SlideShare una empresa de Scribd logo
1 de 50
Descargar para leer sin conexión
Alexey Turchin
Let us Make a
Back Up on the
Moon
Foundation Science for Life Extension
alexeiturchin@gmail.com
Many global risks exist
• AI risks
• Biotech risks
• Nanotech risks
• Nuclear war
• Asteroids
• Super-
volcanos
http://immortality-roadmap.com/x-risks%20map15.pdf
Plan A is to
prevent risks
Plan B is to
survive
Plan C is to
leave traces
High-speed Tech Development
needed to quickly pass risk window
• Investment in super-technologies
• Support exponential growth to overcome linear risks
А1.1
International
Cooperation
Plan B3
Bunkers
and
asylums
(see map)
Plan С
Preserve information
about humanity
Preparation
• Fundraising
• Textbook to rebuild
civilization
• Hoards with seeds etc
• Survivalist’s communities
Building
• Underground bunkers, space colonies
• Seasteading
• Convert submarines into refuges
Natural refuges
• Remote villages
• Remote islands
• Mines
Time capsules
with information
• Underground hoards
• Eternal disks
Preservation of
earthly life
• Conditions for the re-emergence
of intelligent life
• Directed panspermia
• Preservation of biodiversity and
mammals
Prevent x-risk research
because it only
increases risk
• Do not advertise x-riks idea
• Don’t try to control risks
• We can’t measure the probability
• Do nothing
All Possible Ways to Prevent Human Extinction Risks
Singleton
• “A world order in
which there is a single de-
cision- making agency at
the highest level” (Bos-
trom)
• Super AI which pre-
vents all possible risks
and provides immortality
and happiness to human-
ity
Controlled regression
• Use a small catastrophe to prevent large
one (Willard Wells)
• Luddism (Kaczynski): relinquishment of
dangerous science
• Creation of ecological civilization without
technology
• Limitation of personal and collective in-
telligence to prevent dangerous science
• Antiglobalism and diversification into
multipolar world (may raise probabilities of
wars)
Plans A1-A3 represent the best possible ways to prevent global catastrophe.
These plans could be realized simultaneously until the later stages.
Plans B, С and D are subsequently worse and give only a small chance of survival.
(c) Alexey Turchin, 2014 - 2017
Messages
to ET civilizations
• Interstellar messages with DNA
• Hoards on the Moon
• Frozen brains
• Spacecrafts
Reboot of
civilization
Several reboots may
occur
Interstellar
distributed
humanity
• Many unconnected
human civilizations
• New types of space
risks (space wars, planets
and stellar explosions, AI
and nanoreplicators, ET
civilizations)
Attracting good
outcome by positive thinking
• Start partying now
• Preventing negative thoughts
about the end of the world and about
violence
• Maximum positive attitude “to attract” pos-
itive outcome
Improving humans
Intelligence and norality
• Rationality+ Education (CFAR)
• Effective altruists
• Engineered enlightenment: LSD?
• Prevent worst forms of capitalism:
• Preventing unilateralist course
• Ethical education
Media
• Prevent fake news
• High quality scientific journalism
Education
• Courses of risk analysis for
professionals
• Education in schools on x-risks
• Raising the sanity waterline
Plan B1
Improving
Resilience
Bad plans
Depopulation
Could provide resource preservation and
make control simpler
• Natural causes: pandemics, war, hunger
(Malthus)
• Extreme birth control
• Deliberate small catastrophe (bio-weap-
ons)
Computerised totalitarian control
• Mind-shield – control of dangerous
ideation by the means of brain implants
Choosing the way
of extinction
• Quick die off is better
UFAI is better
pandemc
• Memory about humanity
• Past simulations
• Some human values
Interstellar travel
• “Orion” style, nuclear powered “generation ships”
• Starships, with immortal people on board
• Von Neumann self-replicating probes
Temporary
asylums in space
• Space stations as
temporary asylums (ISS)
• Cheap and safe launch
systems
Colonisation of the
Solar system
• Self-sustaining colonies on Mars and
large asteroids
• Terraforming of planets and asteroids
using self-replicating robots
• Millions of colonies inside asteroids in
the Oort cloud
Plan B2
Space
Colonization
Robot-replicators in space
• Mechanical life
• Nanbots as information carriers
• Safe narrow AI for nanobots
Resurrection by
another civilization
• Alien’s archeology
• Similar convergent evolution
of alien civilizations
Risk control
Technology bans
• International ban
• Freezing dangerous
projects
• Piles of bureaucracy
• Regulation
Control
• Several controlled re-
serch centers
• Control knowledge of
mass destruction
• White noise
• Control dangerous
agents
Worldwide risk
prevention
authority
X-risk police
• Center for quick
response
• Task forse
• Worldwide video-sur-
veillance
• Robots for emergency
liquidation
• Narrow AI expert sys-
tem on x-risks
Research
Risks
• Risk modelling and ful
list
• General theory of safety
• Cognitive biases
• Future model
Science
• Cooperative community
• Prestige
• Scientific attributes
Social
support
Politics
• Street actions
• Lobbyism
• Policy
recommendations
• Parties
Society
• Popularization
• Funding
• Education
International
cooperation
Super-UN
• International law about
x-risks
• International agencies
dedicated to
certain risks
• New rolu of UN
Surveillance
• International control
systems (like IAEA)
• Internet scanning,
monitoring from space
Values
transformation
• X-risks reduction value
• Life extension and global
security
• Reduction of radical
religious (ISIS) or
ationalistic values
• Popularity of transhumanism
• Art
• Memorial and awareness
days: Pentrov day
Manipulation of the
extinction probability
using Doomsday
argument
• Decision to create more ob-
servers in case unfavora-
ble event X starts to happen,
thereby lowering its probabil-
ity (method UN++ by Bos-
trom)
Control of the simulation
(if we are in it)
• Live an interesting life so our simulation
isn’t switched off
• Don’t let them know that we know we live in
simulation
• Hack the simulation and control it
• Negotiation with the simulators or pray for
help
Readiness
• Crew training
• Crews in bunkers
• Crew rotation
Improving sustainability of civilization
• Intrinsically safe critical systems
• Growing diversity of human beings and habitats
• Universal methods of catastrophe prevention (resistant structures, strong medicine)
• Building reserves (food stocks, seeds, minerals, energy, machinery, knowledge)
• Widely distributed civil defence:
•Independent food production (Dekenberger)
War prevention
• International court
• Large project, which could unite human-
ity,
• Dialog with rogue countries
• Hotlines between nuclear states
• Antiwar and antinuclear movement
• International law
• Cooperative decision theory in interna-
tional politics
Dramatic social changes
• Demise of capitalism, global village, dis-
solving of national states.
• Scinetifically based policy
• World democracy
• High level of horizontal connectivity
Miniaturization
for survival and invincibility
• Adaptive bunkers based on nanotech
• Colonization of Earth’s crust by miniaturized nano-tech bodies
• Moving into simulation worlds inside small self-powered com-
puter systems
PlanA:Preventcatastrophe
Space colonies
near Earth
• Moon and Mars (Elon
Musk) with 100-1000 peo-
ple
• 1 000 000 self-sustained
colony on Mars
А1.2
Decentralized
monitoring
ofrisks
Decentralized risk monitoring
• Transparent society
- vigilantes
- “Anonymous” hacker groups
• Decentralized control:
- local police; local health authorities
- mutual control in professional space
- whistle-blowers
• Net-based safety solutions:
- ring of x-risk prevention organizations
• Economic stimulus:
- carbon emissions trade
- prizes for any risk identified
• Monitoring of smoke, not fire
Useful ideas to limit the scale of a catastrophe
• Quarantine
• Rapid production of vaccines
• Stockpiles
• Increase preparation
• Quick detection of new threats
• Worldwide x-risk prevention exercises
• The ability to quickly adapt to new risks and envision them in advance
Morechancesofsuccess
A1–Peacefulintegration
(seemapofcooperation)
PlanB
SurvivethecatastrophePlanA2–Worldtakeover
andstrongglobalcontrol
PlanА3.1
CreateAI
soon
(badplan?)
Technology speedup
• Differential technological development:
• Laws and economic stimulus
Raise human body resilience
by replacing biological parts
• Nanotech-based immortal body
• Diversification of humanity into several successor species capa-
ble of living in space
• Mind uploading
• Integration with AI
PlanА2.2
World
takeover
(badplan?)
Small catastrophe for unification
• A smaller catastrophe could help unite humanity
• Paradigmatic change event
Unification as result
of world war
Use of supertechnology
for unification
Nanotech
Doomsday blackmail
PlanA3–Nonglobalsolutions
Change informational
transparency level
•White noise
•Secrecy
•Blockchain
•Tracking
Change the speed of
the catastrophe
dissemination
•Slow down communication
channels and transportation
•Balance of power (Open AI)
PlanА3.2
Slowingthe
catastrophe
PlanА3.3
Bottom-up
approach:
Low-tech risks
•Find special approach to each risk (more in full map)
•Internal professional self-regulating
Reactive approach:
wait for evidence
• Search evidences of new risks appearing
• Evidences should pass certain threshold
Active
shields
• Geoengineering
• Anti-asteroid shield
• Nanoshield
• Bioshield – world-
wide immune system
• Worldwide AI-con-
trol system
Peaceful
unification of the
planet
Isolation
• Isolation of risk sources at a great
distance from Earth;
• Do scientific experiments in the
ways that are close to natural events
Steps and
timeline
Step 1
Planning
Step 3
Low-tech level defence
2025—2050
Step 4
High tech defence
2050—2100
Step 2
Preparation
Study and Promotion
• Study of Friendly AI theory
• Promotion of Friendly AI
• Fundraising (MIRI)
• Slowing other AI projects
Solid Friendly AI
theory
• Theory of human values
and decision theory
• Full list of possible ways to
create FAI
Superintelligent AI
• “hard takeoff”
• dominant force on Earth
• AI eliminates suffering, involuntary death, and
existential risks
• AI Nanny
AI practical studies
• Narrow AI
• Human emulations
• Value loading
• FAI theory promotion to
all AI developers
PlanА2.1
Friendly
AI
creation
World wide survilience sys-
tem and draconian laws
(medium resolution version, see more details here)
Technological
precognition
• Prediction of the future
based on advanced quan-
tum technology
• Search for potential ter-
rorists using new scanning
technologies
Saved by
non-human intelligence
• Extraterrestrials will save us
• Ask ET for help if a catastrophe is
inevitable
• Simulation owners will save us
• Prey
Quantum
immortality
• At least one observer will
survive
• Other human civilizations
must exist in the infinite Uni-
verse
Strange strategy
to escape
Fermi paradox
Random strategy may help
us to escape some dangers
that killed all previous civili-
zations in space
Plan D
Improbable
Ideas
http://immortality-roadmap.com/globriskeng.pdf
The main idea of Plan C is to leave
archeological data for the future
civilisation so it could “resurrect” us
Questions:
1. When the new civilisation appear?
2. Where to store data?
3. Did anybody already send data?
4. How to attract attention to the storage?
5. What kind of data to send: size, content
The answers are interconnected.
When?
- 1 000 - 100 000 year timeframe: Civilizational collapse with human survival.
- 1 million timeframe: too long for humans, too short for chimps evolutions in
new intelligent specie (survival gap).
- 10 million years. Apes evolve in the new intelligent species.
- 100 million years. Small rodents or birds evolve intelligence.
- 500 million years: Completely new multicellular life.
Types of the possible new
civilizations depending on
the size of the catastrophe
Future evolution of the
Sun and Earth
Different estimations of the Earth
habitability:
- From 100 mln - 3 billion years
