SlideShare una empresa de Scribd logo
1 de 43
Mass 
Spectrometry 
1
? Why it is use Mass Spectroscopy ? 
2
Introduction to Mass Spectrometry 
Sample 
introduction 
Ionization 
Minimize 
collisions, 
interferences 
Separate 
masses 
Count ions 
Collect results 
3
Principle 
It is also called as positive ion spectra or line spectra Sample is 
bombarded with the high electron beam produce the positive 
ions. 
They travel in straight path 
When a magnetic field or electric field is applied then travels 
in curved path 
The fragments of different masses are separated based on the 
radius of curvature. 
m/e α r2 
4
How does a mass spectrometer work? 
Sample Plate 
Target 
HPLC 
GC 
Solids probe 
MALDI 
ESI 
IonSpray 
FAB 
EI/CI 
SFA 
DFA 
Quadrupole 
FTMS 
Faraday cup . 
Electron Mult. 
Photomultiplier 
5
V i d e o 
6
Mass Spectrometry Needs 
Ionization-How the protein is injected in to the MS 
machine 
Separation-Mass and Charge ? 
is determined 
Activation-Protein are broken into smaller fragments 
(peptides/AAs) 
Mass Determination- m/z ratios are determined for the 
ionized protein fragments/peptides 7
FRAGMENTATION 
The process of Breaking Molecules /ions into 
fragments is known as fragmentation. 
This can be seen in the form of peaks in mass spectra 
Methanol can be divided in to 4fragments 
e.g. 
CH3OH CH3OH⁺ +e¯ 
CH3OH CH3⁺ + OH¯ 
CH3OH CH2OH⁺+ H¯ 
CH3OH CHO⁺ + H2¯ 
. 
intensity 5 10 15 20 25 30 35 
m/e 8 
120 
100 
80 
60 
40 
20 
0 
CHO⁺ 
CH3OH⁺ 
CH3⁺ 
CH2OH⁺
Fragmentation rules in MS 
1. Intensity of MM..++ is LLaarrggeerr ffoorr lliinneeaarr cchhaaiinn than for branched 
9 
compound 
2. Intensity of MM..++ ddeeccrreeaassee with IInnccrreeaassiinngg MM..WW.. (fatty acid is an 
exception) 
3. Cleavage is ffaavvoorreedd aatt bbrraanncchhiinngg 
44.. AArroommaattiicc RRiinnggss,, DDoouubbllee bboonndd,, CCyycclliicc ssttrruuccttuurreess ssttaabbiilliizzee MM..++ 
55.. DDoouubbllee bboonndd ffaavvoorr AAllllyylliicc CClleeaavvaaggee 
6. Saturated Rings lose a Alkyl Chain (case of branching) 
7.. AArroommaattiicc CCoommppoouunnddss CClleeaavvee iinn bb 
Resonance Stabilized TTrrooppyylliiuumm 
8.. CC--CC NNeexxtt ttoo HHeetteerrooaattoomm cleave leaving the cchhaarrggee oonn tthhee 
HHeetteerrooaattoomm 
99.. CClleeaavvaaggee ooff ssmmaallll nneeuuttrraall mmoolleeccuulleess ((CCOO22,, CCOO,, oolleeffiinnss,, HH22OO ……..)).. 
RReessuulltt oofftteenn ffrroomm rreeaarrrraannggeemmeenntt -- MMccLLaaffffeerrttyy rreeaarrrraannggeemmeenntt 9
General rules of Fragmentation 
1.Hydrocarbons 
•Hydrocarbons give clusters of peaks. 
•Molecular ion peaks of very low abundance are observed for linear hydrocarbons. 
•For branched hydrocarbons give a low intensity at M+. 
•Intensity of (CnH2n+1) peaks decreases with increasing mass. 
10
General rules of Fragmentation 
2.Cleavage at Branched carbon 
Cleavage at branched carbon is favored due to higher stability 
at tertiary carbocation. 
H 
C > C 
> C 
H 
H 
> 
H 
C 
H 
H 
tert. sec. primary methyl 
11
CH3 
1 2 3 4 5 6 7 8 
+ 
cleavage at 6-1 
cleavage at 6-2 
cleavage at 6-3 
C4H9 
C H 
C3H7 
+ 
CH3 
C H 
C4H9 
+ 
CH3 
C H 
C3H7 
+ 
(F1) 
(F2) 
(F3) 
H3C CH2 CH2 C 
H 
CH2 CH2 CH2 CH3 
Eg. 
Produces thre secondary cations, the most favored fragments 
at C-4 of 
4- methyl octane. 
Note that C4 is common for fragments (F1)(F2) And (F3). 12
General rules of Fragmentation 
3.Rule of b cleavage 
Most important rule covers 70% of mass fragmentation. 
X C1 C2 R X CH 
a b 
Cleavage favored at b bond leaving positive charge on C1. 
13
H3C CH2 O CH2 CH3 
H3C CH2 O CH2 CH3 
CH2 O CH2 
m/e = M-15 
1. 
H3C 
2. 
CH2 CH2 CH3 
