Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Modelos de propensión en la era del Big Data

4.961 visualizaciones

Publicado el

Presentación sobre la sesión "Modelos de propensión en la era del Big Data", dentro del Programa Ejecutivo de Big Data y Business Intelligence celebrado en Madrid en Febrero de 2016, en nuestra sede de la Universidad de Deusto.

Publicado en: Educación
  • DOWNLOAD FULL BOOKS, INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí

Modelos de propensión en la era del Big Data

  1. 1. PROGRAMA DE BIG DATA Y BUSINESS INTELLIGENCE Modelos de propensión Alex Rayón Jerez alex.rayon@deusto.es @alrayon Febrero, 2016. Madrid.
  2. 2. 2 Review here
  3. 3. 3 Modelos de propensión Introducción Fuente: http://www.sas.com/offices/latinamerica/argentina/resources/asset/CI_Banca2012.pdf
  4. 4. 4 Fuente: http://www.sas.com/offices/latinamerica/argentina/resources/asset/CI_Banca2012.pdf Modelos de propensión Introducción (II)
  5. 5. 5 Fuente: http://www.sas.com/offices/latinamerica/argentina/resources/asset/CI_Banca2012.pdf Modelos de propensión Introducción (III)
  6. 6. 6 Modelos de propensión Introducción (IV) ●Máxima efectividad ya que atacamos a clientes concretos con la antelación suficiente como para retenerlos ●Construcción de modelos que predicen la propensión a compra o abandono en base a características actuales del cliente ●Los modelos tienen más profundidad en el uso de variables (continuamente actualizadas) e identifican con mayor anticipación posibles desviaciones en las propensiones del cliente
  7. 7. 7 Modelos de propensión ¿Qué son? ●Pueden ser: o Compra (cross-sell y up-sell) o Fuga (si pudiera dejar de ser nuestro cliente) o Riesgo de impago (que no pague lo que adeuda) o Fraude o Sensibilidad al precio (descuentos) o etc. ●Son modelos que estiman la probabilidad de que se produzca esa conducta (compra, fuga, etc.) para cada uno de nuestros clientes o Permite generar modelos predictivos para poder tomar decisiones de negocio en tiempo real
  8. 8. 8 Modelos de propensión ¿Por qué? ● Construir relaciones duraderas y sostenibles en el tiempo entre las empresas y sus clientes, permiten: o Incrementar el índice de satisfacción o La involucración y la optimización del marketing de compromiso ● Por lo tanto, contactar a los más propensos a fugarse da buenos resultados a una empresa ● Buscamos clientes prescriptores
  9. 9. 9 Modelos de propensión ¿Por qué? (II) Fuente: http://www.sas.com/offices/latinamerica/argentina/resources/asset/CI_Banca2012.pdf
  10. 10. 10 Modelos de propensión ¿Por qué? (III) ● Uno de los fundamentos básicos de la experiencia humana es que el futuro próximo es parecido al pasado reciente o Esto se ha demostrado empíricamente tanto a nivel individual como social ● Por lo tanto, cabe concluir que el comportamiento futuro de un individuo será parecido a su comportamiento pasado o Y así, podemos extrapolar esta visión a que los sucesos futuros en un negocio, serán parecidos a los sucesos del pasado reciente
  11. 11. 11 Modelos de propensión ¿Por qué? (IV) Fuente: http://www.sas.com/offices/latinamerica/argentina/resources/asset/CI_Banca2012.pdf
  12. 12. 12 Modelos de propensión ¿Por qué? (V) ● Este asunto es particularmente interesante a la hora de hablar de los clientes ● Ceteris paribus (permaneciendo las condiciones constantes), podemos esperar que en nuestro negocio las ventas pudieran ser parecidas, salvo que hiciéramos una campaña o similares ● La tasa de nuevos clientes puede ser similar a la del pasado año, y la tasa de abandonos será similar igualmente a la del año anterior
  13. 13. 13 Modelos de propensión La Experiencia de Cliente Fuente: http://www.melmarketing.es/wp-content/uploads/2014/01/Resultado-ecuacio%CC%81n-ECEL.png
  14. 14. 14 Modelos de propensión La Experiencia de Cliente (II) ●Una experiencia bien diseñada empieza antes de la compra, se intensifica durante la misma y se mantiene hasta la siguiente o ¿Qué métricas utilizar para saber que mis clientes están disfrutando y por lo tanto me podrán prescribir? o Hay que tener como objetivo retener a los mejores/más rentables clientes, e identificar los factores clave que influyen en el attrition (fuga de clientes) o Identificando a través de modelos predictivos los clientes con más alta propensión a la fuga o Para ello, se utilizan scores para priorizar los clientes objetivo para acciones de retención.
  15. 15. 15 Modelos de propensión Score de clientes Fuente: http://www.sas.com/offices/latinamerica/argentina/resources/asset/CI_Banca2012.pdf
  16. 16. 16 Modelos de propensión Score de clientes (II) ●El score de los modelos está correlacionado con la probabilidad de que suceda un evento o Esto impacta en el resultado de las acciones ●La mayor parte del esfuerzo se concentra en identificar, crear y transformar las variables para el análisis
  17. 17. 17 Modelos de propensión Técnicas: Variables con capacidad predictiva
  18. 18. 18 Modelos de propensión Técnicas: Árboles de decisión Fuente: https://bigml.com/user/czuriaga/gallery/model/53a071d4c8db6379930014f6 Fuente: http://www.vladislav.lazarov.pro/files/research/papers/churn-prediction.pdf
  19. 19. 19 Modelos de propensión Técnicas: Árboles de decisión (II) ●Son la alternativa idónea cuando el modelo debe seguir una lógica de negocio para ser explicado ●Consiste en clasificar a los individuos en grupos de comportamiento diferente discriminando por las variables de entrada ●Es una técnica de modelización supervisada ●Se utilizan cuando el sentido de negocio es un factor de peso en la estructura del modelo