- Median estimation: 1 billion years
Earth’s CO2 is declining;
Sun’s luminosity is growing:
Oceans will boil eventually.
.
0
25
50
75
100
Humans, 100KY No one, 1 MY Apes, 10MY Birds, 100MY New life, 500MY
Next civilisation's probability
depending on time
Most probable new civilisation timing
is around 100 million years from now
Because:
- Human will be humans and it is not a new
civilization
- Great Apes are fragile; they will likely extinct
together with humans
- Small animals (like mice) may evolve into large and
clever ones during 100 million years time
- In the 1 billion timeframe it is probable that Earth will
Information exchange and
“acausal” trade between
past and future civilizations
Acausal deal: both sides cooperate without ability to
sign agreement
Our obligations: a) send data about how our civilization
demise thus helping to prevent their extinction
b) send interesting scientific data
Next civilisation obligations: recreate human being
based on our DNA and human culture based on our
digital data.
There is a problem of sending
messages to 100 millions years in
the future:
geologically active Earth
Existing methods and attempts
to preserve information about
humanity on Earth
• Svalbard Global Seed Vault -1000 years
• Long Now - HD Rozetta disks - 10 000 years
• Memory of Mankind (MoM) is an effort to encode some
information on clay plates and bury them in a salt mine -
1 mln years
New information carriers
Metal disks with engraving using ion beam: “HD-Rosetta” manufacturer Norsam
suggests also HD-ROM technology with the following characteristics of the disk if it is
used as digital only carrier: “50 nm pit size •165 GB per 120 mm disc
M-disks: These are Blu-ray disks with a glass coating which is claimed to be able to
survive 1000 years
5D storage in silico glass”: Glass with 3D structure, created with a laser: In 2016 a
breakthrough was claimed in long-term information preservation by 3 dimensional laser
engraving inside silica glass, with 2 additional “dimensions” created by polarization. It was
claimed that 360 TB of data could be recorded into a piece of quartz the size of a coin.
Tungsten in silicon nitride lithography. De Vries created disks using very hard and
durable materials (de Vries, Schellenberg, Abelmann, Manz, & Elwenspoek, 2013).
Thermal tests showed that the disks could survive 1 mln years at room temperature and
even may be as much as 1030 years
DNA. DNA half-life in normal conditions is around 500 years, after which half of the
nucleotide bases will break, but the time quickly grow with lower temperatures, based on
Arrhenius law http://www.alcor.org/Library/html/HowColdIsColdEnough.html
On the temperature of the liquid nitrogen (-196C) the chemical processes will slow 700
trillions times. Preserving viable human DNA requires very high quality of preservation.
Geologically stable: almost no volcanism, no atmosphere
Extremely cold craters on poles: coldest places in the Solar
system
Nearest place to Earth which will be surely visited first.
Surface is visible from Earth by naked eye
There are many human artefacts already on the Moon
There are many planned missions, where opportunistic payload is
possible
Moon is the most natural solution
for 100 million years storage
Lunar Mission One
Lunar Mission One is a project to send a probe into the
Shackleton crater on the Moon, bore a hole 20-100 meters deep,
and put public and private data inside the hole, as well as pieces of
DNA and hair.
The founders want to fund the project by people who will pay to
preserve their private data.
It has planned date of launch in 2024, but now is experiencing
funding difficulties: they lost 1 mln USВ which they crowdfunded.
https://lunarmissionone.com/
Lunar Mission OneCommercialisation of immortality on the Moon:
“A plan to establish a lunar archive containing human DNA and a digital record of life on
Earth is being unveiled this week. Called Lunar Mission One, the archive is the brainchild of
British space consultant David Iron, who has worked on Skynet, the UK spy satellite
network, and Galileo, the European Union’s global positioning system.
His idea is to charge people £50 or so to place a sample of their DNA, in the form of a
strand of hair, in an archive to be buried on the moon, alongside a digital history of as much
of their lives as they want to record, in the form of text, pictures, music and video. Iron
presented the plan at a space flight conference at the Royal Society in London on 19
November.
The catch? He needs at least 10 million earthlings to do this if he’s to generate the £500
million the moon shot will need.”
https://www.newscientist.com/article/dn26581-chance-to-bury-your-dna-on-the-moon-in-a-time-
capsule/
Conditions on the
Moon: temperature
• The temperature of the lunar surface
jumps when solar radiation hits it, which
would damage most equipment
• But some places of the Lunar poles
never see sunlight
• The LCROSS spacecraft measured
temperatures of -238ºC in craters at the
southern Moon pole and -247ºC in a crater
at the northern pole.
• These are the coldest temperatures in
the Solar system, even on Pluto it is higher,
as Pluto does not have eternally shadowed
poles because its rotation axis is tilted.
• Pluto’s temperatures are estimated to be
between 33K and 55K, while the lowest
measured temperature on Moon is 26K
Conditions on the Moon:
temperature under surface
• The temperature on the Moon’s
equator is regularly changing by
hundreds of degrees, which will
accelerate decomposition of any
spacecraft on the surface.
• But 0.5m below the ground the
temperature is almost constant.
• The temperature under the surface of
the Moon is higher on its equator;
there it is around -20ºC (250K) less
than 1 meter deep based on modeling
(Vasavada, Paige, & Wood, 1999)
and direct measuring by Appolo
• At higher latitudes it is much lower,
according to the model, near 100K at
the poles. And in craters near the
poles, it is even lower. (To stable
preservation of biological objects we
need 130K)
Conditions on the Moon:
micrometeorites
The Moon does not have an atmosphere, so anything on its
surface will suffer from radiation and micrometeorite damage.
This means that any long-term storage should be put under the
surface.
It is estimated that micrometeorite erosion is around 1 mm of
lunar rock per million years.
Existing landing sites from the Apollo program will disappear in
10-100 mln years.
Conditions on the Moon:
impactors
The Moon is located in the
inner Solar system which has less
concentration of impactors
The Moon’s poles may have
lesser impact probability from
non-comet sources.
The Lunar surface is mostly old
(billion of years), so that means
small probability of damage by
large impactors.
Conditions on the Moon:
Lunar Dust
The Moon is covered with very abrasive lunar dust, which
damaged a lot of storage during Apollo missions, and which is
moving because of electrostatic forces. Such dust movement could
be damaging to the surface of artificial objects in the long-term,
and result in something similar to wind erosion.
Conditions on the Moon:
volcanism
The Moon is a geologically quiescent body, so little damage is
expected from internal sources (but some small volcanic activity
may happened 50 millions years ago (Braden et al., 2014)).
Shackleton and Hermite craters
as most logical places to put the
message on the Moon
The south lunar pole crater Shackleton
exists with little damage for around 3 bln years
and South pole axis is inside it (Zuber et al.,
2012).
It is constantly shadowed by surrounding
mountains.
This crater will naturally attract attention
of any future civilisation, as it is a special place
on the Moon, because it is extremely cold and
there are chances that there is water ice.
Inside the crater the message should be put
either near the central peak, or near some
water deposits, or near the point where the
south pole axis is located (NASA, 2017).
The temperature in this crater is 88-90 K,
but there are even colder craters on the Moon.
with temperature 35 K in some craters near the
South pole and even 26 K near the North pole in
the Hermite crater (Amos, 2009).
https://www.youtube.com/watch?
v=p1OIDCXd2v8
Deep drilling on the Moon
• The needed weight of machinery to dig in the extremely harsh environment of the cold
Moon poles will grow quickly with needed depth of the hole.
• The Lunar Mission One suggested to drill 20-100 meters under the surface but it requires
new technologies of strengthening bore walls.
• The Soviet automated Luna-24 station also drilled a very thin probe 2 meters into the
regolith.
• But as poles have water deposits, a probe could melt through ice.
• Also disks are typically 10 cm diameter, so smaller disks are needed for narrow wells.
Problems of the lunar storage
• Problem of the small impactors.
• Problem of penetrating radiation. Some cosmic rays
create muons which are able to penetrate up to 3 km deep
in the ground. It means that the coding regions should be
larger which limits the size of the message or increasing
the mass of the carrier.
• Problem of visibility. It will be impossible to find deep
stored object, especially a small capsule 100 meters below
the surface.
Ways to the solution:
• Opportunistic payload to the lunar poles missions
• Many small but resilient messages, like tungsten coin sized
disks in many spacecrafts
• Use of lava tubes on Moon
• Beacons which will direct to the location of the message
• Habitable Moon colony will produce enough or “archeological
material” and could appear around 15 years from now
• Find money for Lunar Mission One, may be by selling tickets
to the future
• Small lander on equator region with shallow well of 2 meters
deep and foil-based beacon (could be 10 times cheaper than
deep polar lander)
Opportunistic payloads:
Adding M-disks, Rosetta disks and
DNA samples to already planned
Moon landers
• M-Disc weights 20
grams and store 100GB
• We could put it inside
any lander.
• Maybe inside a landing
gear or inside the boring
equipment
Opportunistic payloads:
planned Lunar landers
Starting from 2018 there are plans for around two landers in different places on the
Moon a year by different players, including Japan, India, China, US private companies,
and Google X prize competitors. Manned flights are realistic around 2030.
• Blue Origin has plans for a polar lander in the Shackleton crater for 2020 capable
of delivering 4 tons of cargo (could be used to send a lot of data in the test flight)
• Musk plans to use BFR for a Moon base
• The Chinese Chenge’4 may land near the South lunar pole in 2018.
• Indian Chandrayaan-2 - 2018
• Google prize - several small private companies in 2018-19
• Japan SlIM - 2021
• Russian Luna-25 - 2019-2021
As the preparation of the message would require years, realistic date of the launch
of the message even as an opportunistic payload is 2025.
https://en.wikipedia.org/wiki/List_of_missions_to_the_Moon#Proposed_Missions
Habitable Moon colony as a building yard
for a very long-term information storage
• Currently total human garbage on Moon is 187 tons.
• Moon colony will have a lot of data and biological samples.
• They will surely invest in deep drilling and caves exploration.
• Subsurface bunkers will remain for a very long time.
• Large remains on surface will attract attention.
• Realistically it could appear after 2030, but Mission One is planed around
2025, so it is only 5 years delay.
• A colony could also be a refuge for humans, which could return to Earth after
a catastrophe - or who's bodies will be naturally cryopreserved on the Moon.
Creating a beacon by
drawing with small craters
• We could draw a message or an
arrow to its location using craters
from small impacts.
• The Centaur impactor weighed 2
tons and created a 20 meter
diameter crater, which is not
visible from Earth
• 300 meters craters is minimum
which could be seen from Earth
even in telescope because of
diffraction limits.
Graving the message on
