SlideShare a Scribd company logo
1 of 58
Download to read offline
1st edition | July 8-11, 2019
#DutchMLSchoolBigML, Inc 2
Logistic Regression, Deepnets
and Univariate Time Series
Going Further With Supervised Learning
Charles Parker
VP Machine Learning Algorithms
#DutchMLSchoolBigML, Inc 3
Logistic Regression
#DutchMLSchoolBigML, Inc
Supervised learning review
4
animal state … proximity action
tiger hungry … close run
elephant happy … far take picture
… … … … …
Classification
animal state … proximity min_kmh
tiger hungry … close 70
hippo angry … far 10
… …. … … …
Regression
label
#DutchMLSchoolBigML, Inc
Logistic Regression
5
Classification implies a discrete objective.
How can this be a regression?
Logistic Regression is a classification algorithm
Potential Confusion:
#DutchMLSchoolBigML, Inc
Linear Regression
6
#DutchMLSchoolBigML, Inc
Linear Regression
7
#DutchMLSchoolBigML, Inc
Polynomial Regression
8
#DutchMLSchoolBigML, Inc
Regression
9
• Linear Regression: 𝛽₀+𝛽1·(INPUT) ≈ OBJECTIVE
• Quadratic Regression: 𝛽₀+𝛽1·(INPUT)+𝛽2·(INPUT)2 ≈ OBJECTIVE
• Decision Tree Regression: DT(INPUT) ≈ OBJECTIVE
NEW PROBLEM
• What if we want to do a classification problem: T/F or 1/0
• What function can we fit to discrete data?
Regression is the process of "fitting" a function to the data
Key Take-Away
#DutchMLSchoolBigML, Inc
Discrete Data Function?
10
#DutchMLSchoolBigML, Inc
Discrete Data Function?
11
????
#DutchMLSchoolBigML, Inc
Logistic Function
12
𝑥➝-∞
𝑓(𝑥)➝0
• Looks promising, but still not "discrete"
• What about the "green" in the middle?
• Let’s change the problem…
𝑥➝∞
𝑓(𝑥)➝1
Goal
1
1 + 𝒆− 𝑥𝑓(𝑥) =
Logistic Function
#DutchMLSchoolBigML, Inc
Modeling Probabilities
13
𝑃≈0 𝑃≈10<𝑃<1
#DutchMLSchoolBigML, Inc
Logistic Regression
14
• Assumes that output is linearly related to "predictors"
• Question: how do we "fit" the logistic function to real data?
LR is a classification algorithm … that uses a regression …

to model the probability of the discrete objective
Clarification:
Caveats:
#DutchMLSchoolBigML, Inc
Logistic Regression
15
For "𝑖" dimensions, 𝑿﹦[ 𝑥1, 𝑥2,⋯, 𝑥𝑖 ], we solve
𝑃(𝑿)=
1
1+𝑒−𝑓(𝑿)
𝑓(𝑿)=𝛽0+𝞫·𝑿=𝛽0+𝛽1 𝑥1+⋯+𝛽𝑖 𝑥𝑖
where:
#DutchMLSchoolBigML, Inc
Interpreting Coefficients
16
• LR computes 𝛽0 and coefficients 𝛽𝑗 for each feature 𝑥𝑗
• negative 𝛽𝑗 → negatively correlated:
• positive 𝛽𝑗 → positively correlated:
• "larger" 𝛽𝑗 → more impact:
• "smaller" → less impact:
• 𝛽𝑗 "size" should not be confused with field importance
𝑥𝑗↑ then 𝑃(𝑿)↓
𝑥𝑗↑ then 𝑃(𝑿)↑
𝑥𝑗≫ then 𝑃(𝑿)﹥
𝑥𝑗﹥then 𝑃(𝑿)≫
#DutchMLSchoolBigML, Inc
LR versus DT
17
• Expects a "smooth" linear
relationship with predictors.
• LR is concerned with probability of
a discrete outcome.
• Lots of parameters to get wrong: 

regularization, scaling, codings
• Slightly less prone to over-fitting

• Because fits a shape, might work
better when less data available.

