Publicidad
For the indefinite integral below, choose which of the following sub.pdf
Próximo SlideShare
Banco de preguntas para el apBanco de preguntas para el ap
Cargando en ... 3
1 de 1
Publicidad

Más contenido relacionado

Más de amoratrading(20)

Publicidad

For the indefinite integral below, choose which of the following sub.pdf

  1. For the indefinite integral below, choose which of the following substitutions would be most helpful in evaluating the integral. Enter the appropriate letter (A,B, or C) in each blank. A. x= 3tan(theta) B. x= 3sin(theta) C. x= 3sec(theta) integrate of (dx)/((9-x^2)^3/2) Solution Selecting the option B. [x = 3sin theta =>] [dx = 3 cos theta d theta] yields: [int (3 cos theta d theta)/((9-9sin^2 theta)sqrt(9 - 9 sin theta))] Factoring out 9 yields: [int (3 cos theta d theta)/(27(1-sin^2 theta)sqrt(1 - sin^2 theta))] Using the fundamental formula of trigonometry yields: [1-sin^2 theta = cos^2 theta] [int (3 cos theta d theta)/(27cos^3 theta) = (1/9) int(d theta)/(cos^2 theta)] [(1/9) int (d theta)/(cos^2 theta) = (1/9) tan theta + c] Substituting back [(sin^(-1)(x/3))] for [theta] yields: [int (dx)/((9-x^2)^3/2)= (1/9) tan((sin^(-1)(x/3)))+ c] Hence, evaluating the given integral yields [int (dx)/((9-x^2)^3/2)= (1/9) tan((sin^(-1)(x/3))) + c] , using the option B. [x = 3sin theta] .
Publicidad