the Moon’s surface using
craters as dots
• If we can’t escape cratering damage,
we could use it.
• Short and urgent part of the
message could be engraved (in
pictograms) using small craters, like
“never modify viruses”
• Surface grazing robotic tractor also
could do the job. Such tractors were
suggested for mining of Helium-3.
Hatch-work drawing of
surface using solar-
powered ditching plough
1 Mb of data could be put on a square km
using dots as bits
Lava tubes
• Many lava tubes are known on the
Moon (200 skylights)
• High protection, but not easy to find a
message.
• Easy access to the protected place via
holes, no need to bore
• Scientific interest - could send a rover
there
https://en.wikipedia.org/wiki/
Lunar_lava_tube
Other possible solutions for
information preservation
Earth, Mars, Satellites, Oort cloud, Psyche 16,
interstellar probes
Cratons on Earth
• Cratons are old stable geological formations, some
are billions years old, and they could exist billion more
years
• The fact that we have a lot of the paleontological data
is an evidence that sending data for hundreds millions
years is possible
Nuclear waste storage
• Finland builds nuclear waste storage inside a crystal
shield 420 below ground.
• Message could be an opportunistic payload and even
have “negative” price for PR (Onkalo project).
• Cavities and rare radioactive materials will be a
beacon
• Started in 2014.
Mars and other celestial bodies
• Mars will be affected by collision with Fobos in 30-50 mln
years, so it is not suitable.
• 16 Psyche, which is the biggest metal asteroid in the main
belt, and the 10th largest overall asteroid, which will surely
attract attention of future scientists and asteroid miners.
May survive Sun’s red giant phase and provide
preservation of the information for 10 billion years.
Satellites
The benefits are that many satellites already exist and some information
carriers could be added to new satellites.
Satellites are easily observable even with naked eye, and their artificial origin
would be rather obvious based on their chemical composition.
One planned data storage satellite is Asgardia (Harris, n.d.).
In 1976, the satellite LAGEOS was sent on an orbit 6000 km above Earth with
a plaque with a message to the future designed by Carl Sagan. It is estimated that
it will fall into Earth in 8.4 mln years (Popular Science, 1976).
In 2012, an artist created a silicon disk with 100 images and put it on
geostationary satellite Echostar 16, which will be later moved to a graveyard orbit,
where it is expected to remain for billions years (Campbell-Dollaghan, 2012).
Comparison of different methods, their price, information content and durability
6.5.	Comparison	of	different	methods,	their	price,	information	content	and	durability	
In the table 1, we produce combined estimations of durability of different methods of
information preservation, as well as their price and timing of practical realization.
Table 1.
Opportuni
stic
payload
on
scientific
spacecraft
on Moon,
or in
satellites
1 ton
special
probe in
polar
crater on
Moon
with 2 m
deep
drilling
“Beacon
drawing”
on the
visible
side of
Moon plus
dark
crater
storage
Large scale
crater
drawings on
the visible
side of
Moon, and
deep under-
ground
storage in
the pole
region
(manned
mission)
Tunnel
system
inside
Earth
craton
(nuclear
waste
storage)
Moon
colony,
with
around
100 or
more
colonists
or robots,
which
primary
task is to
create
“eternal”
storage
Metal
asteroid
mining
Self-
replicating
robots
Expected
time of the
message
preserva-
tion
1-10 mln
years
100 mln
-
1 bln
years
100 mln -
1 bln years
100 mln -
1 bln years
100 mln -
1 bln
years
1-3 bln
years
1-10 bln
years
1-10 bln
years
Price based
on current
technology
(USD)
100K-1
mln 1 bln
10 bln 10-100 bln Negative
as good
PR
Above 1
trillion
Negative
as good
PR
Earliest
date of
realization
2018 2020s 2030 2040 2020s 2040 2050 2050
Ease of
finding the
message
Low Low High Very high Medium Very high Medium High
Overall
estimation
of
probability
to prevent
human
extinction
- - ? ? ? + + +
Cost
effectivenes
s
High High - High - ? ?
Content of the message:
language
• At first, the message should teach the next civilization human language,
probably using pictures and movies.
• The same problem I explored about SETI-attack (A. Turchin, 2016). Self-
evident computer programs are possible.
• Rosetta disks could help teach language, as their content was designed
specially to do so.
• We assume here that a complete textbook is possible, but creation of such
textbook may be an expensive part of the whole project.
• Existing sources like movies and ABC-books could be recorded.
• The same problems are known for METI, but here we know that next
civilization will be similar to ours: same DNA, same planets.
The message content:
Introduction message
The message introduction should try to persuade the receivers
that:
1) It is safe for them to return to life Homo Sapiens
2) Humans very much want to be resurrected
3) Human resurrection will be beneficial to the next civilization
4) It will be fair from the cooperative decision theory point of view.
Information content of
the message
1) Human DNA. Human DNA of different people
should be preserved in digital form. Hundreds of
people would guard against inbreeding. But as some
molecular mechanisms could change in next hundred
million years, like ribosomes, and even genetic code, it
will not be enough, and other information about human
cells should be preserved. DNA surely should be
attempted to preserved as a small dry pieces of tissue,
like dry blood, may be chemically fixed.
2) Biological samples, like frozen human eggs or
embryos, seeds, or even cryopreserved cryopatients
(who may pay for such long-term storage and cover
part of the price of the project.) Different methods of
chemical fixation could be used. There is little hope
that these biological samples will remain viable even at
-245 C in the coldest places, because of many types of
damage to very small features, but they could be
analyzed and help in reconstruction of humans.
3) Cultural and scientific information. The most
valuable books about humanity, snapshot of the
internet, archive of the scientific data, movies.
Cryonics on the Moon
• Cryonics is preservation of the dead for the future
return to life in cryostasis.
• Moon could provide long-term preservation
conditions for bodies or brains because of constant cold
regions.
• Russian Kryorus planned to send bodies to a satellite.
• Cryopatients could pay for the data storage
• But delivery of frozen brains to Moon will be very
expensive, several millions USD of current prices.
• To slow the decay of a human body enough to
preserve it for next civilization, we need to slowdown
chemical processes, so 1 minute will be equal to 100
millions years, that is 52,594,920,000,000 times, or
around 53 trillions times. According to Arrhenius law,
liquid nitrogen produces slowdown of 700 trillions times
compared to the speed of chemical processes at +37 C.
• Thus we need constant storage at -196C, that is 77K.
h t t p : / / w w w . a l c o r . o r g / L i b r a r y / h t m l /
HowColdIsColdEnough.html
Price of the cargo
delivery to Moon
• Astrobotic company suggested a price to Moon
delivery of around 1.2 million GBP per kg (Astrobotic,
2017), so it would be 20 000 USD for one disk, but 3 mln
for one brain.
• Moon Express plans to charge 1.5 mln GBP per kg
for Moon delivery and first test flight is planned at the end
of 2017 (Smith, 2016).
• Only one mission actually landed on Moon in the last
40 years (as of August 2017), that is Chang’3. It is not
easy to estimate its price, as it is a Chinese government
project. The lander mass was 1200 kg.
• Blue Origin “Blue Moon” Lander, from 2020, could
provide cheaper price, but its still will cost no less than
several hundreds millions dollars for 4 tons of cargo,
which is 100K USD for kg.
• Mask’s BFR may be even cheaper, but the project
seems less realistic
https://www.geekwire.com/2017/jeff-bezos-blue-origin-makes-pitch-congress-delivering-cargo-moon/
The size of the message
Maximizing the probability of the resurrection of humanity: a very large amount of
information is needed.
Much larger than was previously sent on satellites or in time capsules.
The larger the information content of the message is, the bigger are the chances that
the humanity will be adequately resurrected.
1 Gb level: The minimum size of message for resurrection of humans and human
civilization should be human DNA code plus several thousand books about human
culture, science and history. In digital form, a full human genome has 3 billion base
pairs, which is equal to 700 Mb of information, and typical book size is around 1 Mb
100 Gb level: The English Wikipedia is around 10 GB. One could preserve just the
differences between hundreds of human genomes because humans are 99% similar to
each other. So sending something like 100 Gb will provide a large part of human culture,
and sufficient human genetic diversity.
300 TB level: A better size of the message should be DNA of hundreds people, that is on
the order of a terabyte, plus large part of internet archive, that is hundreds terabytes. The
size of the library of Congress is estimated to be 200 TB
100 PB level: This could encompass all significant data from humanity (excluding social
networks). Internet archive now hosts 50 PB of data (Internet Atchive, 2017).
10 Exabyte: 1 Exabyte is total data in the internet as of 2017, and 10 Exabytes would
also enable all personal archives plus DNA samples of all humans currently alive,
Updating the message
To help future civilisation to learn why we demise, the message
should be always up to date.
Thus lunar module has to record news stream from Earth and
add it to eternal memory discs.
Cost-effectiveness of data preservation
compared with other plans of global
catastrophic risks prevention
• Creating Lunar Ark is very expensive, and the
probability that it will help to reconstruct the human
civilisation is small.
• Lunar Mission One costs at least 1 billion USD. (Smaller
equatorial test lander could be 10 times cheaper?)
• For the same money a nuclear submarine could be
converted into an effective refuge.
• Habituated Ark will cost trillions dollars in current costs.
• Thus message into future seems reasonable only if
cheap solutions will be found.
• Cheap solutions: opportunistic payloads to many
missions, preservation in nuclear waste storages in
Earth.
Cost-effectiveness
takeaways:
• Total survivability of the human civilisation
could be increased on around 1 percent, if
high-quality message to the future will be
created.
• Minimum price of the message could be
small, like several millions USD, but it will
give smaller survivability.
Realisation steps
• First step: creating the correct message in size of around
100GB-1TB. Solve language problems and collect all needed
data.
• Record it many small cheap durable carriers like silico glass or
Rosetta HD. Rosetta disks could be self-evident as artificial
messages and could be read by microscope.
• Negotiating with different space projects as well as deep drilling
projects to include the message, in the form of at least 1 disc with
weight of 20 g.
• In 10 years, better information carriers will appear and cheaper
options for space access.
Messaging to the future civilisation
as a form of METI
(Messaging to Extra-Terrestrial Intelligence)
• Similar problems: how to create self-evident message
• Next civilisation on Earth will be in some sense alien
• Real aliens could find our message in the Moon and
resurrect us.
“Digital immortality” as a form
of messaging to the future AI
• Similar problems: how to create self-evident message
• Next civilisation on Earth will be in some sense alien
• Real aliens could find our message in the Moon and
resurrect us.
https://motherboard.vice.com/en_us/article/4xangw/this-transhumanist-records-everything-around-him-so-his-mind-will-live-forever