• Adapts well to ragged non-linear
relationships
• No concern: classification,
regression, multi-class all fine.
• Virtually parameter free

• Slightly more prone to over-fitting

• Prefers surfaces parallel to
parameter axes, but given enough
data will discover any shape.
Logistic Regression Decision Tree
#DutchMLSchoolBigML, Inc
Summary
18
• Logistic Regression is a classification algorithm that
models the probabilities of each class
• Expects a linear relationship between the features and
the objective, and how to fix it
• LR outputs a set of coefficients and how to interpret
• Scale relates to impact
• Sign relates to direction of impact
#DutchMLSchoolBigML, Inc 19
Deep Neural Networks
#DutchMLSchoolBigML, Inc 20
Power To The People!
• Why another supervised learning algorithm?
• Deep neural networks have been shown to be
state of the art in several niche applications
• Vision
• Speech recognition
• NLP
• While powerful, these networks have historically
been difficult for novices to train
#DutchMLSchoolBigML, Inc
Goals of BigML Deepnets
21
• What BigML Deepnets are not (yet)
• Convolutional networks (Coming Soon!)
• Recurrent networks (e.g., LSTM Networks)
• These solve a particular type of sub-problem, and
are carefully engineered by experts to do so
• Can we bring some of the power of Deep Neural
Networks to your problem, even if you have no
deep learning expertise?
• Let’s try to separate deep neural network myths
from realities
#DutchMLSchoolBigML, Inc
Myth #1
22
Deep neural networks are the next step in evolution,
destined to perfect humanity or destroy it utterly.
#DutchMLSchoolBigML, Inc
Some Weaknesses
23
• Trees
• Pro: Massive representational power that expands as the data
gets larger; efficient search through this space
• Con: Difficult to represent smooth functions and functions of
many variables
• Ensembles mitigate some of these difficulties
• Logistic Regression
• Pro: Some smooth, multivariate, functions are not a problem;
fast optimization
• Con: Parametric - If decision boundary is nonlinear, tough luck
• Can these be mitigated?
#DutchMLSchoolBigML, Inc
Logistic Level Up
24
Outputs
Inputs
#DutchMLSchoolBigML, Inc
Logistic Level Up
25
wi
Class “a”, logistic(w, b)
#DutchMLSchoolBigML, Inc
Logistic Level Up
26
Outputs
Inputs
Hidden layer
#DutchMLSchoolBigML, Inc
Logistic Level Up
27
Class “a”, logistic(w, b)
Hidden node 1,

logistic(w, b)
#DutchMLSchoolBigML, Inc
Logistic Level Up
28
Class “a”, logistic(w, b)
Hidden node 1,

logistic(w, b)
n
hidden nodes?
#DutchMLSchoolBigML, Inc
Logistic Level Up
29
Class “a”, logistic(w, b)
Hidden node 1,

logistic(w, b)
n
hidden 

layers?
#DutchMLSchoolBigML, Inc
Logistic Level Up
30
Class “a”, logistic(w, b)
Hidden node 1,

