SlideShare uma empresa Scribd logo
1 de 15
EquaçõEs
 litErais
Observa as equações seguintes:


            3x + 7 y = 1
            3x + 7 z = y
            3x + 7 = 0
As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é
uma equação literal.

Então, qual será a definição de equação literal?



        Equações literais – são equações que têm mais do que uma variável, isto é,
        pelo menos 2 incógnitas.
Exemplos de equações literais:


•A equação y = 6 x + 2 que representa uma reta não vertical (função afim)

•A equação   y = 6x       que representa uma reta que passa na origem
                          do referencial (função linear).
 (equações do 1.º grau com duas incógnitas)
                                                                   Geogebra
 Quantas soluções têm?

 •As fórmulas:                       b×h            ( B + b) × h
                 A = l2         A=             A=
                                      2                  2
 que representam, respetivamente, as áreas do quadrado, do triângulo e
 do trapézio.

  • A equação da relatividade E = mc2.

  •A fórmula do teorema de Pitágoras a = b + c
                                      2   2    2
Como resolver equações literais?

  As regras para resolver equações, também se aplicam à resolução de uma
  equação literal, em ordem a qualquer uma das letras que nela figuram.

Exemplo I:

Observa a figura:
                                                    Perímetro 12 cm      y
  A figura sugere a seguinte equação,

                           2 x + 2 y = 12               x
Como a equação tem duas variáveis x e y, podemos resolvê-la em ordem a
x ou em ordem a y, isto é:                                    Nota:
                                                              Quando uma letra é
                                2 x + 2 y = 12 ⇔              a incógnita, as
                                                              outras letras
                               ⇔ 2 x = 12 − 2 y ⇔             funcionam como se
                                                              fossem números.
                                      12 − 2 y
                               ⇔x=             ⇔
                                          2
                               ⇔ x = 6− y       Resolvida em ordem a       x
Nota: Diz-se que a equação está resolvida em ordem a x porque a variável x está isolada
num dos membros da equação, neste caso no 1.º membro.



                                y                      2 x + 2 y = 12 ⇔
            Perímetro 12 cm
                                                    ⇔ 2 y = 12 − 2 x ⇔
                 x                                        12 − 2 x
                                                    ⇔y=             ⇔
                                                              2
                     Resolvida em ordem a y.        ⇔ y = 6− x

  Qual o interesse de resolver uma equação em ordem a uma das variáveis?

  Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento?

  Ora, aqui interessa resolver equação em ordem a   x (é a incógnita, o valor desconhecido)
       Assim, é muito fácil dar a resposta.
                                              x = 6− y          O comprimento é 4.
                                              x = 6−2 ⇔ x = 4
Mas, se a pergunta fosse:

   Sabendo que o comprimento,    x , do rectângulo é 3, qual é a largura?
   Neste caso já interessava resolver a equação em ordem a y.

          y = 6− x
         y = 6−3 ⇔ y = 3
Se se pretende determinar o comprimento do rectângulo, então, interessa
resolver a equação em ordem a x. Por outro lado, se se quisesse saber a
sua largura, neste caso, já interessava resolver a equação em ordem a y.

Conclusão:
Uma equação literal resolve-se em ordem a uma das letras (variável)
que se considera a incógnita (valor desconhecido). As outras letras
funcionam como números (valores dados).
As regras já conhecidas para resolver equações são também aplicáveis
na resolução de equações literais.
Assim, a equação tem uma
    A=100 m2       l   infinidade de soluções.
      c
c = 100 → l = 1         c × l = 100   mas,


c = 50 → l = 2         c × l = 100    mas,


  c = 25 → l = 4       c × l = 100    mas,


c = 20 → l = 5          c × l = 100    mas,


 c = 12,5 → l = 8      c × l = 100    …
Equações do 1.º grau com duas incógnitas.

                    ax+by=c;        a, b e c
  As soluções desta equação são, geralmente, pares ordenados de
  números.

   x+2y=9              S=(1,4)           Uma solução



                       S=(0, 9/2)             Outra solução


  Quantas soluções têm?

 Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0,

  b=0 e c    ).                                        Cuidado:
                                                       No contexto de
Relacionar com as funções afins, reta,                 problemas nem sempre
todos os pontos que estão sobre a                      todas as soluções
reta são soluções da equação.                          servem. Dar ex.
Exemplo II

           A equação E=mc2 em que:
           E- energia
           m- quantidade de matéria
           c- velocidade da luz

Descoberta de Einstein apontava para a possibilidade de se obterem grandes
quantidades de energia a partir de pequenas quantidades de matéria. A bomba
atómica é um dos frutos desta equação.

Resolve a equação em ordem a m e depois em ordem a c.
                                                       E
E = mc ⇔
       2
                                           E = mc ⇔ c = ⇔
                                                   2      2

                                                       m
  E mc 2    E
⇔ 2 = 2 ⇔m= 2                                   E
 c    c    c                               ⇔c=±
                                                m

           Resolvida em ordem a m.
                                      Resolvida em ordem a c.
Exemplo III

A fórmula V=c.l.h serve para determinar o volume de uma caixa de cereais.

Resolve a equação em ordem a c.

Neste caso, c é a incógnita.

Para isolar c divide-se ambos os membros por lh e depois simplifica-se.


                V c.l.h
                   =     ⇔
                lh    lh
               ⇔ c =V
                      lh
Exemplo IV

Resolve a equação em ordem a h.

Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem
números.

                                                 A=
                                                    ( B + b) × h
A área de um trapézio é dada pela fórmula
                                                             2

                      B+b                               2A
                A=        × h ⇔ 2 A = ( B + b) h ⇔ h =
                       2                               B+b
    Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B
    (base maior) , b (base menor) e A (área). Por exemplo:
    Determina h, sabendo que A=10 cm2, B=4 cm e b=1 cm.

                                                         2 ×10
                                                      h=       = 4 cm
                                                         4 +1
Exercícios:

                                      5           y
 2. Resolve em ordem a x, a equação     ( y − 1) = + x
                                      3           2
  Neste caso a incógnita é x. A letra y “funciona” como um número.

  5           y
    ( y − 1) = + x ⇔                    1.º Tiram-se os parênteses
  3           2                         2.º Tiram-se os denominadores
   5       5   y
 ⇔ y− = + x ⇔                           3.º Isolam-se os termos com a incógnita
   3       3   2 ( ×6 )                 (pretendida) num dos membros
      ( ×2 )   ( ×2 )   ( ×3 )
                                        4.º Reduzem-se os termos semelhantes
 ⇔ 10 y − 10 = 3 y + 6 x ⇔
                                  5.º Determina-se o valor da incógnita,
 ⇔ 6 x = 7 y − 10 ⇔               quando são dados os valores das outras
                                   variáveis.
        7 y − 10
 ⇔x=               A equação está resolvida em ordem a x.
            6
5           y
2. Resolver a mesma equação em ordem a y.
                                                ( y − 1) = + x
                                              3           2
                5           y
                  ( y − 1) = + x ⇔
                3           2
                 5      5    y
               ⇔ y− = + x ⇔
                 3      3    2 ( ×6 )
                   ( ×2 )   ( ×2 )   ( ×3 )
               ⇔ 10 y − 10 = 3 y + 6 x ⇔
               ⇔ 10 y − 3 y = 10 + 6 x ⇔
               ⇔ 7 y = 10 + 6 x ⇔
                     10 + 6 x
               ⇔ y=
                         7
3.                   C F − 32
Em Física, a fórmula   =          estabelece a correspondência entre C (graus
                     5   9
Celsius) e F (graus Fahrenheirt). A Isabel está doente. A sua temperatura é

102,2ºF. Qual é a sua temperatura em ºC?

Processo 1:   Substitui-se F por 102,2 e resolve-se a equação em ordem a C.

 C 102,2 − 32   C 70,2
   =          ⇔   =    ⇔ 9C = 351 ⇔ C = 39
 5     9        5   9
                         ( ×9 )   ( ×5 )

Processo 2: Começa-se por resolver a equação em ordem a C.