Más contenido relacionado

Similar a Backup on the Moon

Dehgan innovations in reducing international knowledge isolation final_aaas_0...
Dehgan innovations in reducing international knowledge isolation final_aaas_0...Dehgan innovations in reducing international knowledge isolation final_aaas_0...
Dehgan innovations in reducing international knowledge isolation final_aaas_0...CRDF Global
 
Immortality roadmap
Immortality roadmapImmortality roadmap
Immortality roadmapavturchin
 
disaster management.pptx
disaster management.pptxdisaster management.pptx
disaster management.pptxSudhansuPanda27
 
2009 ubc-the-ultimate-hack-slides-2.0-final-with-notes
2009 ubc-the-ultimate-hack-slides-2.0-final-with-notes2009 ubc-the-ultimate-hack-slides-2.0-final-with-notes
2009 ubc-the-ultimate-hack-slides-2.0-final-with-notesRobert David Steele Vivas
 
A Holistic Approach to Disaster Risk Reduction - Problems and Opportunities
A Holistic Approach to Disaster Risk Reduction - Problems and OpportunitiesA Holistic Approach to Disaster Risk Reduction - Problems and Opportunities
A Holistic Approach to Disaster Risk Reduction - Problems and OpportunitiesProf. David E. Alexander (UCL)
 
The Information Revolution
The Information RevolutionThe Information Revolution
The Information RevolutionAleks Krotoski
 
Preventing existential risks book
Preventing existential risks   bookPreventing existential risks   book
Preventing existential risks bookavturchin
 
Typology of human extinction risks
Typology of human extinction risksTypology of human extinction risks
Typology of human extinction risksavturchin
 
APPENDIX_F_2005_TP_neo_Cassandra_web
APPENDIX_F_2005_TP_neo_Cassandra_webAPPENDIX_F_2005_TP_neo_Cassandra_web
APPENDIX_F_2005_TP_neo_Cassandra_webMarshall Alphonso
 
Around the world in eighty disasters - inaugural lecture
Around the world in eighty disasters - inaugural lectureAround the world in eighty disasters - inaugural lecture
Around the world in eighty disasters - inaugural lectureProf. David E. Alexander (UCL)
 
Everbridge: The Psychology of Disasters
Everbridge: The Psychology of DisastersEverbridge: The Psychology of Disasters
Everbridge: The Psychology of DisastersEverbridge, Inc.
 
Business model in space
Business model in spaceBusiness model in space
Business model in spaceKan Yuenyong
 
Young people in an Age of Knowledge Neocolonialism
Young people in an Age of Knowledge NeocolonialismYoung people in an Age of Knowledge Neocolonialism
Young people in an Age of Knowledge Neocolonialismpetermurrayrust
 
Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...
Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...
Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...Keith G. Tidball
 
Världens eko timme 2
Världens eko timme 2Världens eko timme 2
Världens eko timme 2Victor Galaz
 

Similar a Backup on the Moon (20)

Dehgan innovations in reducing international knowledge isolation final_aaas_0...
Dehgan innovations in reducing international knowledge isolation final_aaas_0...Dehgan innovations in reducing international knowledge isolation final_aaas_0...
Dehgan innovations in reducing international knowledge isolation final_aaas_0...
 
Immortality roadmap
Immortality roadmapImmortality roadmap
Immortality roadmap
 
Future possibilities for education and learning by the year 2030
Future possibilities for education and learning by the year 2030Future possibilities for education and learning by the year 2030
Future possibilities for education and learning by the year 2030
 
disaster management.pptx
disaster management.pptxdisaster management.pptx
disaster management.pptx
 
2009 ubc-the-ultimate-hack-slides-2.0-final-with-notes
2009 ubc-the-ultimate-hack-slides-2.0-final-with-notes2009 ubc-the-ultimate-hack-slides-2.0-final-with-notes
2009 ubc-the-ultimate-hack-slides-2.0-final-with-notes
 
What do we advocate
What do we advocateWhat do we advocate
What do we advocate
 
A Holistic Approach to Disaster Risk Reduction - Problems and Opportunities
A Holistic Approach to Disaster Risk Reduction - Problems and OpportunitiesA Holistic Approach to Disaster Risk Reduction - Problems and Opportunities
A Holistic Approach to Disaster Risk Reduction - Problems and Opportunities
 
The Information Revolution
The Information RevolutionThe Information Revolution
The Information Revolution
 
OPV 361 Globalisation Lecture 5 8 X 2
OPV 361 Globalisation Lecture 5 8 X 2OPV 361 Globalisation Lecture 5 8 X 2
OPV 361 Globalisation Lecture 5 8 X 2
 
Preventing existential risks book
Preventing existential risks   bookPreventing existential risks   book
Preventing existential risks book
 
Typology of human extinction risks
Typology of human extinction risksTypology of human extinction risks
Typology of human extinction risks
 
APPENDIX_F_2005_TP_neo_Cassandra_web
APPENDIX_F_2005_TP_neo_Cassandra_webAPPENDIX_F_2005_TP_neo_Cassandra_web
APPENDIX_F_2005_TP_neo_Cassandra_web
 
Around the world in eighty disasters - inaugural lecture
Around the world in eighty disasters - inaugural lectureAround the world in eighty disasters - inaugural lecture
Around the world in eighty disasters - inaugural lecture
 
space sts.pptx
space sts.pptxspace sts.pptx
space sts.pptx
 
Disasters and Complex Humanitarian Emergencies: Challenges for Public Health ...
Disasters and Complex Humanitarian Emergencies: Challenges for Public Health ...Disasters and Complex Humanitarian Emergencies: Challenges for Public Health ...
Disasters and Complex Humanitarian Emergencies: Challenges for Public Health ...
 
