Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Natural Selection

331 visualizaciones

Publicado el

its all about natural selection

Publicado en: Educación
  • Sé el primero en comentar

Natural Selection

  1. 1. Natural selection is the gradual process by which heritable biological traits become either more or less common in a population as a function of the effect of inherited traits on the differential reproductive success of organisms interacting with their environment. It is a key mechanism of evolution.
  2. 2. General principles Natural variation occurs among the individuals of any population of organisms. Many of these differences do not affect survival or reproduction, but some differences may improve the chances of survival and reproduction of a particular individual. A rabbit that runs faster than others may be more likely to escape from predators, and algae that are more efficient at extracting energy from sunlight will grow faster. Something that increases an organism's chances of survival will often also include its reproductive rate; however, sometimes there is a trade- off between survival and current reproduction. Ultimately, what matters is total lifetime reproduction of the organism. The peppered moth exists in both light and dark colors in the United Kingdom, but during the industrial revolution, many of the trees on which the moths rested became blackened by soot, giving the dark-coloured moths an advantage in hiding from predators. This gave dark-coloured moths a better chance of surviving to produce dark-coloured offspring, and in just fifty years from the first dark moth being caught, nearly all of the moths in industrial Manchester were dark. The balance was reversed by the effect of the Clean Air Act 1956, and the dark moths became rare again, demonstrating the influence of natural selection on peppered moth evolution.
  3. 3. If the traits that give these individuals a reproductive advantage are also heritable, that is, passed from parent to child, then there will be a slightly higher proportion of fast rabbits or efficient algae in the next generation. This is known as differential reproduction. Even if the reproductive advantage is very slight, over many generations any heritable advantage will become dominant in the population. In this way the natural environment of an organism "selects" for traits that confer a reproductive advantage, causing gradual changes or evolution of life. This effect was first described and named by Charles Darwin. The concept of natural selection predates the understanding of genetics, the mechanism of heredity for all known life forms. In modern terms, selection acts on an organism's phenotype, or observable characteristics, but it is the organism's genetic make-up or genotype that is inherited. The phenotype is the result of the genotype and the environment in which the organism lives (see Genotype- phenotype distinction). This is the link between natural selection and genetics, as described in the modern evolutionary synthesis. Although a complete theory of evolution also requires an account of how genetic variation arises in the first place (such as by mutation and sexual reproduction) and includes other evolutionary mechanisms (such as genetic drift and gene flow), natural selection appears to be the most important mechanism for creating complex adaptations in nature.
  4. 4. How natural selection helps few species to survive !! Natural selection is the engine that drives evolution. The organisms best suited to survive in their particular circumstances have a greater chance of passing their traits on to the next generation. But plants and animals interact in very complex ways with other organisms and their environment. These factors work together to produce the amazingly diverse range of life forms present on Earth.
  5. 5. By understanding natural selection, we can learn why some plants produce cyanide, why rabbits produce so many offspring, how animals first emerged from the ocean to live on land, and how some mammals eventually went back again. We can even learn about microscopic life, such as bacteria and viruses, or figure out how humans became humans. Charles Darwin coined the term "natural selection." You'll typically hear it alongside the often misunderstood evolutionary catchphrase "survival of the fittest." But survival of the fittest isn't necessarily the bloody, tooth-and-claw battle for survival we tend to make it out to be (although sometimes it is). Rather, it is a measure of how efficient a tree is at dispersing seeds; a fish's ability to find a safe spawning ground before laying her eggs; the skill with which a bird retrieves seeds from the deep, fragrant cup of a flower; a bacterium's resistance to antibiotics.
  6. 6. A great deal of evolution by natural selection can happen without the formation of new species. Natural selection is only the process of adaptation within species, and we see many examples of that. Under some circumstances natural selection does play a role in the origin of new species, by which I mean a splitting of one species lineage into two different lineages that do not interbreed with one another — for example, the splitting of one ancestral primate lineage into one that became today’s chimpanzee and the other that became the hominid line resulting in our own species. The process of splitting and becoming reproductively isolated, that is, incapable of breeding with one another, can often involve natural selection but perhaps not always.
  7. 7. Natural selection acts solely through the preservation of variations in some way advantageous, which consequently endure. Owing to the high geometrical rate of increase of all organic beings, each area is already fully stocked with inhabitants; and it follows from this, that as the favored forms increase in number, so, generally, will the less favored decrease and become rare. Rarity, as geology tells us, is the precursor to extinction. We can see that any form which is represented by few individuals will run a good chance of utter extinction, during great fluctuations in the nature of the seasons, or from a temporary increase in the number of its enemies. But we may go further than this; for, as new forms are produced, unless we admit that specific forms can go on indefinitely increasing in number, many old forms must become extinct. That the number of specific forms has not indefinitely increased, geology plainly tells us; and we shall presently attempt to show why it is that the number of species throughout the world has not become immeasurably great. Extinction Caused by Natural selection
  8. 8. We have seen that the species which are most numerous in individuals have the best chance of producing favorable variations within any given period. We have evidence of this, in the facts stated in the second chapter showing that it is the common and diffused or dominant species which offer the greatest number of recorded varieties. Hence, rare species will be less quickly modified or improved within any given period; they will consequently be beaten in the race for life by the modified and improved descendants of the commoner species.
  9. 9. From these several considerations I think it inevitably follows, that as new species in the course of time are formed through natural selection, others will become rarer and rarer, and finally extinct. The forms which stand in closest competition with those undergoing modification and improvement will naturally suffer most. And we have seen in the chapter on the Struggle for Existence that it is the most closely- allied forms,—varieties of the same species, and species of the same genus or of related genera,—which, from having nearly the same structure, constitution, and habits, generally come into the severest competition with each other; consequently, each new variety or species, during the progress of its formation, will generally press hardest on its nearest kindred, and tend to exterminate them. We see the same process of extermination amongst our domesticated productions, through the selection of improved forms by man. Many curious instances could be given showing how quickly new breeds of cattle, sheep, and other animals, and varieties of flowers, take the place of older and inferior kinds. In Yorkshire, it is historically known that the ancient black cattle were displaced by the long-horns, and that these “were swept away by the shorthorns” (I quote the words of an agricultural writer) “as if by some murderous pestilence.”