logistic(w, b)
#DutchMLSchoolBigML, Inc
Myth #2
31
Deep neural networks are great for the established
marquee applications, but less interesting for general use.
#DutchMLSchoolBigML, Inc 32
Parameter Paralysis
Parameter Name Possible Values
Descent Algorithm Adam, RMSProp, Adagrad, Momentum, FTRL
Number of hidden layers 0 - 32
Activation Function (per layer) relu, tanh, sigmoid, softplus, etc.
Number of nodes (per layer) 1 - 8192
Learning Rate 0 - 1
Dropout Rate 0 - 1
Batch size 1 - 1024
Batch Normalization True, False
Learn Residuals True, False
Missing Numerics True, False
Objective weights Weight per class
. . . and that’s ignoring the parameters that are
specific to the descent algorithm.
#DutchMLSchoolBigML, Inc
What Can We Do?
33
• Clearly there are too many parameters to fuss with
• Setting them takes significant expert knowledge
• Solution: Metalearning (a good initial guess)
• Solution: Network search (try a bunch)
#DutchMLSchoolBigML, Inc
Bayesian Parameter Optimization
34
Model and EvaluateStructure 1
Structure 2
Structure 3
Structure 4
Structure 5
Structure 6
#DutchMLSchoolBigML, Inc
Bayesian Parameter Optimization
35
Model and EvaluateStructure 1
Structure 2
Structure 3
Structure 4
Structure 5
Structure 6
0.75
#DutchMLSchoolBigML, Inc
Bayesian Parameter Optimization
36
Model and EvaluateStructure 1
Structure 2
Structure 3
Structure 4
Structure 5
Structure 6
0.75
0.48
#DutchMLSchoolBigML, Inc
Bayesian Parameter Optimization
37
Model and EvaluateStructure 1
Structure 2
Structure 3
Structure 4
Structure 5
Structure 6
0.75
0.48
0.91
#DutchMLSchoolBigML, Inc
Bayesian Parameter Optimization
38
Structure 1
Structure 2
Structure 3
Structure 4
Structure 5
Structure 6
0.75
0.48
0.91
Machine Learning!
Structure → performance
Model and Evaluate
#DutchMLSchoolBigML, Inc
Benchmarking
39
• The ML world is filled with crummy benchmarks
• Not enough datasets
• No cross-validation
• Only one metric
• Solution: Roll our own
• 50+ datasets, 5 replications of 10-fold CV
• 10 different metrics
• 30+ competing algorithms (R, scikit-learn, weka, xgboost)
http://www.clparker.org/ml_benchmark/
#DutchMLSchoolBigML, Inc
Myth #3
40
Deep neural networks are not interpretable
#DutchMLSchoolBigML, Inc
Explainability
41
• Recent work in model interpretation applies
broadly to any model
• Feature importance (overall)
• Prediction explanation (feature importance
for a given prediction)
• Most (good) techniques rely on data perturbation
and multiple predictions
#DutchMLSchoolBigML, Inc
Myth #4
42
Deep neural networks have such spectacular performance
that all other supervised learning techniques are now irrelevant
#DutchMLSchoolBigML, Inc
Caveat Emptor
43
• Things that make deep learning less useful:
• Small data (where that could still be thousands of instances)
• Problems where you could benefit by iterating quickly (better
features always beats better models)
• Problems that are easy, or for which top-of-the-line
performance isn’t absolutely critical
• Remember deep learning is just another sort
of supervised learning algorithm
“…deep learning has existed in the neural network community for over 20 years. Recent advances are
driven by some relatively minor improvements in algorithms and models and by the availability of large
data sets and much more powerful collections of computers.” — Stuart Russell
#DutchMLSchoolBigML, Inc 44
Univariate Time Series
#DutchMLSchoolBigML, Inc
Beyond IID Data
45
• Traditional machine learning data is assumed to
be IID
• Independent (points have no information about each
other’s class) and
• Identically distributed (come from the same distribution)
• But what if you want to predict just the next value
in a sequence? Is all lost?
• Applications
• Predicting battery life from change-discharge cycles
• Predicting sales for the next day/week/month
#DutchMLSchoolBigML, Inc
Machine Learning Data
46
Color Mass Type
red 11 pen
green 45 apple
red 53 apple
yellow 0 pen
blue 2 pen
green 422 pineapple
yellow 555 pineapple
blue 7 pen
Discovering patterns within data:
• Color = “red” Mass < 100
• Type = “pineapple” Color ≠ “blue”
• Color = “blue” PPAP = “pen”
#DutchMLSchoolBigML, Inc
Machine Learning Data
47
Color Mass Type
red 53 apple
blue 2 pen
red 11 pen
blue 7 pen
green 45 apple
yellow 555 pineapple
green 422 pineapple
yellow 0 pen
Patterns valid despite reshuffling
• Color = “red” Mass < 100
• Type = “pineapple” Color ≠ “blue”
• Color = “blue” PPAP = “pen”
#DutchMLSchoolBigML, Inc
Time Series Data
48
Year Pineapple Harvest
1986 50,74
1987 22,03
1988 50,69
1989 40,38
1990 29,80
1991 9,90
1992 73,93
1993 22,95
1994 139,09
1995 115,17
1996 193,88
1997 175,31
1998 223,41
1999 295,03
2000 450,53
Pineapple Harvest
Tons
0
125
250
375
500
Year
1986 1988 1990 1992 1994 1996 1998 2000
Trend
#DutchMLSchoolBigML, Inc
Time Series Data
49
Year Pineapple Harvest
1986 139,09
1987 175,31
1988 9,91
1989 22,95
1990 450,53
1991 73,93
1992 40,38
1993 22,03
1994 295,03
1995 50,74
1996 29,8
1997 223,41
1998 115,17
1999 193,88
2000 50,69
Pineapple Harvest
Tons
0
125
250
375
500
Year
1986 1988 1990 1992 1994 1996 1998 2000
Patterns invalid after shuffling
#DutchMLSchoolBigML, Inc
Prediction
50
Use the data from the past to predict the future
#DutchMLSchoolBigML, Inc
Exponential Smoothing
51
#DutchMLSchoolBigML, Inc
Exponential Smoothing
52
Weight 0
0,05
0,1
0,15
0,2
Lag
1 3 5 7 9 11 13
#DutchMLSchoolBigML, Inc
Trend
53
y
0
12,5
25
37,5
50
Time
Apr May Jun Jul
y
0
50
100
150
200
Time
Apr May Jun Jul
Additive Multiplicative
#DutchMLSchoolBigML, Inc
Seasonality
54
y
0
30
60
90
120
Time
1 4 7 10 13 16 19
y
0
35
70
105
140
Time
1 4 7 10 13 16 19
Additive Multiplicative
#DutchMLSchoolBigML, Inc
Error
55
y
0
150
300
450
600
Time
1 4 7 10 13 16 19
y
0
125
250
375
500
Time
1 4 7 10 13 16 19
Additive Multiplicative
#DutchMLSchoolBigML, Inc
Model Types
56
None Additive Multiplicative
None A,N,N M,N,N A,N,A M,N,A A,N,M M,N,M
Additive A,A,N M,A,N A,A,A M,A,A A,A,M M,A,M
Additive + Damped A,Ad,N M,Ad,N A,Ad,A M,Ad,A A,Ad,M M,Ad,M
Multiplicative A,M,N M,M,N A,M,A M,M,A A,M,M M,M,M
Multiplicative + Damped A,Md,N M,Md,N A,Md,A M,Md,A A,Md,M M,Md,M
M,N,A
Multiplicative Error
No Trend
Additive Seasonality
#DutchMLSchoolBigML, Inc
Evaluating Model Fit
57
• AIC: Akaike Information Criterion; tries to trade off
accuracy and model complexity
• AICc: Like the AIC, but with a sample size
correction
• BIC: Bayesian Information Criterion; like the AIC
but penalizes large numbers of parameters more
harshly
• R-squared: Raw performance, the number of
model parameters isn’t considered
Co-organized by: Sponsor:
Business Partners:

More Related Content

What's hot

DutchMLSchool. ML Automation
DutchMLSchool. ML AutomationDutchMLSchool. ML Automation
DutchMLSchool. ML AutomationBigML, Inc
 
DutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive SectorDutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive SectorBigML, Inc
 
BSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, EvaluationsBSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, EvaluationsBigML, Inc
 
DutchMLSchool. Your first BigML Project
DutchMLSchool. Your first BigML ProjectDutchMLSchool. Your first BigML Project
DutchMLSchool. Your first BigML ProjectBigML, Inc
 
VSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic RegressionsVSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic RegressionsBigML, Inc
 
Data Workflows for Machine Learning - Seattle DAML
Data Workflows for Machine Learning - Seattle DAMLData Workflows for Machine Learning - Seattle DAML
Data Workflows for Machine Learning - Seattle DAMLPaco Nathan
 
Square's Machine Learning Infrastructure and Applications - Rong Yan
Square's Machine Learning Infrastructure and Applications - Rong YanSquare's Machine Learning Infrastructure and Applications - Rong Yan
Square's Machine Learning Infrastructure and Applications - Rong YanHakka Labs
 
DutchMLSchool. ML for Logistics
DutchMLSchool. ML for LogisticsDutchMLSchool. ML for Logistics
DutchMLSchool. ML for LogisticsBigML, Inc
 
BSSML17 - Anomaly Detection
BSSML17 - Anomaly DetectionBSSML17 - Anomaly Detection
BSSML17 - Anomaly DetectionBigML, Inc
 
Unified Approach to Interpret Machine Learning Model: SHAP + LIME
Unified Approach to Interpret Machine Learning Model: SHAP + LIMEUnified Approach to Interpret Machine Learning Model: SHAP + LIME
Unified Approach to Interpret Machine Learning Model: SHAP + LIMEDatabricks
 
General Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsGeneral Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsMark Peng
 
Interpretable Machine Learning
Interpretable Machine LearningInterpretable Machine Learning
Interpretable Machine LearningSri Ambati
 
BSSML17 - Clusters
BSSML17 - ClustersBSSML17 - Clusters
BSSML17 - ClustersBigML, Inc
 