 C F − 32                        5 F − 160
   =      = 9C = 5 F − 160 ⇔ C =
 5   9                               9
     Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas:

   5 ×102,2 − 160
C=                = 39              R.: A Isabel tem de temperatura 39 ºC.
         9
Tarefa 3 página137
 139 exercício 9
      10 e 11

Mais conteúdo relacionado

Mais procurados

Regras Das Potências
Regras Das PotênciasRegras Das Potências
Regras Das Potências
nunograca
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
aldaalves
 

Mais procurados (20)

Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Regras Das Potências
Regras Das PotênciasRegras Das Potências
Regras Das Potências
 
Canto v 92_100
Canto v 92_100Canto v 92_100
Canto v 92_100
 
Canto viii 96_99
Canto viii 96_99Canto viii 96_99
Canto viii 96_99
 
Funções 10 - novo programa
Funções 10 - novo programaFunções 10 - novo programa
Funções 10 - novo programa
 
RESUMO Matemática 9º ano
RESUMO Matemática 9º anoRESUMO Matemática 9º ano
RESUMO Matemática 9º ano
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
As cantigas de amigo
As cantigas de amigoAs cantigas de amigo
As cantigas de amigo
 
Recursos expressivos
Recursos expressivosRecursos expressivos
Recursos expressivos
 
Frei Luís de Sousa, síntese
Frei Luís de Sousa, sínteseFrei Luís de Sousa, síntese
Frei Luís de Sousa, síntese
 
Equações 7
Equações 7Equações 7
Equações 7
 
Texto de opinião
Texto de opiniãoTexto de opinião
Texto de opinião
 
Formação de palavras
Formação de palavrasFormação de palavras
Formação de palavras
 
Cantigas de amigo
Cantigas de amigoCantigas de amigo
Cantigas de amigo
 
Cap v repreensões particular
Cap v repreensões particularCap v repreensões particular
Cap v repreensões particular
 
A formosura desta fresca serra
A formosura desta fresca serraA formosura desta fresca serra
A formosura desta fresca serra
 
Teorema de Pitágoras - Matemática 8º ano - Resumo da matéria
Teorema de Pitágoras - Matemática 8º ano - Resumo da matériaTeorema de Pitágoras - Matemática 8º ano - Resumo da matéria
Teorema de Pitágoras - Matemática 8º ano - Resumo da matéria
 
Recursos expressivos
Recursos expressivosRecursos expressivos
Recursos expressivos
 
MACS - modelos populacionais
MACS - modelos populacionaisMACS - modelos populacionais
MACS - modelos populacionais
 
Modificadores
ModificadoresModificadores
Modificadores
 

Semelhante a Equações literais

Equações literais
Equações literaisEquações literais
Equações literais
aldaalves
 
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio CarlosEquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
Antonio Carneiro
 
Trabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjisTrabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjis
Cristiano José
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
trigono_metrico
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
iraciva
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
2marrow
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
Patrícia Costa Grigório
 

Semelhante a Equações literais (20)

Equações literais
Equações literaisEquações literais
Equações literais
 
Equaçoes literais
Equaçoes literaisEquaçoes literais
Equaçoes literais
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Mat74a
Mat74aMat74a
Mat74a
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
 
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio CarlosEquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
EquaçõEs De 2º Grau,Sistema E Problema Autor Antonio Carlos
 
Trabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjisTrabalho de estudos orientados 2 regular eepjis
Trabalho de estudos orientados 2 regular eepjis
 
Simave proeb 2011 para 3º ano
Simave proeb 2011 para 3º anoSimave proeb 2011 para 3º ano
Simave proeb 2011 para 3º ano
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
 
Teste Derivadas
Teste DerivadasTeste Derivadas
Teste Derivadas
 
EquaçAo Do 2º Grau
EquaçAo Do 2º GrauEquaçAo Do 2º Grau
EquaçAo Do 2º Grau
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
 
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
Aula 17: Separação da equação de Schrödinger em coordenadas cartesianas. Part...
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
 
Lista de exercícios 4 - Cálculo
Lista de exercícios 4 - CálculoLista de exercícios 4 - Cálculo
Lista de exercícios 4 - Cálculo
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
 
Calculo1 aula04
Calculo1 aula04Calculo1 aula04
Calculo1 aula04
 
Calculo1 aula04
Calculo1 aula04Calculo1 aula04
Calculo1 aula04
 
Ap matematica
Ap matematicaAp matematica
Ap matematica
 

Mais de aldaalves

1.ª chamada 2005
1.ª chamada 20051.ª chamada 2005
1.ª chamada 2005
aldaalves
 
Representações gráficas
Representações gráficasRepresentações gráficas
Representações gráficas
aldaalves
 
