification by sneha gaurkar
Bcs classification by sneha gaurkarBcs classification by sneha gaurkar
Bcs classification by sneha gaurkarSneha Gaurkar
 
Biopharmaceutics by ND Sir
Biopharmaceutics by ND Sir Biopharmaceutics by ND Sir
Biopharmaceutics by ND Sir Gpat First
 
pharmacokinetic of iv infusion
pharmacokinetic of iv infusionpharmacokinetic of iv infusion
pharmacokinetic of iv infusionDr.saqib habib
 
Compartment modeling
Compartment modelingCompartment modeling
Compartment modelingSHILPI BISWAS
 
IN VITRO-IN VIVO CORRELATION.
IN VITRO-IN VIVO CORRELATION. IN VITRO-IN VIVO CORRELATION.
IN VITRO-IN VIVO CORRELATION. K Mondal
 
Bioequivalence studies ( Evaluation and Study design)
Bioequivalence studies ( Evaluation and Study design)Bioequivalence studies ( Evaluation and Study design)
Bioequivalence studies ( Evaluation and Study design)Selim Akhtar
 
one compartment open model
one compartment open modelone compartment open model
one compartment open modelSUJITHA MARY
 
Bioavailability and bioequivalence
Bioavailability and bioequivalenceBioavailability and bioequivalence
Bioavailability and bioequivalenceSuvarta Maru
 
Bcs classification system
Bcs classification systemBcs classification system
Bcs classification systemGaurav Kr
 
Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...
Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...
Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...Manikant Prasad Shah
 
Bioavailability and bioequivalance studies and Regulatory aspects
Bioavailability and bioequivalance studies and Regulatory aspectsBioavailability and bioequivalance studies and Regulatory aspects
Bioavailability and bioequivalance studies and Regulatory aspectsRumel Dey
 
Bioavailability and Bioequivalence Studies
Bioavailability and Bioequivalence StudiesBioavailability and Bioequivalence Studies
Bioavailability and Bioequivalence StudiesDr. Kunal Chitnis
 
Methods of Assessing Bioavailability
Methods of Assessing BioavailabilityMethods of Assessing Bioavailability
Methods of Assessing BioavailabilityDibrugarh University
 

What's hot (20)

Bcs classification by sneha gaurkar
Bcs classification by sneha gaurkarBcs classification by sneha gaurkar
Bcs classification by sneha gaurkar
 
Biopharmaceutics by ND Sir
Biopharmaceutics by ND Sir Biopharmaceutics by ND Sir
Biopharmaceutics by ND Sir
 
pharmacokinetic of iv infusion
pharmacokinetic of iv infusionpharmacokinetic of iv infusion
pharmacokinetic of iv infusion
 
Ivivc
IvivcIvivc
Ivivc
 
Biowaivers
BiowaiversBiowaivers
Biowaivers
 
Compartment modeling
Compartment modelingCompartment modeling
Compartment modeling
 
Biowaivers
Biowaivers Biowaivers
Biowaivers
 
IN VITRO-IN VIVO CORRELATION.
IN VITRO-IN VIVO CORRELATION. IN VITRO-IN VIVO CORRELATION.
IN VITRO-IN VIVO CORRELATION.
 
Bioequivalence studies ( Evaluation and Study design)
Bioequivalence studies ( Evaluation and Study design)Bioequivalence studies ( Evaluation and Study design)
Bioequivalence studies ( Evaluation and Study design)
 
one compartment open model
one compartment open modelone compartment open model
one compartment open model
 
Bioavailability and bioequivalence
Bioavailability and bioequivalenceBioavailability and bioequivalence
Bioavailability and bioequivalence
 
Bcs classification system
Bcs classification systemBcs classification system
Bcs classification system
 
In vitro-in-vivo correlation
In vitro-in-vivo correlationIn vitro-in-vivo correlation
In vitro-in-vivo correlation
 
Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...
Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...
Bioavailability , absolute bioavalability, relative bioavailability, Purpose ...
 