Everbridge: The Psychology of Disasters
Everbridge: The Psychology of DisastersEverbridge: The Psychology of Disasters
Everbridge: The Psychology of Disasters
 
Business model in space
Business model in spaceBusiness model in space
Business model in space
 
Young people in an Age of Knowledge Neocolonialism
Young people in an Age of Knowledge NeocolonialismYoung people in an Age of Knowledge Neocolonialism
Young people in an Age of Knowledge Neocolonialism
 
Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...
Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...
Reciprocity, Altruism, & Need-based Transfers as Potential Resilience Conferr...
 
Världens eko timme 2
Världens eko timme 2Världens eko timme 2
Världens eko timme 2
 

Más de avturchin

Fighting aging as effective altruism
Fighting aging as effective altruismFighting aging as effective altruism
Fighting aging as effective altruismavturchin
 
А.В.Турчин. Технологическое воскрешение умерших
А.В.Турчин. Технологическое воскрешение умершихА.В.Турчин. Технологическое воскрешение умерших
А.В.Турчин. Технологическое воскрешение умершихavturchin
 
Technological resurrection
Technological resurrectionTechnological resurrection
Technological resurrectionavturchin
 
Messaging future AI
Messaging future AIMessaging future AI
Messaging future AIavturchin
 
Future of sex
Future of sexFuture of sex
Future of sexavturchin
 
Near term AI safety
Near term AI safetyNear term AI safety
Near term AI safetyavturchin
 
цифровое бессмертие и искусство
цифровое бессмертие и искусствоцифровое бессмертие и искусство
цифровое бессмертие и искусствоavturchin
 
Digital immortality and art
Digital immortality and artDigital immortality and art
Digital immortality and artavturchin
 
Nuclear submarines as global risk shelters
Nuclear submarines  as global risk  sheltersNuclear submarines  as global risk  shelters
Nuclear submarines as global risk sheltersavturchin
 
Искусственный интеллект в искусстве
Искусственный интеллект в искусствеИскусственный интеллект в искусстве
Искусственный интеллект в искусствеavturchin
 
ИИ как новая форма жизни
ИИ как новая форма жизниИИ как новая форма жизни
ИИ как новая форма жизниavturchin
 
Космос нужен для бессмертия
Космос нужен для бессмертияКосмос нужен для бессмертия
Космос нужен для бессмертияavturchin
 
AI in life extension
AI in life extensionAI in life extension
AI in life extensionavturchin
 
Levels of the self-improvement of the AI
Levels of the self-improvement of the AILevels of the self-improvement of the AI
Levels of the self-improvement of the AIavturchin
 
The map of asteroids risks and defence
The map of asteroids risks and defenceThe map of asteroids risks and defence
The map of asteroids risks and defenceavturchin
 
Herman Khan. About cobalt bomb and nuclear weapons.
Herman Khan. About cobalt bomb and nuclear weapons.Herman Khan. About cobalt bomb and nuclear weapons.
Herman Khan. About cobalt bomb and nuclear weapons.avturchin
 
The map of the methods of optimisation
The map of the methods of optimisationThe map of the methods of optimisation
The map of the methods of optimisationavturchin
 
Как достичь осознанных сновидений
Как достичь осознанных сновиденийКак достичь осознанных сновидений
Как достичь осознанных сновиденийavturchin
 
The map of natural global catastrophic risks
The map of natural global catastrophic risksThe map of natural global catastrophic risks
The map of natural global catastrophic risksavturchin
 
How the universe appeared form nothing
How the universe appeared form nothingHow the universe appeared form nothing
How the universe appeared form nothingavturchin
 

Más de avturchin (20)

Fighting aging as effective altruism
Fighting aging as effective altruismFighting aging as effective altruism
Fighting aging as effective altruism
 
А.В.Турчин. Технологическое воскрешение умерших
А.В.Турчин. Технологическое воскрешение умершихА.В.Турчин. Технологическое воскрешение умерших
А.В.Турчин. Технологическое воскрешение умерших
 
Technological resurrection
Technological resurrectionTechnological resurrection
Technological resurrection
 
Messaging future AI
Messaging future AIMessaging future AI
Messaging future AI
 
Future of sex
Future of sexFuture of sex
Future of sex
 
Near term AI safety
Near term AI safetyNear term AI safety
Near term AI safety
 
цифровое бессмертие и искусство
цифровое бессмертие и искусствоцифровое бессмертие и искусство
цифровое бессмертие и искусство
 
Digital immortality and art
Digital immortality and artDigital immortality and art
Digital immortality and art
 
Nuclear submarines as global risk shelters
Nuclear submarines  as global risk  sheltersNuclear submarines  as global risk  shelters
Nuclear submarines as global risk shelters
 
Искусственный интеллект в искусстве
Искусственный интеллект в искусствеИскусственный интеллект в искусстве
Искусственный интеллект в искусстве
 
ИИ как новая форма жизни
ИИ как новая форма жизниИИ как новая форма жизни
ИИ как новая форма жизни
 
Космос нужен для бессмертия
Космос нужен для бессмертияКосмос нужен для бессмертия
Космос нужен для бессмертия
 
AI in life extension
AI in life extensionAI in life extension
AI in life extension
 
Levels of the self-improvement of the AI
Levels of the self-improvement of the AILevels of the self-improvement of the AI
Levels of the self-improvement of the AI
 
The map of asteroids risks and defence
The map of asteroids risks and defenceThe map of asteroids risks and defence
The map of asteroids risks and defence
 
Herman Khan. About cobalt bomb and nuclear weapons.
Herman Khan. About cobalt bomb and nuclear weapons.Herman Khan. About cobalt bomb and nuclear weapons.
Herman Khan. About cobalt bomb and nuclear weapons.
 
The map of the methods of optimisation
The map of the methods of optimisationThe map of the methods of optimisation
The map of the methods of optimisation
 
Как достичь осознанных сновидений
Как достичь осознанных сновиденийКак достичь осознанных сновидений
Как достичь осознанных сновидений
 
The map of natural global catastrophic risks
The map of natural global catastrophic risksThe map of natural global catastrophic risks
The map of natural global catastrophic risks
 
How the universe appeared form nothing
How the universe appeared form nothingHow the universe appeared form nothing
How the universe appeared form nothing
 

Último

CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxpriyankatabhane
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptAmirRaziq1
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxPayal Shrivastava
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsDobusch Leonhard
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and AnnovaMansi Rastogi
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfSubhamKumar3239
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxkumarsanjai28051
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
How we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptxHow we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptxJosielynTars
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxtuking87
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxMedical College
 

Último (20)

CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptx
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.ppt
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptx
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and Pitfalls
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annova
 
Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
PLASMODIUM. PPTX
PLASMODIUM. PPTXPLASMODIUM. PPTX
PLASMODIUM. PPTX
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdf
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptx
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
How we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptxHow we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptx
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptx
 