H3C CH2 N CH2 
N 
C2H5 
C3H7 
H2C 
N 
C2H5 
H2C 
H2C 
m-57 m-29 
N 
CH2 
C3H7 
m-15 
CH2 
tert.amine 
B1 
B3 B2 
e.g.: A) (x) = O, N, S. 
14
3. 
CH2 S CH2 CH2 CH3 
H2C S 
CH2 
H2C S 
M-71 C3H7 
M-29 
B2 B1 
B1 
B2
R 
CH2 
CH2 
+ 
+ 
m/e = ( M-R ) Stable 
benzylic cation 
+ 
m/e = 91 
Tropylium cation 
b) Benzylic clevage 
+ 
b) 
m/e = 65 
cyclopentadienyl 
cation 
-(x)- = 
16
O 
+ 
O C CH + 3 
m/e = M-R m/e = M-15 
Simarly for x= N & S 
+ 
Very common fragment for ester 
C. Allylic Cleavage 
H2C 
M-31 = methyl ester 
M-45 = ethyl ester 
R 
m/e = M-R stable allyliz cation 
O 
H3C CH3 
R CH3 
R C O 
i) 
ii) 
O 
R C OCH3 
R C O 
m/e = M-31 
+ 
17
General rules of Fragmentation 
4 Rule of elimination of small neutral molecule 
A) b - Elimination 
The high temperature and high vacuum are quite favourable for elimination reaction 
H 
C 
C 
OH 
C C 
+ 
+ H2O 
m/e M - 18 
and hence 
i)Loss of water (H2O) for alcohols (M-18) is a prominent fragment. 
Tertiary alcohols lose the water so fast that in many cases M.I. Peak is absent. 
18
ii)Loss of Ammonia (NH3)(M-17) for primary amines and primary 
and secondary alkyl ammonia derivatives 
For 
C C 
NH 
C C + NH2 
M - 46 
C2H5 
C2H5 
H 
C 
C 
NH2 
C C + 
M - 17 
NH3 
19
iii)Elimination at Hydrogen sulphide (H2S)[M-34] confirms thiols 
(mercaptons) 
H 
C 
C 
SH 
C C + H2S 
M - 34 
iv)Elimination of Hydrogen cyanide (HCN)[M-27] confirms nitriles. 
H 
C 
C 
CN 
C C + HCN 
M - 27 
20
v)Elimination of Hydrogen halide(HX), 
Common for tertiary halides. 
H 
C 
C 
X 
C C 
m/e = M - HX 
X = F, Cl, Br, I 
21
General rules of Fragmentation 
5.Rule – retro Diel’s Alder reaction 
High temperature high vacuum highly favorable for(DA) common for all 
these six membered cyclic mono olefins. 
+ 
O 
O 
O 
O + O 
O 
diene dienophile 
22
MCLAFFERTY REARRANGEMENT:- 
Rearrangement ions are fragments, they are formed 
due to the result of intermolecular atomic 
MMccLLaaffffeerrttyy 
rearrangement H 
during fragmentation 
x 
To undergo this CH2 
rearrangement the molecule must 
posses heteroatom, CH2 
one double bond and hydrogen atom 
CH2 
O 
C 
Y 
+ 
YY  HH,, RR,, OOHH,, NNRR22 
IIoonn SSttaabbiilliizzeedd 
bbyy rreessoonnaannccee 
x 
CH2 
CH2 
H 
CH2 
O 
C 
Y 
-- CCHH22==CCHH22 
x 
CH2 
O 
C 
Y 
H 
x 
+ 
CH2 
O+ 
C 
Y 
H 
x 
CH2 
O 
C+ 
Y 
H 
23
NITROGEN RULE:- 
It is used for determination of molecular mass of 
compounds and its elemental composition 
Molecules having odd mass number contain odd 
number of nitrogen atoms. 
H3C 
Molecules having even mass number contain even no 
H3C of nitrogen CH3 
atoms. 
H 
MMWW == 5599 
((oodddd)) 
MMWW == 5588 
((eevveenn)) 
IIoonniissaattiioonn 
[[MM++HH]] 
[[MM++HH]] 
MMWW == 6600 
MMWW == 5599 
CH3 
N 
H3C CH3 
24
Nitrogen: 
Odd number of N = odd MW 
CH3CN 
M+ = 41 
SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of 
Advanced Industrial Science and Technology, 11/2/09) 
25
Problems and General pattern for 
individual Families 
26
Fragmentation Patterns 
Alkanes: 
Fragmentation often splits off simple alkyl groups: 
Loss of methyl M+ - 15 
Loss of ethyl M+ - 29 
Loss of propyl M+ - 43 
Loss of butyl M+ - 57 
Branched alkanes tend to fragment forming the 
most stable carbocations. 
27
Fragmentation Patterns 
Mass spectrum of 2-methylpentane
Fragmentation Patterns 
H3C CH3 
H3C CH3 
H3C CH3 
CH2 
H3C CH3 
H3C CH3 
+ 
H2C 
CH2 
H2C 
H3C CH3 
H3C CH3 
+ 
H2C 
+ 
CH2 
H2C 
CH2 
CH 
CH2 
CH2 
Aklenes (olefins) 
CH2 
CH2 
m/z 69 mm//zz 6 973
Fragmentation Patterns
Fragmentation Patterns 
HHyyddrrooxxyy ccoommppoouunnddss:: 
R1 
R2 C 
R3 
x 
O H 
LLoossss ooff llaarrggeesstt ggrroouupp 
- R3 
 