Data Workflows for Machine Learning - SF Bay Area ML
Data Workflows for Machine Learning - SF Bay Area MLData Workflows for Machine Learning - SF Bay Area ML
Data Workflows for Machine Learning - SF Bay Area MLPaco Nathan
 
OSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine LearningOSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine LearningPaco Nathan
 
Machine learning the high interest credit card of technical debt [PWL]
Machine learning the high interest credit card of technical debt [PWL]Machine learning the high interest credit card of technical debt [PWL]
Machine learning the high interest credit card of technical debt [PWL]Jenia Gorokhovsky
 
Building Custom
Machine Learning Algorithms
with Apache SystemML
Building Custom
Machine Learning Algorithms
with Apache SystemMLBuilding Custom
Machine Learning Algorithms
with Apache SystemML
Building Custom
Machine Learning Algorithms
with Apache SystemMLsparktc
 
Building a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to ZBuilding a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to ZCharles Vestur
 
VSSML18 Introduction to Supervised Learning
VSSML18 Introduction to Supervised LearningVSSML18 Introduction to Supervised Learning
VSSML18 Introduction to Supervised LearningBigML, Inc
 
BigML Education - Logistic Regression
BigML Education - Logistic RegressionBigML Education - Logistic Regression
BigML Education - Logistic RegressionBigML, Inc
 

What's hot (20)

DutchMLSchool. ML Automation
DutchMLSchool. ML AutomationDutchMLSchool. ML Automation
DutchMLSchool. ML Automation
 
DutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive SectorDutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive Sector
 
BSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, EvaluationsBSSML17 - Introduction, Models, Evaluations
BSSML17 - Introduction, Models, Evaluations
 
DutchMLSchool. Your first BigML Project
DutchMLSchool. Your first BigML ProjectDutchMLSchool. Your first BigML Project
DutchMLSchool. Your first BigML Project
 
VSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic RegressionsVSSML17 L2. Ensembles and Logistic Regressions
VSSML17 L2. Ensembles and Logistic Regressions
 
Data Workflows for Machine Learning - Seattle DAML
Data Workflows for Machine Learning - Seattle DAMLData Workflows for Machine Learning - Seattle DAML
Data Workflows for Machine Learning - Seattle DAML
 
Square's Machine Learning Infrastructure and Applications - Rong Yan
Square's Machine Learning Infrastructure and Applications - Rong YanSquare's Machine Learning Infrastructure and Applications - Rong Yan
Square's Machine Learning Infrastructure and Applications - Rong Yan
 
DutchMLSchool. ML for Logistics
DutchMLSchool. ML for LogisticsDutchMLSchool. ML for Logistics
DutchMLSchool. ML for Logistics
 
BSSML17 - Anomaly Detection
BSSML17 - Anomaly DetectionBSSML17 - Anomaly Detection
BSSML17 - Anomaly Detection
 
Unified Approach to Interpret Machine Learning Model: SHAP + LIME
Unified Approach to Interpret Machine Learning Model: SHAP + LIMEUnified Approach to Interpret Machine Learning Model: SHAP + LIME
Unified Approach to Interpret Machine Learning Model: SHAP + LIME
 
General Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsGeneral Tips for participating Kaggle Competitions
General Tips for participating Kaggle Competitions
 
Interpretable Machine Learning
Interpretable Machine LearningInterpretable Machine Learning
Interpretable Machine Learning
 
BSSML17 - Clusters
BSSML17 - ClustersBSSML17 - Clusters
BSSML17 - Clusters
 
Data Workflows for Machine Learning - SF Bay Area ML
Data Workflows for Machine Learning - SF Bay Area MLData Workflows for Machine Learning - SF Bay Area ML
Data Workflows for Machine Learning - SF Bay Area ML
 
OSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine LearningOSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine Learning
 
Machine learning the high interest credit card of technical debt [PWL]
Machine learning the high interest credit card of technical debt [PWL]Machine learning the high interest credit card of technical debt [PWL]
Machine learning the high interest credit card of technical debt [PWL]
 
Building Custom
Machine Learning Algorithms
with Apache SystemML
Building Custom
Machine Learning Algorithms
with Apache SystemMLBuilding Custom
Machine Learning Algorithms
with Apache SystemML
Building Custom
Machine Learning Algorithms
with Apache SystemML
 