  20. 20. 20 Modelos de propensión Técnicas: Árboles de decisión (III) ●Ventajas o Su principal virtud es que son entendibles y explicables o Buena capacidad predictiva con variables categóricas § Es necesario trabajar las variables de entrada definiendo los cortes adecuados o Alta flexibilidad en cuanto a los tipos de variables de entrada y tratamiento de missings § Además no se ven muy afectados por los outliers o Muy fáciles de implementar, mantener y revisar o Se debe controlar el sobre ajuste del modelo evaluando el modelo con una muestra de test para asegurar la precisión
  21. 21. 21 Modelos de propensión Técnicas: Redes neuronales ●Son una buena alternativa pero requiere más trabajo de exploración que otras técnicas ●Combinan los atributos de una observación para tomar una decisión ●El proceso de modelización consiste en entrenar a la red neuronal para que aprenda a combinar los atributos con la estructura y pesos más adecuados.
  22. 22. 22 Modelos de propensión Técnicas: Redes neuronales (II) ●Ventajas o Siguen un proceso heurístico de entrenamiento que le permite ir ajustando los pesos para los atributos de entrada (p.e: back propagation) o Las variables de entrada deben normalizarse en rangos de 0 a 1 para facilitar la convergencia del algoritmo o Cuantas más capas intermedias más ajustará el resultado y más riesgo de sobreajuste § Es importante tener una muestra de entrenamiento y una muestra de test o Uno de los argumentos para no usar las redes neuronales suele ser que es una caja negra difícil de interpreta
  23. 23. 23 Modelos de propensión Técnicas: Modelos de regresión logística ●Una de las técnicas más utilizadas porque son modelos eficientes y de alta capacidad predictiva ●La regresión logística es una técnica de modelización paramétrica ●Se supone que la relación entre las variables explicativas y la variable target transformada (logit) es lineal
  24. 24. 24 Modelos de propensión Técnicas: Modelos de regresión logística (II) ●Ventajas o No hay limitaciones en cuanto a las variables independientes o explicativas, pueden ser continuas o categóricas o Definida la variable dependiente como la ocurrencia o no de un acontecimiento, el modelo de regresión logística la expresa en términos de probabilidad o Requieren menos esfuerzo que las redes neuronales § No es necesario explorar diferentes estructuras e ir comprobando diferentes sobreajustes o En caso de tener que hacer múltiples modelos resultan la mejor opción
  25. 25. 25 Modelos de propensión Estrategia ●Localizar público objetivo ●A ese público, aplicarles alguna acción: o Descuentos a los más propensos a irse o Promociones adhoc a un conjunto de clientes que si bien no son los más propensos a irse ya no tienen la mejor experiencia de cliente o etc ●Seleccionar bien el momento ideal para las acciones de retención dependerá del equilibrio a conseguir entre dos variables o Coste de prevención de fuga o Tasa de éxito en prevención de fuga
  26. 26. 26 Modelos de propensión Casos: Churn o Fuga Fuente: http://www.retentionscience.com/the-top-4-reasons-customers-churn-and-how-to-prevent-it Fuente: http://www.forentrepreneurs.com/customer-success/
  27. 27. 27 Modelos de propensión Casos: Gasto futuro ● Para predecir el consumo que tendrá el Cliente el próximo año ● A partir de ese gasto futuro estimado, se calcula el valor esperado del cliente pudiendo determinar si éste será rentable o no Fuente: http://mod-keynesiano.blogspot.com.es/p/modelo-keynesiano.html
  28. 28. 28 Modelos de propensión Casos: Sensibilidad al precio ● Se realiza un análisis de sensibilidad al precio de los clientes, identificando aquellos grupos de usuarios más sensibles a un cambio en el precio Fuente. http://planuba.orientaronline.com.ar/tag/costos/
  29. 29. 29 Modelos de propensión Business case: Sector asegurador ● Objetivos o Desarrollar los modelos predictivos de gasto futuro y fuga de los diferentes ramos (auto, hogar, accidentes y decesos), para todos los clientes particulares y empresas. o Determinar la sensibilidad al precio por cada uno de los productos . o Realizar una segmentación por fuga y valor de cada producto. o Desarrollar el modelo de propensión de compra de todos los productos.
  30. 30. 30 Modelos de propensión Business case: Sector asegurador (II) ● Objetivos (cont.) o Crear un sistema de recomendación de acciones de marketing para cada cliente. o Identificar hogares y determinar el estadio de vida dentro de la compañía. o Crear una segmentación estratégica global basada en hogares que tuvieran en cuenta todos los miembros del hogar y sus productos. o Desarrollar una estrategia de relación para cada uno de los segmentos
  31. 31. 31 Modelos de propensión Business case: Sector asegurador (III) ● Fases del proyecto o Fase I: Se realiza el análisis y segmentación de usuarios de productos de Salud según tipología de hogares, y se trabajan los modelos de fuga y valor de los clientes. o Fase II: Se sigue complementando y enriqueciendo el proceso de segmentación de clientes y se trabajan modelos de fuga, valor y sensibilidad al precio del resto de ramos. o Fase III: Se desarrolla el sistema recomendador que permita ofrecer los productos más óptimos a los clientes adecuados.
  32. 32. Copyright (c) 2016 University of Deusto This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons “Attribution-ShareAlike” License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ Alex Rayón Jerez Febrero 2016
  33. 33. PROGRAMA DE BIG DATA Y BUSINESS INTELLIGENCE Modelos de propensión Alex Rayón Jerez alex.rayon@deusto.es @alrayon Febrero, 2016. Madrid.

×