In vitro-in-vivo correlation
In vitro-in-vivo correlation In vitro-in-vivo correlation
In vitro-in-vivo correlation
 
Ba&be new'
Ba&be new'Ba&be new'
Ba&be new'
 
Bioequivalence Studies
Bioequivalence StudiesBioequivalence Studies
Bioequivalence Studies
 
Bioavailability and bioequivalance studies and Regulatory aspects
Bioavailability and bioequivalance studies and Regulatory aspectsBioavailability and bioequivalance studies and Regulatory aspects
Bioavailability and bioequivalance studies and Regulatory aspects
 
Bioavailability and Bioequivalence Studies
Bioavailability and Bioequivalence StudiesBioavailability and Bioequivalence Studies
Bioavailability and Bioequivalence Studies
 
Methods of Assessing Bioavailability
Methods of Assessing BioavailabilityMethods of Assessing Bioavailability
Methods of Assessing Bioavailability
 

Similar to Bcs ivivc

In vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, Punjab
In vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, PunjabIn vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, Punjab
In vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, PunjabNeeraj Mishra
 
Iviv corelation
Iviv corelationIviv corelation
Iviv corelationZahid1392
 
Invitro invivo correlation
Invitro invivo correlationInvitro invivo correlation
Invitro invivo correlationPALLAB PAL
 
Invitro invivo correlation
Invitro invivo correlationInvitro invivo correlation
Invitro invivo correlationkvineetha8
 
Jignesh patel,ivivc
Jignesh patel,ivivcJignesh patel,ivivc
Jignesh patel,ivivcjigs2163
 
IVIVC detail topic explanation biopharmaceutics.pdf
IVIVC detail topic explanation biopharmaceutics.pdfIVIVC detail topic explanation biopharmaceutics.pdf
IVIVC detail topic explanation biopharmaceutics.pdfUVAS
 
In vitro In vivo correlation.pptx
In vitro In vivo correlation.pptxIn vitro In vivo correlation.pptx
In vitro In vivo correlation.pptxSimonGermany1
 
IN VITRO - IN VIVO CORRELATION
IN VITRO - IN VIVO CORRELATIONIN VITRO - IN VIVO CORRELATION
IN VITRO - IN VIVO CORRELATIONN Anusha
 
Invitro invivo correlation
Invitro invivo correlationInvitro invivo correlation
Invitro invivo correlationNagaraju Ravouru
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
ivivc correlation
ivivc correlationivivc correlation
ivivc correlationHARISH C
 
In vivo in vitro correlation - copy
In vivo in vitro correlation - copyIn vivo in vitro correlation - copy
In vivo in vitro correlation - copyBHUPINDER KAUR
 
IN-VITRO AND IN-VIVO CORRELATIONS.pptx
IN-VITRO AND IN-VIVO CORRELATIONS.pptxIN-VITRO AND IN-VIVO CORRELATIONS.pptx
IN-VITRO AND IN-VIVO CORRELATIONS.pptxShamsElfalah
 

Similar to Bcs ivivc (20)

in vivo in vitro
in vivo in vitroin vivo in vitro
in vivo in vitro
 
In-Vivo In-Vitro Correlation
In-Vivo In-Vitro CorrelationIn-Vivo In-Vitro Correlation
In-Vivo In-Vitro Correlation
 
In vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, Punjab
In vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, PunjabIn vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, Punjab
In vitro in vivo correlation by Dr. Neeraj Mishra, ISFCP, Moga, Punjab
 
Iviv corelation
Iviv corelationIviv corelation
Iviv corelation
 
Invitro invivo correlation
Invitro invivo correlationInvitro invivo correlation
Invitro invivo correlation
 
Invitro invivo correlation
Invitro invivo correlationInvitro invivo correlation
Invitro invivo correlation
 