Backup on the Moon

  • 1. Alexey Turchin Let us Make a Back Up on the Moon Foundation Science for Life Extension alexeiturchin@gmail.com
  • 2. Many global risks exist • AI risks • Biotech risks • Nanotech risks • Nuclear war • Asteroids • Super- volcanos http://immortality-roadmap.com/x-risks%20map15.pdf
  • 3. Plan A is to prevent risks Plan B is to survive Plan C is to leave traces High-speed Tech Development needed to quickly pass risk window • Investment in super-technologies • Support exponential growth to overcome linear risks А1.1 International Cooperation Plan B3 Bunkers and asylums (see map) Plan С Preserve information about humanity Preparation • Fundraising • Textbook to rebuild civilization • Hoards with seeds etc • Survivalist’s communities Building • Underground bunkers, space colonies • Seasteading • Convert submarines into refuges Natural refuges • Remote villages • Remote islands • Mines Time capsules with information • Underground hoards • Eternal disks Preservation of earthly life • Conditions for the re-emergence of intelligent life • Directed panspermia • Preservation of biodiversity and mammals Prevent x-risk research because it only increases risk • Do not advertise x-riks idea • Don’t try to control risks • We can’t measure the probability • Do nothing All Possible Ways to Prevent Human Extinction Risks Singleton • “A world order in which there is a single de- cision- making agency at the highest level” (Bos- trom) • Super AI which pre- vents all possible risks and provides immortality and happiness to human- ity Controlled regression • Use a small catastrophe to prevent large one (Willard Wells) • Luddism (Kaczynski): relinquishment of dangerous science • Creation of ecological civilization without technology • Limitation of personal and collective in- telligence to prevent dangerous science • Antiglobalism and diversification into multipolar world (may raise probabilities of wars) Plans A1-A3 represent the best possible ways to prevent global catastrophe. These plans could be realized simultaneously until the later stages. Plans B, С and D are subsequently worse and give only a small chance of survival. (c) Alexey Turchin, 2014 - 2017 Messages to ET civilizations • Interstellar messages with DNA • Hoards on the Moon • Frozen brains • Spacecrafts Reboot of civilization Several reboots may occur Interstellar distributed humanity • Many unconnected human civilizations • New types of space risks (space wars, planets and stellar explosions, AI and nanoreplicators, ET civilizations) Attracting good outcome by positive thinking • Start partying now • Preventing negative thoughts about the end of the world and about violence • Maximum positive attitude “to attract” pos- itive outcome Improving humans Intelligence and norality • Rationality+ Education (CFAR) • Effective altruists • Engineered enlightenment: LSD? • Prevent worst forms of capitalism: • Preventing unilateralist course • Ethical education Media • Prevent fake news • High quality scientific journalism Education • Courses of risk analysis for professionals • Education in schools on x-risks • Raising the sanity waterline Plan B1 Improving Resilience Bad plans Depopulation Could provide resource preservation and make control simpler • Natural causes: pandemics, war, hunger (Malthus) • Extreme birth control • Deliberate small catastrophe (bio-weap- ons) Computerised totalitarian control • Mind-shield – control of dangerous ideation by the means of brain implants Choosing the way of extinction • Quick die off is better UFAI is better pandemc • Memory about humanity • Past simulations • Some human values Interstellar travel • “Orion” style, nuclear powered “generation ships” • Starships, with immortal people on board • Von Neumann self-replicating probes Temporary asylums in space • Space stations as temporary asylums (ISS) • Cheap and safe launch systems Colonisation of the Solar system • Self-sustaining colonies on Mars and large asteroids • Terraforming of planets and asteroids using self-replicating robots • Millions of colonies inside asteroids in the Oort cloud Plan B2 Space Colonization Robot-replicators in space • Mechanical life • Nanbots as information carriers • Safe narrow AI for nanobots Resurrection by another civilization • Alien’s archeology • Similar convergent evolution of alien civilizations Risk control Technology bans • International ban • Freezing dangerous projects • Piles of bureaucracy • Regulation Control • Several controlled re- serch centers • Control knowledge of mass destruction • White noise • Control dangerous agents Worldwide risk prevention authority X-risk police • Center for quick response • Task forse • Worldwide video-sur- veillance • Robots for emergency liquidation • Narrow AI expert sys- tem on x-risks Research Risks • Risk modelling and ful list • General theory of safety • Cognitive biases • Future model Science • Cooperative community • Prestige • Scientific attributes Social support Politics • Street actions • Lobbyism • Policy recommendations • Parties Society • Popularization • Funding • Education International cooperation Super-UN • International law about x-risks • International agencies dedicated to certain risks • New rolu of UN Surveillance • International control systems (like IAEA) • Internet scanning, monitoring from space Values transformation • X-risks reduction value • Life extension and global security • Reduction of radical religious (ISIS) or ationalistic values • Popularity of transhumanism • Art • Memorial and awareness days: Pentrov day Manipulation of the extinction probability using Doomsday argument • Decision to create more ob- servers in case unfavora- ble event X starts to happen, thereby lowering its probabil- ity (method UN++ by Bos- trom) Control of the simulation (if we are in it) • Live an interesting life so our simulation isn’t switched off • Don’t let them know that we know we live in simulation • Hack the simulation and control it • Negotiation with the simulators or pray for help Readiness • Crew training • Crews in bunkers • Crew rotation Improving sustainability of civilization • Intrinsically safe critical systems • Growing diversity of human beings and habitats • Universal methods of catastrophe prevention (resistant structures, strong medicine) • Building reserves (food stocks, seeds, minerals, energy, machinery, knowledge) • Widely distributed civil defence: •Independent food production (Dekenberger) War prevention • International court • Large project, which could unite human- ity, • Dialog with rogue countries • Hotlines between nuclear states • Antiwar and antinuclear movement • International law • Cooperative decision theory in interna- tional politics Dramatic social changes • Demise of capitalism, global village, dis- solving of national states. • Scinetifically based policy • World democracy • High level of horizontal connectivity Miniaturization for survival and invincibility • Adaptive bunkers based on nanotech • Colonization of Earth’s crust by miniaturized nano-tech bodies • Moving into simulation worlds inside small self-powered com- puter systems PlanA:Preventcatastrophe Space colonies near Earth • Moon and Mars (Elon Musk) with 100-1000 peo- ple • 1 000 000 self-sustained colony on Mars А1.2 Decentralized monitoring ofrisks Decentralized risk monitoring • Transparent society - vigilantes - “Anonymous” hacker groups • Decentralized control: - local police; local health authorities - mutual control in professional space - whistle-blowers • Net-based safety solutions: - ring of x-risk prevention organizations • Economic stimulus: - carbon emissions trade - prizes for any risk identified • Monitoring of smoke, not fire Useful ideas to limit the scale of a catastrophe • Quarantine • Rapid production of vaccines • Stockpiles • Increase preparation • Quick detection of new threats • Worldwide x-risk prevention exercises • The ability to quickly adapt to new risks and envision them in advance Morechancesofsuccess A1–Peacefulintegration (seemapofcooperation) PlanB SurvivethecatastrophePlanA2–Worldtakeover andstrongglobalcontrol PlanА3.1 CreateAI soon (badplan?) Technology speedup • Differential technological development: • Laws and economic stimulus Raise human body resilience by replacing biological parts • Nanotech-based immortal body • Diversification of humanity into several successor species capa- ble of living in space • Mind uploading • Integration with AI PlanА2.2 World takeover (badplan?) Small catastrophe for unification • A smaller catastrophe could help unite humanity • Paradigmatic change event Unification as result of world war Use of supertechnology for unification Nanotech Doomsday blackmail PlanA3–Nonglobalsolutions Change informational transparency level •White noise •Secrecy •Blockchain •Tracking Change the speed of the catastrophe dissemination •Slow down communication channels and transportation •Balance of power (Open AI) PlanА3.2 Slowingthe catastrophe PlanА3.3 Bottom-up approach: Low-tech risks •Find special approach to each risk (more in full map) •Internal professional self-regulating Reactive approach: wait for evidence • Search evidences of new risks appearing • Evidences should pass certain threshold Active shields • Geoengineering • Anti-asteroid shield • Nanoshield • Bioshield – world- wide immune system • Worldwide AI-con- trol system Peaceful unification of the planet Isolation • Isolation of risk sources at a great distance from Earth; • Do scientific experiments in the ways that are close to natural events Steps and timeline Step 1 Planning Step 3 Low-tech level defence 2025—2050 Step 4 High tech defence 2050—2100 Step 2 Preparation Study and Promotion • Study of Friendly AI theory • Promotion of Friendly AI • Fundraising (MIRI) • Slowing other AI projects Solid Friendly AI theory • Theory of human values and decision theory • Full list of possible ways to create FAI Superintelligent AI • “hard takeoff” • dominant force on Earth • AI eliminates suffering, involuntary death, and existential risks • AI Nanny AI practical studies • Narrow AI • Human emulations • Value loading • FAI theory promotion to all AI developers PlanА2.1 Friendly AI creation World wide survilience sys- tem and draconian laws (medium resolution version, see more details here) Technological precognition • Prediction of the future based on advanced quan- tum technology • Search for potential ter- rorists using new scanning technologies Saved by non-human intelligence • Extraterrestrials will save us • Ask ET for help if a catastrophe is inevitable • Simulation owners will save us • Prey Quantum immortality • At least one observer will survive • Other human civilizations must exist in the infinite Uni- verse Strange strategy to escape Fermi paradox Random strategy may help us to escape some dangers that killed all previous civili- zations in space Plan D Improbable Ideas http://immortality-roadmap.com/globriskeng.pdf
  • 4. The main idea of Plan C is to leave archeological data for the future civilisation so it could “resurrect” us Questions: 1. When the new civilisation appear? 2. Where to store data? 3. Did anybody already send data? 4. How to attract attention to the storage? 5. What kind of data to send: size, content The answers are interconnected.
  • 5. When? - 1 000 - 100 000 year timeframe: Civilizational collapse with human survival. - 1 million timeframe: too long for humans, too short for chimps evolutions in new intelligent specie (survival gap). - 10 million years. Apes evolve in the new intelligent species. - 100 million years. Small rodents or birds evolve intelligence. - 500 million years: Completely new multicellular life. Types of the possible new civilizations depending on the size of the catastrophe
  • 6. Future evolution of the Sun and Earth Different estimations of the Earth habitability: - From 100 mln - 3 billion years - Median estimation: 1 billion years Earth’s CO2 is declining; Sun’s luminosity is growing: Oceans will boil eventually. .