R2 
–– ((HH22OO)) 
C 
R1 
CHR 
CHR CHR+ 
O+ H 
CR1 + 
R2 
O H 
MM –– ((HH22OO)) 
IIff RR11==HH mm//ee 4455,, 5599,, 7733 …… 
IIff RR11==aallkkyyll mm//ee 5599,, 7733,, 8877 …… 
xOH 
CHR 
H 
CHR 
CHR 
CHR 
OH+ 
CHR 
CHR 
CHR 
CHR 
H 
CHR+ 
CHR 
CHR 
CHR 
CHR 
xOH 
CHR 
H 
CHR 
CHR 
CHR 
CHR 
CHR 
- H2O 
- CHR=CHR 
MM –– ((HH22OO)) –– ((CC11==CC22)) AAllkkeennee
Fragmentation Patterns
Fragmentation Patterns 
Aromatics may also have a peak at m/z = 77 for the 
benzene ring. 
NO2 
77 
M+ = 123 
77
Fragmentation Patterns 
Alcohols 
Fragment easily resulting in very small or missing 
parent ion peak 
May lose hydroxyl radical or water 
M+ - 17 or M+ - 18 
Commonly lose an alkyl group attached to the 
carbinol carbon forming an oxonium ion. 
1o alcohol usually has prominent peak at m/z = 
31 corresponding to H2C=OH+
Fragmentation Patterns 
 MS for 1-propanol 
M+-18 M+ 
CH3CH2CH2OH 
H2C OH 
SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of 
Advanced Industrial Science and Technology, 11/28/09)
Fragmentation Patterns 
 Ethers 
 a-cleavage forming oxonium ion 
 Loss of alkyl group forming oxonium ion 
 Loss of alkyl group forming a 
carbocation
Fragmentation Patterns 
 Aldehydes (RCHO) 
 Fragmentation may form acylium ion 
RC O 
 Common fragments: 
M+ - 1 for 
M+ - 29 for 
RC O 
R (i.e. RCHO - CHO)
Fragmentation Patterns 
 Ketones 
O 
 Fragmentation leads to formation of 
acylium ion: 
Loss of R forming 
Loss of R’ forming 
R'C O 
RC O 
RCR'
Fragmentation Patterns 
 MS for 2-pentanone 
O 
CH3CCH2CH2CH3 
CH3CH2CH2C O 
M+ 
CH3C O 
SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of 
Advanced Industrial Science and Technology, 11/28/09)
Fragmentation Patterns 
 Esters (RCO2R’) 
 Common fragmentation patterns 
include: 
Loss of OR’ 
 peak at M+ - OR’ 
Loss of R’ 
 peak at M+ - R’
Fragmentation Patterns 
M+ = 136 
77 105 
O 
C 
O CH3 
105 
77 
SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of 
Advanced Industrial Science and Technology, 11/28/09)
? 
?? ? 
? ? 
? 
? ? 
? 
? 
? 
? 
? ? 
? 
? ? 
? ? 
? 
? 
? 
? 
? 
? ? 
? 
? 
? 
? 
? 
? 
? ? ? ? 
? 
? 
? 
? ? ? 
? 
? 
? 
? 
? 
? 
? 
? 
? 
? 
? 
Any Q. Thank You

