Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Clickstream Analytics with Markov Chains

Covers key concepts of clickstream analysis and Markov Chains. Followed by 3 practical applications with the R language:
- Frequent path analysis
- Future click prediction
- Transition probabilities mapping

  • Inicia sesión para ver los comentarios

Clickstream Analytics with Markov Chains

  1. 1. Clickstream Analytics with Markov Chains MeasureCamp #12 Alexandros Papageorgiou
  2. 2. Next 30 mins ● What is the clickstream ● Markov Chains overview ● Practical examples and techniques ● Discussion
  3. 3. About me Account Strategist @ Google Ireland Consumer behaviour analyst @ Analyst @
  4. 4. Why Clickstream ● Enable advanced types of analysis eg. Data mining/Machine Learning ● Get closer to the voices of our customers ● Go beyond standard segmentation analysis
  5. 5. Alternatives ?
  6. 6. What’s clickstream exactly ? A tidy example
  7. 7. The Weblog
  8. 8. 3 useful applications ● Frequent Path analysis ● Future Click prediction w/ Markov Chains ● Transition Probabilities mapping w/ Markov Chains
  9. 9. Markov Chains ● It’s a 100+ year old theory. ● Hidden Markov Models, Markov Chain Monte Carlo, higher order Markov Chains ● Used widely in science from physics to finance information science ● Models the evolution of dynamic systems in time
  10. 10. Markov Chains ● Page Rank ● Attribution Models ● Clickstream
  11. 11. Markov Chains key concepts Media Exposure through the Funnel: A Model of Multi-Stage Attribution Abhishek, Vibhanshu & Fader, Peter & Hosanagar, Kartik. (2012)
  12. 12. The clickstream R package. Package Author: Michael Scholz - Cluster your clickstream - Model the clickstream clusters as a markov chain - Visualise and calculate transition probabilities - Predict next click given a submitted click sequence. - Convert the clickstream to an object that is ready for association rules
  13. 13. R notebook
  14. 14. Final thoughts Clickstream analysis has been an academic research topic for quite some time Development of practical applications is now becoming more accessible thanks to open source tools and libraries There are several other methods that play nicely with the clickstream such as clustering, network analysis and association rules.
  15. 15. Useful References Clickstream package article on the Journal of Statistical Software Supercharging websites with a real-time R API Wikipedia clickstream rabbit holes MeaureCamp session Clickstream notebook
  16. 16. Questions ? Thank you!