Jignesh patel,ivivc
Jignesh patel,ivivcJignesh patel,ivivc
Jignesh patel,ivivc
 
Madhu k s
Madhu k s Madhu k s
Madhu k s
 
IVIVC
IVIVCIVIVC
IVIVC
 
IVIVC detail topic explanation biopharmaceutics.pdf
IVIVC detail topic explanation biopharmaceutics.pdfIVIVC detail topic explanation biopharmaceutics.pdf
IVIVC detail topic explanation biopharmaceutics.pdf
 
IN VITRO IN VIVO CORRELATION
IN VITRO IN VIVO CORRELATION IN VITRO IN VIVO CORRELATION
IN VITRO IN VIVO CORRELATION
 
In vitro In vivo correlation.pptx
In vitro In vivo correlation.pptxIn vitro In vivo correlation.pptx
In vitro In vivo correlation.pptx
 
IN VITRO - IN VIVO CORRELATION
IN VITRO - IN VIVO CORRELATIONIN VITRO - IN VIVO CORRELATION
IN VITRO - IN VIVO CORRELATION
 
Invitro invivo correlation
Invitro invivo correlationInvitro invivo correlation
Invitro invivo correlation
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
ivivc correlation
ivivc correlationivivc correlation
ivivc correlation
 
IVIVC
IVIVCIVIVC
IVIVC
 
In vivo in vitro correlation - copy
In vivo in vitro correlation - copyIn vivo in vitro correlation - copy
In vivo in vitro correlation - copy
 
IN-VITRO AND IN-VIVO CORRELATIONS.pptx
IN-VITRO AND IN-VIVO CORRELATIONS.pptxIN-VITRO AND IN-VIVO CORRELATIONS.pptx
IN-VITRO AND IN-VIVO CORRELATIONS.pptx
 
IVIVC
IVIVCIVIVC
IVIVC
 

Recently uploaded

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasiemaillard
 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptSourabh Kumar
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryEugene Lysak
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxakshayaramakrishnan21
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonSteve Thomason
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...Nguyen Thanh Tu Collection
 
Benefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational ResourcesBenefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational Resourcesdimpy50
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfVivekanand Anglo Vedic Academy
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...Sayali Powar
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxEduSkills OECD
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesashishpaul799
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online PresentationGDSCYCCE
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxCeline George
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersPedroFerreira53928
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleCeline George
 
IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff17thcssbs2
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxJenilouCasareno
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resourcesaileywriter
 

Recently uploaded (20)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 
Benefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational ResourcesBenefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational Resources
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 