Más contenido relacionado

La actualidad más candente

Spin spin coupling and coupling constant
Spin spin coupling and coupling constantSpin spin coupling and coupling constant
Spin spin coupling and coupling constantHimal Barakoti
 
PRINCIPLES of FT-NMR & 13C NMR
PRINCIPLES of FT-NMR & 13C NMRPRINCIPLES of FT-NMR & 13C NMR
PRINCIPLES of FT-NMR & 13C NMRAditya Sharma
 
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...Sachin Kale
 
COMPARISION BETWEEN 1 H & 13 C NMR
COMPARISION  BETWEEN  1 H  & 13 C NMRCOMPARISION  BETWEEN  1 H  & 13 C NMR
COMPARISION BETWEEN 1 H & 13 C NMRRaju Sanghvi
 
Fragmentation techniques in mass spectroscopy
Fragmentation techniques in mass spectroscopyFragmentation techniques in mass spectroscopy
Fragmentation techniques in mass spectroscopyMahendra G S
 
13C-NMR SPECTROSCOPY
13C-NMR SPECTROSCOPY13C-NMR SPECTROSCOPY
13C-NMR SPECTROSCOPYramanbrar09
 
Ionizaion Techniques - Mass Spectroscopy
Ionizaion Techniques - Mass SpectroscopyIonizaion Techniques - Mass Spectroscopy
Ionizaion Techniques - Mass SpectroscopySuraj Choudhary
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopyAsma Ashraf
 
Mass spectrometry and ionization techniques
Mass spectrometry and ionization techniquesMass spectrometry and ionization techniques
Mass spectrometry and ionization techniquesSurbhi Narang
 
Factors and applications of IR Spectroscopy
Factors and applications of IR SpectroscopyFactors and applications of IR Spectroscopy
Factors and applications of IR SpectroscopyKasturi Banerjee
 
Factors influencing chemical shift
Factors influencing chemical shiftFactors influencing chemical shift
Factors influencing chemical shiftKavitha Bitra
 
Fragmentation techniques
Fragmentation techniquesFragmentation techniques
Fragmentation techniquessamiya shaik
 
Chemical Shift & Factors Affecting Chemical Shift
Chemical Shift & Factors Affecting Chemical ShiftChemical Shift & Factors Affecting Chemical Shift
Chemical Shift & Factors Affecting Chemical ShiftKeshav Singh
 
C-13 NMR Spectroscopy
C-13 NMR SpectroscopyC-13 NMR Spectroscopy
C-13 NMR SpectroscopyMANISHSAHU106
 
Nuclear Magnetic Double Resonance (Decoupling).pptx
Nuclear Magnetic Double Resonance (Decoupling).pptxNuclear Magnetic Double Resonance (Decoupling).pptx
Nuclear Magnetic Double Resonance (Decoupling).pptxRushikeshTidake
 
NMR spcetroscopy
NMR spcetroscopyNMR spcetroscopy
NMR spcetroscopyDivya V
 

La actualidad más candente (20)

Spin spin coupling and coupling constant
Spin spin coupling and coupling constantSpin spin coupling and coupling constant
Spin spin coupling and coupling constant
 
PRINCIPLES of FT-NMR & 13C NMR
PRINCIPLES of FT-NMR & 13C NMRPRINCIPLES of FT-NMR & 13C NMR
PRINCIPLES of FT-NMR & 13C NMR
 
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
 
Noesy [autosaved]
Noesy [autosaved]Noesy [autosaved]
Noesy [autosaved]
 
COMPARISION BETWEEN 1 H & 13 C NMR
COMPARISION  BETWEEN  1 H  & 13 C NMRCOMPARISION  BETWEEN  1 H  & 13 C NMR
COMPARISION BETWEEN 1 H & 13 C NMR
 
Fragmentation techniques in mass spectroscopy
Fragmentation techniques in mass spectroscopyFragmentation techniques in mass spectroscopy
Fragmentation techniques in mass spectroscopy
 
13C-NMR SPECTROSCOPY
13C-NMR SPECTROSCOPY13C-NMR SPECTROSCOPY
13C-NMR SPECTROSCOPY
 
Ionizaion Techniques - Mass Spectroscopy
Ionizaion Techniques - Mass SpectroscopyIonizaion Techniques - Mass Spectroscopy
Ionizaion Techniques - Mass Spectroscopy
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Mass spectrometry and ionization techniques
Mass spectrometry and ionization techniquesMass spectrometry and ionization techniques
Mass spectrometry and ionization techniques
 
Factors and applications of IR Spectroscopy
Factors and applications of IR SpectroscopyFactors and applications of IR Spectroscopy
Factors and applications of IR Spectroscopy
 
Factors influencing chemical shift
Factors influencing chemical shiftFactors influencing chemical shift
Factors influencing chemical shift
 
Fragmentation techniques
Fragmentation techniquesFragmentation techniques
Fragmentation techniques
 
Chemical Shift & Factors Affecting Chemical Shift
Chemical Shift & Factors Affecting Chemical ShiftChemical Shift & Factors Affecting Chemical Shift
Chemical Shift & Factors Affecting Chemical Shift
 
C-13 NMR Spectroscopy
C-13 NMR SpectroscopyC-13 NMR Spectroscopy
C-13 NMR Spectroscopy
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
McLaffertey rearrangement.
McLaffertey rearrangement.McLaffertey rearrangement.
McLaffertey rearrangement.
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Nuclear Magnetic Double Resonance (Decoupling).pptx
Nuclear Magnetic Double Resonance (Decoupling).pptxNuclear Magnetic Double Resonance (Decoupling).pptx
Nuclear Magnetic Double Resonance (Decoupling).pptx
 