Proporcionalidades soluções
Proporcionalidades soluçõesProporcionalidades soluções
Proporcionalidades soluções
aldaalves
 
Exercícios de proporcionalidade
Exercícios de proporcionalidadeExercícios de proporcionalidade
Exercícios de proporcionalidade
aldaalves
 
Soluções estatística e probabil.
Soluções estatística e probabil.Soluções estatística e probabil.
Soluções estatística e probabil.
aldaalves
 
Estatística e probabilidades ii
Estatística e probabilidades iiEstatística e probabilidades ii
Estatística e probabilidades ii
aldaalves
 
Estatística e probabilidades i
Estatística e probabilidades iEstatística e probabilidades i
Estatística e probabilidades i
aldaalves
 
Equações do 2.º grau soluções
Equações do 2.º grau  soluçõesEquações do 2.º grau  soluções
Equações do 2.º grau soluções
aldaalves
 
Circunferência e polígonos
Circunferência e polígonosCircunferência e polígonos
Circunferência e polígonos
aldaalves
 
Circunferência e polígonos resolução
Circunferência e polígonos resoluçãoCircunferência e polígonos resolução
Circunferência e polígonos resolução
aldaalves
 
Trigonometria soluções
Trigonometria soluçõesTrigonometria soluções
Trigonometria soluções
aldaalves
 
Espaço volumes-respetiva correção
Espaço volumes-respetiva correçãoEspaço volumes-respetiva correção
Espaço volumes-respetiva correção
aldaalves
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
aldaalves
 
Sistemas de equações e respetiva correção
Sistemas de equações e respetiva correçãoSistemas de equações e respetiva correção
Sistemas de equações e respetiva correção
aldaalves
 
Sistemas de equações
Sistemas de equaçõesSistemas de equações
Sistemas de equações
aldaalves
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
aldaalves
 
Equações literais
Equações literaisEquações literais
Equações literais
aldaalves
 
Polinómios e monómios
Polinómios e monómiosPolinómios e monómios
Polinómios e monómios
aldaalves
 

Mais de aldaalves (20)

1.ª chamada 2005
1.ª chamada 20051.ª chamada 2005
1.ª chamada 2005
 
Representações gráficas
Representações gráficasRepresentações gráficas
Representações gráficas
 
Proporcionalidades soluções
Proporcionalidades soluçõesProporcionalidades soluções
Proporcionalidades soluções
 
Exercícios de proporcionalidade
Exercícios de proporcionalidadeExercícios de proporcionalidade
Exercícios de proporcionalidade
 
Soluções estatística e probabil.
Soluções estatística e probabil.Soluções estatística e probabil.
Soluções estatística e probabil.
 
Estatística e probabilidades ii
Estatística e probabilidades iiEstatística e probabilidades ii
Estatística e probabilidades ii
 
Estatística e probabilidades i
Estatística e probabilidades iEstatística e probabilidades i
Estatística e probabilidades i
 
Equações do 2.º grau soluções
Equações do 2.º grau  soluçõesEquações do 2.º grau  soluções
Equações do 2.º grau soluções
 
Circunferência e polígonos
Circunferência e polígonosCircunferência e polígonos
Circunferência e polígonos
 
Circunferência e polígonos resolução
Circunferência e polígonos resoluçãoCircunferência e polígonos resolução
Circunferência e polígonos resolução
 
Trigonometria soluções
Trigonometria soluçõesTrigonometria soluções
Trigonometria soluções
 
Espaço volumes-respetiva correção
Espaço volumes-respetiva correçãoEspaço volumes-respetiva correção
Espaço volumes-respetiva correção
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
 
Sistemas de equações e respetiva correção
Sistemas de equações e respetiva correçãoSistemas de equações e respetiva correção
Sistemas de equações e respetiva correção
 
Sistemas de equações
Sistemas de equaçõesSistemas de equações
Sistemas de equações
 
Números reais e inequações
Números reais e inequaçõesNúmeros reais e inequações
Números reais e inequações
 
Equações literais
Equações literaisEquações literais
Equações literais
 
Polinómios e monómios
Polinómios e monómiosPolinómios e monómios
Polinómios e monómios
 
Aula 4 e 5
Aula 4 e 5Aula 4 e 5
Aula 4 e 5
 
Revisões estatistica 1 (1)
Revisões estatistica 1 (1)Revisões estatistica 1 (1)
Revisões estatistica 1 (1)
 

Último

8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
tatianehilda
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
TailsonSantos1
 

Último (20)

PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéis
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
A Revolução Francesa. Liberdade, Igualdade e Fraternidade são os direitos que...
A Revolução Francesa. Liberdade, Igualdade e Fraternidade são os direitos que...A Revolução Francesa. Liberdade, Igualdade e Fraternidade são os direitos que...
A Revolução Francesa. Liberdade, Igualdade e Fraternidade são os direitos que...
 