Bcs ivivc

  • 1. Shah Abhishek P ID no: 2012H14166P
  • 2. INTRODUCTION  It has become a very tedious, expensive and time consuming task to collect and handle huge pharmacokinetic data.  It is therefore, useful to develop pharmacokinetic simulation models for the prediction of pharmacokinetic parameters.  Pharmacokinetic simulation model is defined as a computational and/or mathematical tool that interprets drug kinetics in living environment under specific conditions .  A predictive IVIVC can empower in vitro dissolution as a surrogate for in vivo bioavailability / bioequivalence.
  • 3. INTRODUCTION  IVIVCs can decrease regulatory burden by decreasing the number of bio-studies required in support of a drug product.  This article presents a comprehensive overview of systematic procedure for establishing and validating an in vitro - in vivo correlation (IVIVC) level A, B, and C.  A Level A IVIVC is an important mathematical tool that can help to save time & cost during and after the development of a formulation.  The IVIVC for a formulation is a mathematical relationship between an in vitro property of the formulation and its in vivo act.
  • 4. BCS classification and expectation for IVIVC Class Example Solubility Permeability IVIV correlation expectation IVIV correlation if dissolution rate is Verapamil, Proparanolol, slower than gastric emptying rate. 1 High High Metoprolol Otherwise limited or no correlation expected. IVIV correlation expected If in vitro Carbamazepine, Ketoprofen, 2 Low High dissolution rate is similar to in vivo Naproxen dissolution rate unless dose is very high Absorption (permeability) is rate 3 Ranitidine, Cimetidine, Atenolol High Low determining otherwise no IVIV correlation with dissolution rate Furosemide, Limited or no IVIV correlation is 4 Low Low Hydrochlorothiazide expected.
  • 5. INTRODUCTION  The Biopharmaceutics Classification System (BCS) is a predictive approach for developing correlation between physicochemical characteristics of a drug formulation and in vivo bioavailability. The BCS is not a direct IVIVC. The IVIVC is divided into five categories. 1. Level A correlation 2. Level B correlation 3. Level C correlation 4. Level D correlation 5. Multiple level C correlation
  • 6.  Level A correlation, a higher level of correlation, elaborates point to point relationship between in vitro dissolution and in vivo absorption rate of drug from the formulation.  level B correlation which compares MDTin vitro to MDTin vivo  Level C correlation is a weak single point relationship having no reflection of dissolution or plasma profile and compares the amount of drug dissolved at one dissolution time-point to one pharmacokinetic parameter like t60% to AUC.
  • 7.  Due to the involvement of multiple time points multiple times, multiple level C is more producible than level C. It relates more than one parameters.  Level D correlation is helping in the development of a formulation.
  • 8. Fast Release Formulation Time(h) Plasma drug conc AUC K*AUC Cp +(K*AUC) PDA PDR (mg/l) 0 0 0 0 0 0 0 0.5 0.18 0.045 0.006 0.19 9.5 39.62 1 0.35 0.178 0.025 0.38 19 48.91 2 0.66 0.683 0.096 0.75 38 59.07 3 0.91 1.468 0.210 1.12 56 67.74 4 1.12 2.483 0.350 1.47 78 79.64 5 1.27 3.678 0.520 1.79 90 90.71 6 1.28 4.953 0.693 1.97 99 93.98 8 0.99 7.223 0.85 2.00 100 98.36 10 0.75 8.963 1.01 2.00 100 99.07 12 0.57 10.283 1.71 1.71 100 99.60 15 0.38 11.708 1.75 1.75 100 99.61 24 0.11 13.912 1.40 1.40 100 99.86
  • 9. METHODOLOGY  Formulations The formulations are abbreviated as follows:  1. Fast release formulation  2. Medium release formulation  3. Slow release formulation  For the establishment of an IVIVC, the release governing excipients in the formulations should be similar. Preferably.  in vitro dissolution profiles should be determined with different dissolution test conditions. The in vitro dissolution profiles leading to an IVIVC with the smallest prediction error (%).
  • 10.  The values of determination coefficients for IVIVC level A for fast, medium and slow release formulations were 0.9273, 0.9616 and 0.9641, respectively.  while 0.9885 and 0.9996 were the values of determination coefficients in case of IVIVC level B and C, respectively.
  • 11.  A sensitive and reliable in vitro dissolution method is used for determining the quality of a formulation.  Such a dissolution method can be developed by serial modifications in dissolution medium like the addition of a surfactant. After development of a reasonable dissolution medium, the in vitro dissolution testing is performed for suitable time period on the formulations selected. The dissolution samples are analyzed spectrophotometrically or chromatographically, to find out the amount of drug released.
  • 12.
  • 13. where, Rt and Tt are the cumulative where m stands for the percentage dissolved at time point “t” for amount of drug dissolved at reference and test products, respectively and time “t”. “p” is the number of pool points.
  • 14.  Out of model independent approaches, similarity factor analysis (a pair wise procedure) is commonly chosen to compare the dissolution profiles.  The two compared dissolution profiles are considered similar if f2 > 50, and the mean difference between any dissolution sample not being greater than 15% (U.S. Department of Health and Human Services, 1997).