NMR spcetroscopy
NMR spcetroscopyNMR spcetroscopy
NMR spcetroscopy
 

Destacado (20)

Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Mass Spectroscopy
Mass SpectroscopyMass Spectroscopy
Mass Spectroscopy
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Mass Spectroscopy
Mass SpectroscopyMass Spectroscopy
Mass Spectroscopy
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Mass spectroscopy pdf
Mass spectroscopy  pdfMass spectroscopy  pdf
Mass spectroscopy pdf
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Extra problem for 1st yr
Extra problem for 1st yrExtra problem for 1st yr
Extra problem for 1st yr
 
4. mass jntu pharmacy
4. mass jntu pharmacy4. mass jntu pharmacy
4. mass jntu pharmacy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Mass Spectroscopy
Mass SpectroscopyMass Spectroscopy
Mass Spectroscopy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Atomic absorption spectrophotometry
Atomic absorption spectrophotometryAtomic absorption spectrophotometry
Atomic absorption spectrophotometry
 
Atomic Absorption Spectroscopy (www.Redicals.com)
Atomic Absorption Spectroscopy (www.Redicals.com)Atomic Absorption Spectroscopy (www.Redicals.com)
Atomic Absorption Spectroscopy (www.Redicals.com)
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Atomic Absorption Spectroscopy
Atomic Absorption SpectroscopyAtomic Absorption Spectroscopy
Atomic Absorption Spectroscopy
 
Atomic absorption spectrophotometry
Atomic absorption spectrophotometryAtomic absorption spectrophotometry
Atomic absorption spectrophotometry
 

Similar a Mass spectroscopy

Mass spectrometery
Mass spectrometeryMass spectrometery
Mass spectrometeryRaguM6
 
Chap 14 mass spec
Chap 14 mass specChap 14 mass spec
Chap 14 mass specceutics1315
 
Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...
Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...
Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...Richard West
 
Mass spectrometry problems-1.
Mass spectrometry problems-1.Mass spectrometry problems-1.
Mass spectrometry problems-1.JyotsnaMeshram
 
An Introduction To Organic Chemistry
An Introduction To Organic ChemistryAn Introduction To Organic Chemistry
An Introduction To Organic ChemistryAudrey Britton
 
2014 Class12th chemistry set 1
2014 Class12th chemistry set 12014 Class12th chemistry set 1
2014 Class12th chemistry set 1vandna123
 
Quick review a2 high resolution nor spectroscopy
Quick review a2 high resolution nor spectroscopyQuick review a2 high resolution nor spectroscopy
Quick review a2 high resolution nor spectroscopyHarlington Community School
 
Fragmentation rule MASS
Fragmentation rule MASSFragmentation rule MASS
Fragmentation rule MASSMahendra G S
 
NMR (nuclear Magnetic Resonance)
NMR (nuclear Magnetic Resonance)NMR (nuclear Magnetic Resonance)
NMR (nuclear Magnetic Resonance)Rawat DA Greatt
 
ammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxsadafmunir4
 
02. Chemistry Common Name Reactions for Students.pdf
02. Chemistry Common Name Reactions for Students.pdf02. Chemistry Common Name Reactions for Students.pdf
02. Chemistry Common Name Reactions for Students.pdfsdmitragotri
 
Interpretation Of Organic Molecules By Mass Spectra
Interpretation Of Organic Molecules By Mass SpectraInterpretation Of Organic Molecules By Mass Spectra
Interpretation Of Organic Molecules By Mass Spectrasandilo
 
Aieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat GauravAieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat GauravSahil Gaurav
 

Similar a Mass spectroscopy (20)

5- MS spectrum.pptx
5- MS spectrum.pptx5- MS spectrum.pptx
5- MS spectrum.pptx
 
Mass spectrometery
Mass spectrometeryMass spectrometery
Mass spectrometery
 
Ms interpretation
Ms interpretationMs interpretation
Ms interpretation
 
Ppt by prashanth
Ppt by prashanthPpt by prashanth
Ppt by prashanth
 
mass spectroscopy
mass spectroscopymass spectroscopy
mass spectroscopy
 
Chap 14 mass spec
Chap 14 mass specChap 14 mass spec
Chap 14 mass spec
 
Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...
Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...
Finding Transition States Algorithmically for Automatic Reaction Mechanism Ge...
 
Mass spectrometry problems-1.
Mass spectrometry problems-1.Mass spectrometry problems-1.
Mass spectrometry problems-1.
 