Conflitos entre: ISRAEL E PALESTINA.pdf
Conflitos entre:  ISRAEL E PALESTINA.pdfConflitos entre:  ISRAEL E PALESTINA.pdf
Conflitos entre: ISRAEL E PALESTINA.pdf
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
Produção de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptxProdução de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptx
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
 
GÊNERO CARTAZ - o que é, para que serve.pptx
GÊNERO CARTAZ - o que é, para que serve.pptxGÊNERO CARTAZ - o que é, para que serve.pptx
GÊNERO CARTAZ - o que é, para que serve.pptx
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 

Equações literais

  • 2. Observa as equações seguintes: 3x + 7 y = 1 3x + 7 z = y 3x + 7 = 0 As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é uma equação literal. Então, qual será a definição de equação literal? Equações literais – são equações que têm mais do que uma variável, isto é, pelo menos 2 incógnitas.
  • 3. Exemplos de equações literais: •A equação y = 6 x + 2 que representa uma reta não vertical (função afim) •A equação y = 6x que representa uma reta que passa na origem do referencial (função linear). (equações do 1.º grau com duas incógnitas) Geogebra Quantas soluções têm? •As fórmulas: b×h ( B + b) × h A = l2 A= A= 2 2 que representam, respetivamente, as áreas do quadrado, do triângulo e do trapézio. • A equação da relatividade E = mc2. •A fórmula do teorema de Pitágoras a = b + c 2 2 2
  • 4. Como resolver equações literais? As regras para resolver equações, também se aplicam à resolução de uma equação literal, em ordem a qualquer uma das letras que nela figuram. Exemplo I: Observa a figura: Perímetro 12 cm y A figura sugere a seguinte equação, 2 x + 2 y = 12 x Como a equação tem duas variáveis x e y, podemos resolvê-la em ordem a x ou em ordem a y, isto é: Nota: Quando uma letra é 2 x + 2 y = 12 ⇔ a incógnita, as outras letras ⇔ 2 x = 12 − 2 y ⇔ funcionam como se fossem números. 12 − 2 y ⇔x= ⇔ 2 ⇔ x = 6− y Resolvida em ordem a x
  • 5. Nota: Diz-se que a equação está resolvida em ordem a x porque a variável x está isolada num dos membros da equação, neste caso no 1.º membro. y 2 x + 2 y = 12 ⇔ Perímetro 12 cm ⇔ 2 y = 12 − 2 x ⇔ x 12 − 2 x ⇔y= ⇔ 2 Resolvida em ordem a y. ⇔ y = 6− x Qual o interesse de resolver uma equação em ordem a uma das variáveis? Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento? Ora, aqui interessa resolver equação em ordem a x (é a incógnita, o valor desconhecido) Assim, é muito fácil dar a resposta. x = 6− y O comprimento é 4. x = 6−2 ⇔ x = 4
  • 6. Mas, se a pergunta fosse: Sabendo que o comprimento, x , do rectângulo é 3, qual é a largura? Neste caso já interessava resolver a equação em ordem a y. y = 6− x y = 6−3 ⇔ y = 3 Se se pretende determinar o comprimento do rectângulo, então, interessa resolver a equação em ordem a x. Por outro lado, se se quisesse saber a sua largura, neste caso, já interessava resolver a equação em ordem a y. Conclusão: Uma equação literal resolve-se em ordem a uma das letras (variável) que se considera a incógnita (valor desconhecido). As outras letras funcionam como números (valores dados). As regras já conhecidas para resolver equações são também aplicáveis na resolução de equações literais.