  • 7. 0 25 50 75 100 Humans, 100KY No one, 1 MY Apes, 10MY Birds, 100MY New life, 500MY Next civilisation's probability depending on time
  • 8. Most probable new civilisation timing is around 100 million years from now Because: - Human will be humans and it is not a new civilization - Great Apes are fragile; they will likely extinct together with humans - Small animals (like mice) may evolve into large and clever ones during 100 million years time - In the 1 billion timeframe it is probable that Earth will
  • 9. Information exchange and “acausal” trade between past and future civilizations Acausal deal: both sides cooperate without ability to sign agreement Our obligations: a) send data about how our civilization demise thus helping to prevent their extinction b) send interesting scientific data Next civilisation obligations: recreate human being based on our DNA and human culture based on our digital data.
  • 10. There is a problem of sending messages to 100 millions years in the future: geologically active Earth
  • 11. Existing methods and attempts to preserve information about humanity on Earth • Svalbard Global Seed Vault -1000 years • Long Now - HD Rozetta disks - 10 000 years • Memory of Mankind (MoM) is an effort to encode some information on clay plates and bury them in a salt mine - 1 mln years
  • 12. New information carriers Metal disks with engraving using ion beam: “HD-Rosetta” manufacturer Norsam suggests also HD-ROM technology with the following characteristics of the disk if it is used as digital only carrier: “50 nm pit size •165 GB per 120 mm disc M-disks: These are Blu-ray disks with a glass coating which is claimed to be able to survive 1000 years 5D storage in silico glass”: Glass with 3D structure, created with a laser: In 2016 a breakthrough was claimed in long-term information preservation by 3 dimensional laser engraving inside silica glass, with 2 additional “dimensions” created by polarization. It was claimed that 360 TB of data could be recorded into a piece of quartz the size of a coin. Tungsten in silicon nitride lithography. De Vries created disks using very hard and durable materials (de Vries, Schellenberg, Abelmann, Manz, & Elwenspoek, 2013). Thermal tests showed that the disks could survive 1 mln years at room temperature and even may be as much as 1030 years DNA. DNA half-life in normal conditions is around 500 years, after which half of the nucleotide bases will break, but the time quickly grow with lower temperatures, based on Arrhenius law http://www.alcor.org/Library/html/HowColdIsColdEnough.html On the temperature of the liquid nitrogen (-196C) the chemical processes will slow 700 trillions times. Preserving viable human DNA requires very high quality of preservation.
  • 13. Geologically stable: almost no volcanism, no atmosphere Extremely cold craters on poles: coldest places in the Solar system Nearest place to Earth which will be surely visited first. Surface is visible from Earth by naked eye There are many human artefacts already on the Moon There are many planned missions, where opportunistic payload is possible Moon is the most natural solution for 100 million years storage
  • 14. Lunar Mission One Lunar Mission One is a project to send a probe into the Shackleton crater on the Moon, bore a hole 20-100 meters deep, and put public and private data inside the hole, as well as pieces of DNA and hair. The founders want to fund the project by people who will pay to preserve their private data. It has planned date of launch in 2024, but now is experiencing funding difficulties: they lost 1 mln USВ which they crowdfunded. https://lunarmissionone.com/
  • 15. Lunar Mission OneCommercialisation of immortality on the Moon: “A plan to establish a lunar archive containing human DNA and a digital record of life on Earth is being unveiled this week. Called Lunar Mission One, the archive is the brainchild of British space consultant David Iron, who has worked on Skynet, the UK spy satellite network, and Galileo, the European Union’s global positioning system. His idea is to charge people £50 or so to place a sample of their DNA, in the form of a strand of hair, in an archive to be buried on the moon, alongside a digital history of as much of their lives as they want to record, in the form of text, pictures, music and video. Iron presented the plan at a space flight conference at the Royal Society in London on 19 November. The catch? He needs at least 10 million earthlings to do this if he’s to generate the £500 million the moon shot will need.” https://www.newscientist.com/article/dn26581-chance-to-bury-your-dna-on-the-moon-in-a-time- capsule/
  • 16. Conditions on the Moon: temperature • The temperature of the lunar surface jumps when solar radiation hits it, which would damage most equipment • But some places of the Lunar poles never see sunlight • The LCROSS spacecraft measured temperatures of -238ºC in craters at the southern Moon pole and -247ºC in a crater at the northern pole. • These are the coldest temperatures in the Solar system, even on Pluto it is higher, as Pluto does not have eternally shadowed poles because its rotation axis is tilted. • Pluto’s temperatures are estimated to be between 33K and 55K, while the lowest measured temperature on Moon is 26K
  • 17. Conditions on the Moon: temperature under surface • The temperature on the Moon’s equator is regularly changing by hundreds of degrees, which will accelerate decomposition of any spacecraft on the surface. • But 0.5m below the ground the temperature is almost constant. • The temperature under the surface of the Moon is higher on its equator; there it is around -20ºC (250K) less than 1 meter deep based on modeling (Vasavada, Paige, & Wood, 1999) and direct measuring by Appolo • At higher latitudes it is much lower, according to the model, near 100K at the poles. And in craters near the poles, it is even lower. (To stable preservation of biological objects we need 130K)
  • 18. Conditions on the Moon: micrometeorites The Moon does not have an atmosphere, so anything on its surface will suffer from radiation and micrometeorite damage. This means that any long-term storage should be put under the surface. It is estimated that micrometeorite erosion is around 1 mm of lunar rock per million years. Existing landing sites from the Apollo program will disappear in 10-100 mln years.
  • 19. Conditions on the Moon: impactors The Moon is located in the inner Solar system which has less concentration of impactors The Moon’s poles may have lesser impact probability from non-comet sources. The Lunar surface is mostly old (billion of years), so that means small probability of damage by large impactors.
  • 20. Conditions on the Moon: Lunar Dust The Moon is covered with very abrasive lunar dust, which damaged a lot of storage during Apollo missions, and which is moving because of electrostatic forces. Such dust movement could be damaging to the surface of artificial objects in the long-term, and result in something similar to wind erosion.
  • 21. Conditions on the Moon: volcanism The Moon is a geologically quiescent body, so little damage is expected from internal sources (but some small volcanic activity may happened 50 millions years ago (Braden et al., 2014)).
  • 22. Shackleton and Hermite craters as most logical places to put the message on the Moon The south lunar pole crater Shackleton exists with little damage for around 3 bln years and South pole axis is inside it (Zuber et al., 2012). It is constantly shadowed by surrounding mountains. This crater will naturally attract attention of any future civilisation, as it is a special place on the Moon, because it is extremely cold and there are chances that there is water ice. Inside the crater the message should be put either near the central peak, or near some water deposits, or near the point where the south pole axis is located (NASA, 2017). The temperature in this crater is 88-90 K, but there are even colder craters on the Moon. with temperature 35 K in some craters near the South pole and even 26 K near the North pole in the Hermite crater (Amos, 2009). https://www.youtube.com/watch? v=p1OIDCXd2v8
  • 23. Deep drilling on the Moon • The needed weight of machinery to dig in the extremely harsh environment of the cold Moon poles will grow quickly with needed depth of the hole. • The Lunar Mission One suggested to drill 20-100 meters under the surface but it requires new technologies of strengthening bore walls. • The Soviet automated Luna-24 station also drilled a very thin probe 2 meters into the regolith. • But as poles have water deposits, a probe could melt through ice. • Also disks are typically 10 cm diameter, so smaller disks are needed for narrow wells.
  • 24. Problems of the lunar storage • Problem of the small impactors. • Problem of penetrating radiation. Some cosmic rays create muons which are able to penetrate up to 3 km deep in the ground. It means that the coding regions should be larger which limits the size of the message or increasing the mass of the carrier. • Problem of visibility. It will be impossible to find deep stored object, especially a small capsule 100 meters below the surface.
  • 25. Ways to the solution: • Opportunistic payload to the lunar poles missions • Many small but resilient messages, like tungsten coin sized disks in many spacecrafts • Use of lava tubes on Moon • Beacons which will direct to the location of the message • Habitable Moon colony will produce enough or “archeological material” and could appear around 15 years from now • Find money for Lunar Mission One, may be by selling tickets to the future • Small lander on equator region with shallow well of 2 meters deep and foil-based beacon (could be 10 times cheaper than deep polar lander)
  • 26. Opportunistic payloads: Adding M-disks, Rosetta disks and DNA samples to already planned Moon landers • M-Disc weights 20 grams and store 100GB • We could put it inside any lander. • Maybe inside a landing gear or inside the boring equipment
  • 27. Opportunistic payloads: planned Lunar landers Starting from 2018 there are plans for around two landers in different places on the Moon a year by different players, including Japan, India, China, US private companies, and Google X prize competitors. Manned flights are realistic around 2030. • Blue Origin has plans for a polar lander in the Shackleton crater for 2020 capable of delivering 4 tons of cargo (could be used to send a lot of data in the test flight) • Musk plans to use BFR for a Moon base • The Chinese Chenge’4 may land near the South lunar pole in 2018. • Indian Chandrayaan-2 - 2018 • Google prize - several small private companies in 2018-19 • Japan SlIM - 2021 • Russian Luna-25 - 2019-2021 As the preparation of the message would require years, realistic date of the launch of the message even as an opportunistic payload is 2025. https://en.wikipedia.org/wiki/List_of_missions_to_the_Moon#Proposed_Missions
  • 28. Habitable Moon colony as a building yard for a very long-term information storage • Currently total human garbage on Moon is 187 tons. • Moon colony will have a lot of data and biological samples. • They will surely invest in deep drilling and caves exploration. • Subsurface bunkers will remain for a very long time. • Large remains on surface will attract attention. • Realistically it could appear after 2030, but Mission One is planed around 2025, so it is only 5 years delay. • A colony could also be a refuge for humans, which could return to Earth after a catastrophe - or who's bodies will be naturally cryopreserved on the Moon.
  • 29. Creating a beacon by drawing with small craters • We could draw a message or an arrow to its location using craters from small impacts. • The Centaur impactor weighed 2 tons and created a 20 meter diameter crater, which is not visible from Earth • 300 meters craters is minimum which could be seen from Earth even in telescope because of diffraction limits.