An Introduction To Organic Chemistry
An Introduction To Organic ChemistryAn Introduction To Organic Chemistry
An Introduction To Organic Chemistry
 
Ms 1
Ms 1Ms 1
Ms 1
 
2014 Class12th chemistry set 1
2014 Class12th chemistry set 12014 Class12th chemistry set 1
2014 Class12th chemistry set 1
 
Quick review a2 high resolution nor spectroscopy
Quick review a2 high resolution nor spectroscopyQuick review a2 high resolution nor spectroscopy
Quick review a2 high resolution nor spectroscopy
 
Fragmentation rule MASS
Fragmentation rule MASSFragmentation rule MASS
Fragmentation rule MASS
 
Chapter11 introduction of organic chemistry
Chapter11 introduction of organic chemistryChapter11 introduction of organic chemistry
Chapter11 introduction of organic chemistry
 
NMR (nuclear Magnetic Resonance)
NMR (nuclear Magnetic Resonance)NMR (nuclear Magnetic Resonance)
NMR (nuclear Magnetic Resonance)
 
ammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptx
 
02. Chemistry Common Name Reactions for Students.pdf
02. Chemistry Common Name Reactions for Students.pdf02. Chemistry Common Name Reactions for Students.pdf
02. Chemistry Common Name Reactions for Students.pdf
 
Interpretation Of Organic Molecules By Mass Spectra
Interpretation Of Organic Molecules By Mass SpectraInterpretation Of Organic Molecules By Mass Spectra
Interpretation Of Organic Molecules By Mass Spectra
 
ELIMINATION SHEEJA.pptx
ELIMINATION SHEEJA.pptxELIMINATION SHEEJA.pptx
ELIMINATION SHEEJA.pptx
 
Aieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat GauravAieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat Gaurav
 

Más de Malla Reddy College of Pharmacy (20)

Rna secondary structure prediction
Rna secondary structure predictionRna secondary structure prediction
Rna secondary structure prediction
 
Proteomics
ProteomicsProteomics
Proteomics
 
Proteins basics
Proteins basicsProteins basics
Proteins basics
 
Protein structure classification
Protein structure classificationProtein structure classification
Protein structure classification
 
Protein identication characterization
Protein identication characterizationProtein identication characterization
Protein identication characterization
 
Protein modeling
Protein modelingProtein modeling
Protein modeling
 
Primerdesign
PrimerdesignPrimerdesign
Primerdesign
 
Phylogenetic studies
Phylogenetic studiesPhylogenetic studies
Phylogenetic studies
 
Multiple sequence alignment
Multiple sequence alignmentMultiple sequence alignment
Multiple sequence alignment
 
Homology modeling tools
Homology modeling toolsHomology modeling tools
Homology modeling tools
 
Homology modeling
Homology modelingHomology modeling
Homology modeling
 
Genome assembly
Genome assemblyGenome assembly
Genome assembly
 
Genome analysis2
Genome analysis2Genome analysis2
Genome analysis2
 
Genome analysis
Genome analysisGenome analysis
Genome analysis
 
Fasta
FastaFasta
Fasta
 
Drug design intro
Drug design introDrug design intro
Drug design intro
 
Drug design
Drug designDrug design
Drug design
 
Data retrieval
Data retrievalData retrieval
Data retrieval
 
Blast
BlastBlast
Blast
 
Biological databases
Biological databasesBiological databases
Biological databases
 