  • 7. Assim, a equação tem uma A=100 m2 l infinidade de soluções. c c = 100 → l = 1 c × l = 100 mas, c = 50 → l = 2 c × l = 100 mas, c = 25 → l = 4 c × l = 100 mas, c = 20 → l = 5 c × l = 100 mas, c = 12,5 → l = 8 c × l = 100 …
  • 8. Equações do 1.º grau com duas incógnitas. ax+by=c; a, b e c As soluções desta equação são, geralmente, pares ordenados de números. x+2y=9 S=(1,4) Uma solução S=(0, 9/2) Outra solução Quantas soluções têm? Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0, b=0 e c ). Cuidado: No contexto de Relacionar com as funções afins, reta, problemas nem sempre todos os pontos que estão sobre a todas as soluções reta são soluções da equação. servem. Dar ex.
  • 9. Exemplo II A equação E=mc2 em que: E- energia m- quantidade de matéria c- velocidade da luz Descoberta de Einstein apontava para a possibilidade de se obterem grandes quantidades de energia a partir de pequenas quantidades de matéria. A bomba atómica é um dos frutos desta equação. Resolve a equação em ordem a m e depois em ordem a c. E E = mc ⇔ 2 E = mc ⇔ c = ⇔ 2 2 m E mc 2 E ⇔ 2 = 2 ⇔m= 2 E c c c ⇔c=± m Resolvida em ordem a m. Resolvida em ordem a c.
  • 10. Exemplo III A fórmula V=c.l.h serve para determinar o volume de uma caixa de cereais. Resolve a equação em ordem a c. Neste caso, c é a incógnita. Para isolar c divide-se ambos os membros por lh e depois simplifica-se. V c.l.h = ⇔ lh lh ⇔ c =V lh
  • 11. Exemplo IV Resolve a equação em ordem a h. Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem números. A= ( B + b) × h A área de um trapézio é dada pela fórmula 2 B+b 2A A= × h ⇔ 2 A = ( B + b) h ⇔ h = 2 B+b Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B (base maior) , b (base menor) e A (área). Por exemplo: Determina h, sabendo que A=10 cm2, B=4 cm e b=1 cm. 2 ×10 h= = 4 cm 4 +1
  • 12. Exercícios: 5 y 2. Resolve em ordem a x, a equação ( y − 1) = + x 3 2 Neste caso a incógnita é x. A letra y “funciona” como um número. 5 y ( y − 1) = + x ⇔ 1.º Tiram-se os parênteses 3 2 2.º Tiram-se os denominadores 5 5 y ⇔ y− = + x ⇔ 3.º Isolam-se os termos com a incógnita 3 3 2 ( ×6 ) (pretendida) num dos membros ( ×2 ) ( ×2 ) ( ×3 ) 4.º Reduzem-se os termos semelhantes ⇔ 10 y − 10 = 3 y + 6 x ⇔ 5.º Determina-se o valor da incógnita, ⇔ 6 x = 7 y − 10 ⇔ quando são dados os valores das outras variáveis. 7 y − 10 ⇔x= A equação está resolvida em ordem a x. 6
  • 13. 5 y 2. Resolver a mesma equação em ordem a y. ( y − 1) = + x 3 2 5 y ( y − 1) = + x ⇔ 3 2 5 5 y ⇔ y− = + x ⇔ 3 3 2 ( ×6 ) ( ×2 ) ( ×2 ) ( ×3 ) ⇔ 10 y − 10 = 3 y + 6 x ⇔ ⇔ 10 y − 3 y = 10 + 6 x ⇔ ⇔ 7 y = 10 + 6 x ⇔ 10 + 6 x ⇔ y= 7
  • 14. 3. C F − 32 Em Física, a fórmula = estabelece a correspondência entre C (graus 5 9 Celsius) e F (graus Fahrenheirt). A Isabel está doente. A sua temperatura é 102,2ºF. Qual é a sua temperatura em ºC? Processo 1: Substitui-se F por 102,2 e resolve-se a equação em ordem a C. C 102,2 − 32 C 70,2 = ⇔ = ⇔ 9C = 351 ⇔ C = 39 5 9 5 9 ( ×9 ) ( ×5 ) Processo 2: Começa-se por resolver a equação em ordem a C. C F − 32 5 F − 160 = = 9C = 5 F − 160 ⇔ C = 5 9 9 Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas: 5 ×102,2 − 160 C= = 39 R.: A Isabel tem de temperatura 39 ºC. 9
  • 15. Tarefa 3 página137 139 exercício 9 10 e 11