  • 15.  Mean dissolution time, a model independent approach, would be calculated from dissolution data to determine . level B correlation  For level C correlation, time required for a specific value of mean dissolution like t50% (time required to dissolve 50% of total drug) is required which is calculated from the curve of zero order equation
  • 16. Obtention of in vivo absorption data  To establish IVIVC, in vivo absorption data is also required which means that pharmacokinetic and bioavailability study is also to be done. Pharmacokinetic study reflects the performance of drug in body. It involves the study of the influence of body on the drug, that is, absorption, distribution, metabolism and excretion. Where as the bioavailability indicates the extent to which a drug reaches systemic circulation and is commonly assessed by evaluating AUC (area under plasma drug concentration-time curve), Cmax (maximum plasma drug concentration) and tmax (time required to achieve Cmax).
  • 17.  Generally, single dose cross over experimental design with a washout period of one week, is adopted to obtain absorption data for establishing IVIVC. Thus for three formulations with different release rates, a three treatment cross over study design is allocated.
  • 18. Analysis of in vivo data  The association between the in vitro and in vivo data is stated mathematically by a linear or nonlinear correlation.  But, the plasma drug concentration data cannot be related directly to the obtained in vitro release data; they are needed to be converted first to the fundamental in vivo release data using pharmacokinetic compartment model analysis or linear system analysis.  Based on a pharmacokinetic compartment analysis, the in vivo absorption kinetics can be evaluated using various pharmacokinetic parameters.
  • 19.  To develop level A correlation, in vivo absorption profiles of the formulations from the individual plasma concentration versus time data are also evaluated using Wagner-Nelson equation.
  • 20. For the establishment of level B correlation, mean residence time (MRT) is calculated from AUC and AUMC as the following MRT is the first moment of drug distribution phase in body. It indicates the mean time for drug substance to transit through the body and involves in many kinetic processes
  • 21.  While level C correlation is established using a pharmacokinetic parameter like AUC, Cmax or tmax.
  • 22. IVIVC development and its analysis  Level A IVIVC correlates the entire in vitro and in vivo profiles (Rasool et al., 2010). In order to develop level A correlation, the fraction of drug absorbed (Fa) for a formulation is plotted against its fraction of drug dissolved (Fd), where Fa and Fd are plotted along x- axis and y-axis, respectively.
  • 23.  This curve provides basic information of the relationship between Fa and Fd, either it is linear or non-linear. Also plots can also be plotted in the form of combination of two formulations like (a) slow/ moderate (b) moderate / fast and (c) slow / fast or in combination of three formulations like fast/moderate/slow.  Finally the regression analysis is performed for each curve to evaluate strength of correlation. The correlation is considered as efficient as the value of determination coefficient is closer to 1.
  • 24.  The predictability of the correlation is analyzed by calculating its prediction error (%).  The deviation between prediction and observation is assessed either with internal validation or with external validation.  Internal validation elaborates the predictability of data that has been employed in the model development and is recommended for all IVIVC analysis External validation depends on how efficiently the IVIVC predicts additional data sets.  This predictability is considered better than the internal one. External predictability is analyzed in the following conditions.
  • 25. 1. When no conclusion is obtained from internal prediction. 2. When correlation is established for drugs having narrow therapeutic window. 3. When two formulations with different release rates are involved in correlation development
  • 26.  The predictability of a correlation in regulatory context is characterized in terms of the prediction error (%) using AUC and Cmax as the following:
  • 27.  According to FDA guidelines, the correlation is considered predictive if mean prediction error across formulations is less than 10% for AUC and Cmax and the prediction error (%) for any formulation is less than 15 for AUC and Cmax.  Level B correlation is developed between MDT and MRT of a formulation. The MDT and MRT are plotted along x-axis and y-axis, respectively. The regression analysis is performed for this curve.
  • 28.  Level C correlation, a single point correlation, can be established by drawing a curve between t50% and pharmacokinetic parameter are plotted along x-axis and y-axis, respectively following regression analysis.
  • 29. Conclusion  A Level A IVIVC is an important mathematical tool that can help to save time and cost during and after the development of a formulation.
  • 30. What the caterpillar calls THE END, Butterfly calls it….THE BEGINNING !!!

Editor's Notes

  1. Absorption rate control: class 1 gastric empting class 2 dissolution class 3 permeability class 4 not define