Mass spectroscopy

  • 2. ? Why it is use Mass Spectroscopy ? 2
  • 3. Introduction to Mass Spectrometry Sample introduction Ionization Minimize collisions, interferences Separate masses Count ions Collect results 3
  • 4. Principle It is also called as positive ion spectra or line spectra Sample is bombarded with the high electron beam produce the positive ions. They travel in straight path When a magnetic field or electric field is applied then travels in curved path The fragments of different masses are separated based on the radius of curvature. m/e α r2 4
  • 5. How does a mass spectrometer work? Sample Plate Target HPLC GC Solids probe MALDI ESI IonSpray FAB EI/CI SFA DFA Quadrupole FTMS Faraday cup . Electron Mult. Photomultiplier 5
  • 6. V i d e o 6
  • 7. Mass Spectrometry Needs Ionization-How the protein is injected in to the MS machine Separation-Mass and Charge ? is determined Activation-Protein are broken into smaller fragments (peptides/AAs) Mass Determination- m/z ratios are determined for the ionized protein fragments/peptides 7
  • 8. FRAGMENTATION The process of Breaking Molecules /ions into fragments is known as fragmentation. This can be seen in the form of peaks in mass spectra Methanol can be divided in to 4fragments e.g. CH3OH CH3OH⁺ +e¯ CH3OH CH3⁺ + OH¯ CH3OH CH2OH⁺+ H¯ CH3OH CHO⁺ + H2¯ . intensity 5 10 15 20 25 30 35 m/e 8 120 100 80 60 40 20 0 CHO⁺ CH3OH⁺ CH3⁺ CH2OH⁺
  • 9. Fragmentation rules in MS 1. Intensity of MM..++ is LLaarrggeerr ffoorr lliinneeaarr cchhaaiinn than for branched 9 compound 2. Intensity of MM..++ ddeeccrreeaassee with IInnccrreeaassiinngg MM..WW.. (fatty acid is an exception) 3. Cleavage is ffaavvoorreedd aatt bbrraanncchhiinngg 44.. AArroommaattiicc RRiinnggss,, DDoouubbllee bboonndd,, CCyycclliicc ssttrruuccttuurreess ssttaabbiilliizzee MM..++ 55.. DDoouubbllee bboonndd ffaavvoorr AAllllyylliicc CClleeaavvaaggee 6. Saturated Rings lose a Alkyl Chain (case of branching) 7.. AArroommaattiicc CCoommppoouunnddss CClleeaavvee iinn bb Resonance Stabilized TTrrooppyylliiuumm 8.. CC--CC NNeexxtt ttoo HHeetteerrooaattoomm cleave leaving the cchhaarrggee oonn tthhee HHeetteerrooaattoomm 99.. CClleeaavvaaggee ooff ssmmaallll nneeuuttrraall mmoolleeccuulleess ((CCOO22,, CCOO,, oolleeffiinnss,, HH22OO ……..)).. RReessuulltt oofftteenn ffrroomm rreeaarrrraannggeemmeenntt -- MMccLLaaffffeerrttyy rreeaarrrraannggeemmeenntt 9
  • 10. General rules of Fragmentation 1.Hydrocarbons •Hydrocarbons give clusters of peaks. •Molecular ion peaks of very low abundance are observed for linear hydrocarbons. •For branched hydrocarbons give a low intensity at M+. •Intensity of (CnH2n+1) peaks decreases with increasing mass. 10
  • 11. General rules of Fragmentation 2.Cleavage at Branched carbon Cleavage at branched carbon is favored due to higher stability at tertiary carbocation. H C > C > C H H > H C H H tert. sec. primary methyl 11
  • 12. CH3 1 2 3 4 5 6 7 8 + cleavage at 6-1 cleavage at 6-2 cleavage at 6-3 C4H9 C H C3H7 + CH3 C H C4H9 + CH3 C H C3H7 + (F1) (F2) (F3) H3C CH2 CH2 C H CH2 CH2 CH2 CH3 Eg. Produces thre secondary cations, the most favored fragments at C-4 of 4- methyl octane. Note that C4 is common for fragments (F1)(F2) And (F3). 12
  • 13. General rules of Fragmentation 3.Rule of b cleavage Most important rule covers 70% of mass fragmentation. X C1 C2 R X CH a b Cleavage favored at b bond leaving positive charge on C1. 13
  • 14. H3C CH2 O CH2 CH3 H3C CH2 O CH2 CH3 CH2 O CH2 m/e = M-15 1. H3C 2. CH2 CH2 CH3 H3C CH2 N CH2 N C2H5 C3H7 H2C N C2H5 H2C H2C m-57 m-29 N CH2 C3H7 m-15 CH2 tert.amine B1 B3 B2 e.g.: A) (x) = O, N, S. 14
  • 15. 3. CH2 S CH2 CH2 CH3 H2C S CH2 H2C S M-71 C3H7 M-29 B2 B1 B1 B2
  • 16. R CH2 CH2 + + m/e = ( M-R ) Stable benzylic cation + m/e = 91 Tropylium cation b) Benzylic clevage + b) m/e = 65 cyclopentadienyl cation -(x)- = 16
  • 17. O + O C CH + 3 m/e = M-R m/e = M-15 Simarly for x= N & S + Very common fragment for ester C. Allylic Cleavage H2C M-31 = methyl ester M-45 = ethyl ester R m/e = M-R stable allyliz cation O H3C CH3 R CH3 R C O i) ii) O R C OCH3 R C O m/e = M-31 + 17
  • 18. General rules of Fragmentation 4 Rule of elimination of small neutral molecule A) b - Elimination The high temperature and high vacuum are quite favourable for elimination reaction H C C OH C C + + H2O m/e M - 18 and hence i)Loss of water (H2O) for alcohols (M-18) is a prominent fragment. Tertiary alcohols lose the water so fast that in many cases M.I. Peak is absent. 18