  • 30. Graving the message on the Moon’s surface using craters as dots • If we can’t escape cratering damage, we could use it. • Short and urgent part of the message could be engraved (in pictograms) using small craters, like “never modify viruses” • Surface grazing robotic tractor also could do the job. Such tractors were suggested for mining of Helium-3.
  • 31. Hatch-work drawing of surface using solar- powered ditching plough 1 Mb of data could be put on a square km using dots as bits
  • 32. Lava tubes • Many lava tubes are known on the Moon (200 skylights) • High protection, but not easy to find a message. • Easy access to the protected place via holes, no need to bore • Scientific interest - could send a rover there https://en.wikipedia.org/wiki/ Lunar_lava_tube
  • 33. Other possible solutions for information preservation Earth, Mars, Satellites, Oort cloud, Psyche 16, interstellar probes
  • 34. Cratons on Earth • Cratons are old stable geological formations, some are billions years old, and they could exist billion more years • The fact that we have a lot of the paleontological data is an evidence that sending data for hundreds millions years is possible
  • 35. Nuclear waste storage • Finland builds nuclear waste storage inside a crystal shield 420 below ground. • Message could be an opportunistic payload and even have “negative” price for PR (Onkalo project). • Cavities and rare radioactive materials will be a beacon • Started in 2014.
  • 36. Mars and other celestial bodies • Mars will be affected by collision with Fobos in 30-50 mln years, so it is not suitable. • 16 Psyche, which is the biggest metal asteroid in the main belt, and the 10th largest overall asteroid, which will surely attract attention of future scientists and asteroid miners. May survive Sun’s red giant phase and provide preservation of the information for 10 billion years.
  • 37. Satellites The benefits are that many satellites already exist and some information carriers could be added to new satellites. Satellites are easily observable even with naked eye, and their artificial origin would be rather obvious based on their chemical composition. One planned data storage satellite is Asgardia (Harris, n.d.). In 1976, the satellite LAGEOS was sent on an orbit 6000 km above Earth with a plaque with a message to the future designed by Carl Sagan. It is estimated that it will fall into Earth in 8.4 mln years (Popular Science, 1976). In 2012, an artist created a silicon disk with 100 images and put it on geostationary satellite Echostar 16, which will be later moved to a graveyard orbit, where it is expected to remain for billions years (Campbell-Dollaghan, 2012).
  • 38. Comparison of different methods, their price, information content and durability 6.5. Comparison of different methods, their price, information content and durability In the table 1, we produce combined estimations of durability of different methods of information preservation, as well as their price and timing of practical realization. Table 1. Opportuni stic payload on scientific spacecraft on Moon, or in satellites 1 ton special probe in polar crater on Moon with 2 m deep drilling “Beacon drawing” on the visible side of Moon plus dark crater storage Large scale crater drawings on the visible side of Moon, and deep under- ground storage in the pole region (manned mission) Tunnel system inside Earth craton (nuclear waste storage) Moon colony, with around 100 or more colonists or robots, which primary task is to create “eternal” storage Metal asteroid mining Self- replicating robots Expected time of the message preserva- tion 1-10 mln years 100 mln - 1 bln years 100 mln - 1 bln years 100 mln - 1 bln years 100 mln - 1 bln years 1-3 bln years 1-10 bln years 1-10 bln years Price based on current technology (USD) 100K-1 mln 1 bln 10 bln 10-100 bln Negative as good PR Above 1 trillion Negative as good PR Earliest date of realization 2018 2020s 2030 2040 2020s 2040 2050 2050 Ease of finding the message Low Low High Very high Medium Very high Medium High Overall estimation of probability to prevent human extinction - - ? ? ? + + + Cost effectivenes s High High - High - ? ?
  • 39. Content of the message: language • At first, the message should teach the next civilization human language, probably using pictures and movies. • The same problem I explored about SETI-attack (A. Turchin, 2016). Self- evident computer programs are possible. • Rosetta disks could help teach language, as their content was designed specially to do so. • We assume here that a complete textbook is possible, but creation of such textbook may be an expensive part of the whole project. • Existing sources like movies and ABC-books could be recorded. • The same problems are known for METI, but here we know that next civilization will be similar to ours: same DNA, same planets.
  • 40. The message content: Introduction message The message introduction should try to persuade the receivers that: 1) It is safe for them to return to life Homo Sapiens 2) Humans very much want to be resurrected 3) Human resurrection will be beneficial to the next civilization 4) It will be fair from the cooperative decision theory point of view.
  • 41. Information content of the message 1) Human DNA. Human DNA of different people should be preserved in digital form. Hundreds of people would guard against inbreeding. But as some molecular mechanisms could change in next hundred million years, like ribosomes, and even genetic code, it will not be enough, and other information about human cells should be preserved. DNA surely should be attempted to preserved as a small dry pieces of tissue, like dry blood, may be chemically fixed. 2) Biological samples, like frozen human eggs or embryos, seeds, or even cryopreserved cryopatients (who may pay for such long-term storage and cover part of the price of the project.) Different methods of chemical fixation could be used. There is little hope that these biological samples will remain viable even at -245 C in the coldest places, because of many types of damage to very small features, but they could be analyzed and help in reconstruction of humans. 3) Cultural and scientific information. The most valuable books about humanity, snapshot of the internet, archive of the scientific data, movies.
  • 42. Cryonics on the Moon • Cryonics is preservation of the dead for the future return to life in cryostasis. • Moon could provide long-term preservation conditions for bodies or brains because of constant cold regions. • Russian Kryorus planned to send bodies to a satellite. • Cryopatients could pay for the data storage • But delivery of frozen brains to Moon will be very expensive, several millions USD of current prices. • To slow the decay of a human body enough to preserve it for next civilization, we need to slowdown chemical processes, so 1 minute will be equal to 100 millions years, that is 52,594,920,000,000 times, or around 53 trillions times. According to Arrhenius law, liquid nitrogen produces slowdown of 700 trillions times compared to the speed of chemical processes at +37 C. • Thus we need constant storage at -196C, that is 77K. h t t p : / / w w w . a l c o r . o r g / L i b r a r y / h t m l / HowColdIsColdEnough.html
  • 43. Price of the cargo delivery to Moon • Astrobotic company suggested a price to Moon delivery of around 1.2 million GBP per kg (Astrobotic, 2017), so it would be 20 000 USD for one disk, but 3 mln for one brain. • Moon Express plans to charge 1.5 mln GBP per kg for Moon delivery and first test flight is planned at the end of 2017 (Smith, 2016). • Only one mission actually landed on Moon in the last 40 years (as of August 2017), that is Chang’3. It is not easy to estimate its price, as it is a Chinese government project. The lander mass was 1200 kg. • Blue Origin “Blue Moon” Lander, from 2020, could provide cheaper price, but its still will cost no less than several hundreds millions dollars for 4 tons of cargo, which is 100K USD for kg. • Mask’s BFR may be even cheaper, but the project seems less realistic https://www.geekwire.com/2017/jeff-bezos-blue-origin-makes-pitch-congress-delivering-cargo-moon/
  • 44. The size of the message Maximizing the probability of the resurrection of humanity: a very large amount of information is needed. Much larger than was previously sent on satellites or in time capsules. The larger the information content of the message is, the bigger are the chances that the humanity will be adequately resurrected. 1 Gb level: The minimum size of message for resurrection of humans and human civilization should be human DNA code plus several thousand books about human culture, science and history. In digital form, a full human genome has 3 billion base pairs, which is equal to 700 Mb of information, and typical book size is around 1 Mb 100 Gb level: The English Wikipedia is around 10 GB. One could preserve just the differences between hundreds of human genomes because humans are 99% similar to each other. So sending something like 100 Gb will provide a large part of human culture, and sufficient human genetic diversity. 300 TB level: A better size of the message should be DNA of hundreds people, that is on the order of a terabyte, plus large part of internet archive, that is hundreds terabytes. The size of the library of Congress is estimated to be 200 TB 100 PB level: This could encompass all significant data from humanity (excluding social networks). Internet archive now hosts 50 PB of data (Internet Atchive, 2017). 10 Exabyte: 1 Exabyte is total data in the internet as of 2017, and 10 Exabytes would also enable all personal archives plus DNA samples of all humans currently alive,
  • 45. Updating the message To help future civilisation to learn why we demise, the message should be always up to date. Thus lunar module has to record news stream from Earth and add it to eternal memory discs.
  • 46. Cost-effectiveness of data preservation compared with other plans of global catastrophic risks prevention • Creating Lunar Ark is very expensive, and the probability that it will help to reconstruct the human civilisation is small. • Lunar Mission One costs at least 1 billion USD. (Smaller equatorial test lander could be 10 times cheaper?) • For the same money a nuclear submarine could be converted into an effective refuge. • Habituated Ark will cost trillions dollars in current costs. • Thus message into future seems reasonable only if cheap solutions will be found. • Cheap solutions: opportunistic payloads to many missions, preservation in nuclear waste storages in Earth.
  • 47. Cost-effectiveness takeaways: • Total survivability of the human civilisation could be increased on around 1 percent, if high-quality message to the future will be created. • Minimum price of the message could be small, like several millions USD, but it will give smaller survivability.
  • 48. Realisation steps • First step: creating the correct message in size of around 100GB-1TB. Solve language problems and collect all needed data. • Record it many small cheap durable carriers like silico glass or Rosetta HD. Rosetta disks could be self-evident as artificial messages and could be read by microscope. • Negotiating with different space projects as well as deep drilling projects to include the message, in the form of at least 1 disc with weight of 20 g. • In 10 years, better information carriers will appear and cheaper options for space access.
  • 49. Messaging to the future civilisation as a form of METI (Messaging to Extra-Terrestrial Intelligence) • Similar problems: how to create self-evident message • Next civilisation on Earth will be in some sense alien • Real aliens could find our message in the Moon and resurrect us.
  • 50. “Digital immortality” as a form of messaging to the future AI • Similar problems: how to create self-evident message • Next civilisation on Earth will be in some sense alien • Real aliens could find our message in the Moon and resurrect us. https://motherboard.vice.com/en_us/article/4xangw/this-transhumanist-records-everything-around-him-so-his-mind-will-live-forever