  • 19. ii)Loss of Ammonia (NH3)(M-17) for primary amines and primary and secondary alkyl ammonia derivatives For C C NH C C + NH2 M - 46 C2H5 C2H5 H C C NH2 C C + M - 17 NH3 19
  • 20. iii)Elimination at Hydrogen sulphide (H2S)[M-34] confirms thiols (mercaptons) H C C SH C C + H2S M - 34 iv)Elimination of Hydrogen cyanide (HCN)[M-27] confirms nitriles. H C C CN C C + HCN M - 27 20
  • 21. v)Elimination of Hydrogen halide(HX), Common for tertiary halides. H C C X C C m/e = M - HX X = F, Cl, Br, I 21
  • 22. General rules of Fragmentation 5.Rule – retro Diel’s Alder reaction High temperature high vacuum highly favorable for(DA) common for all these six membered cyclic mono olefins. + O O O O + O O diene dienophile 22
  • 23. MCLAFFERTY REARRANGEMENT:- Rearrangement ions are fragments, they are formed due to the result of intermolecular atomic MMccLLaaffffeerrttyy rearrangement H during fragmentation x To undergo this CH2 rearrangement the molecule must posses heteroatom, CH2 one double bond and hydrogen atom CH2 O C Y + YY  HH,, RR,, OOHH,, NNRR22 IIoonn SSttaabbiilliizzeedd bbyy rreessoonnaannccee x CH2 CH2 H CH2 O C Y -- CCHH22==CCHH22 x CH2 O C Y H x + CH2 O+ C Y H x CH2 O C+ Y H 23
  • 24. NITROGEN RULE:- It is used for determination of molecular mass of compounds and its elemental composition Molecules having odd mass number contain odd number of nitrogen atoms. H3C Molecules having even mass number contain even no H3C of nitrogen CH3 atoms. H MMWW == 5599 ((oodddd)) MMWW == 5588 ((eevveenn)) IIoonniissaattiioonn [[MM++HH]] [[MM++HH]] MMWW == 6600 MMWW == 5599 CH3 N H3C CH3 24
  • 25. Nitrogen: Odd number of N = odd MW CH3CN M+ = 41 SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/2/09) 25
  • 26. Problems and General pattern for individual Families 26
  • 27. Fragmentation Patterns Alkanes: Fragmentation often splits off simple alkyl groups: Loss of methyl M+ - 15 Loss of ethyl M+ - 29 Loss of propyl M+ - 43 Loss of butyl M+ - 57 Branched alkanes tend to fragment forming the most stable carbocations. 27
  • 28. Fragmentation Patterns Mass spectrum of 2-methylpentane
  • 29. Fragmentation Patterns H3C CH3 H3C CH3 H3C CH3 CH2 H3C CH3 H3C CH3 + H2C CH2 H2C H3C CH3 H3C CH3 + H2C + CH2 H2C CH2 CH CH2 CH2 Aklenes (olefins) CH2 CH2 m/z 69 mm//zz 6 973
  • 31. Fragmentation Patterns HHyyddrrooxxyy ccoommppoouunnddss:: R1 R2 C R3 x O H LLoossss ooff llaarrggeesstt ggrroouupp - R3  R2 –– ((HH22OO)) C R1 CHR CHR CHR+ O+ H CR1 + R2 O H MM –– ((HH22OO)) IIff RR11==HH mm//ee 4455,, 5599,, 7733 …… IIff RR11==aallkkyyll mm//ee 5599,, 7733,, 8877 …… xOH CHR H CHR CHR CHR OH+ CHR CHR CHR CHR H CHR+ CHR CHR CHR CHR xOH CHR H CHR CHR CHR CHR CHR - H2O - CHR=CHR MM –– ((HH22OO)) –– ((CC11==CC22)) AAllkkeennee
  • 33. Fragmentation Patterns Aromatics may also have a peak at m/z = 77 for the benzene ring. NO2 77 M+ = 123 77
  • 34. Fragmentation Patterns Alcohols Fragment easily resulting in very small or missing parent ion peak May lose hydroxyl radical or water M+ - 17 or M+ - 18 Commonly lose an alkyl group attached to the carbinol carbon forming an oxonium ion. 1o alcohol usually has prominent peak at m/z = 31 corresponding to H2C=OH+
  • 35. Fragmentation Patterns  MS for 1-propanol M+-18 M+ CH3CH2CH2OH H2C OH SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)
  • 36. Fragmentation Patterns  Ethers  a-cleavage forming oxonium ion  Loss of alkyl group forming oxonium ion  Loss of alkyl group forming a carbocation
  • 37.
  • 38. Fragmentation Patterns  Aldehydes (RCHO)  Fragmentation may form acylium ion RC O  Common fragments: M+ - 1 for M+ - 29 for RC O R (i.e. RCHO - CHO)
  • 39. Fragmentation Patterns  Ketones O  Fragmentation leads to formation of acylium ion: Loss of R forming Loss of R’ forming R'C O RC O RCR'
  • 40. Fragmentation Patterns  MS for 2-pentanone O CH3CCH2CH2CH3 CH3CH2CH2C O M+ CH3C O SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)
  • 41. Fragmentation Patterns  Esters (RCO2R’)  Common fragmentation patterns include: Loss of OR’  peak at M+ - OR’ Loss of R’  peak at M+ - R’
  • 42. Fragmentation Patterns M+ = 136 77 105 O C O CH3 105 77 SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)
  • 43. ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Any Q. Thank You