Building a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to ZBuilding a performing Machine Learning model from A to Z
Building a performing Machine Learning model from A to Z
 
VSSML18 Introduction to Supervised Learning
VSSML18 Introduction to Supervised LearningVSSML18 Introduction to Supervised Learning
VSSML18 Introduction to Supervised Learning
 
BigML Education - Logistic Regression
BigML Education - Logistic RegressionBigML Education - Logistic Regression
BigML Education - Logistic Regression
 

Similar to DutchMLSchool BigML 1st Edition Logistic Regression Deepnets Time Series

MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series BigML, Inc
 
BSSML17 - Logistic Regressions
BSSML17 - Logistic RegressionsBSSML17 - Logistic Regressions
BSSML17 - Logistic RegressionsBigML, Inc
 
Machine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data DemystifiedMachine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data DemystifiedOmid Vahdaty
 
BSSML17 - Deepnets
BSSML17 - DeepnetsBSSML17 - Deepnets
BSSML17 - DeepnetsBigML, Inc
 
MLSD18. Ensembles, Logistic Regression, Deepnets
MLSD18. Ensembles, Logistic Regression, DeepnetsMLSD18. Ensembles, Logistic Regression, Deepnets
MLSD18. Ensembles, Logistic Regression, DeepnetsBigML, Inc
 
Hacking Predictive Modeling - RoadSec 2018
Hacking Predictive Modeling - RoadSec 2018Hacking Predictive Modeling - RoadSec 2018
Hacking Predictive Modeling - RoadSec 2018HJ van Veen
 
VSSML18. OptiML and Fusions
VSSML18. OptiML and FusionsVSSML18. OptiML and Fusions
VSSML18. OptiML and FusionsBigML, Inc
 
VSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsVSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsBigML, Inc
 
VSSML18. Deepnets and Time Series
VSSML18. Deepnets and Time SeriesVSSML18. Deepnets and Time Series
VSSML18. Deepnets and Time SeriesBigML, Inc
 
Demystifying Machine Learning
Demystifying Machine LearningDemystifying Machine Learning
Demystifying Machine LearningAyodele Odubela
 
BSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 SessionsBSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 SessionsBigML, Inc
 
Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...
Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...
Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...Alok Singh
 
DutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End MLDutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End MLBigML, Inc
 
VSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsVSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsBigML, Inc
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1BigML, Inc
 
VSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet AllocationVSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet AllocationBigML, Inc
 
Defcon 21-pinto-defending-networks-machine-learning by pseudor00t
Defcon 21-pinto-defending-networks-machine-learning by pseudor00tDefcon 21-pinto-defending-networks-machine-learning by pseudor00t
Defcon 21-pinto-defending-networks-machine-learning by pseudor00tpseudor00t overflow
 
VSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly DetectionVSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly DetectionBigML, Inc
 
DutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at ScaleDutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at ScaleBigML, Inc
 

Similar to DutchMLSchool BigML 1st Edition Logistic Regression Deepnets Time Series (20)

MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series
 
BSSML17 - Logistic Regressions
BSSML17 - Logistic RegressionsBSSML17 - Logistic Regressions
BSSML17 - Logistic Regressions
 
Machine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data DemystifiedMachine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data Demystified
 
BSSML17 - Deepnets
BSSML17 - DeepnetsBSSML17 - Deepnets
BSSML17 - Deepnets
 
MLSD18. Ensembles, Logistic Regression, Deepnets
MLSD18. Ensembles, Logistic Regression, DeepnetsMLSD18. Ensembles, Logistic Regression, Deepnets
MLSD18. Ensembles, Logistic Regression, Deepnets
 
Hacking Predictive Modeling - RoadSec 2018
Hacking Predictive Modeling - RoadSec 2018Hacking Predictive Modeling - RoadSec 2018
Hacking Predictive Modeling - RoadSec 2018
 
VSSML18. OptiML and Fusions
VSSML18. OptiML and FusionsVSSML18. OptiML and Fusions
VSSML18. OptiML and Fusions
 
VSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsVSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and Deepnets
 
VSSML18. Deepnets and Time Series
VSSML18. Deepnets and Time SeriesVSSML18. Deepnets and Time Series
VSSML18. Deepnets and Time Series
 
Demystifying Machine Learning
Demystifying Machine LearningDemystifying Machine Learning
Demystifying Machine Learning
 
BSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 SessionsBSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 Sessions
 
Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...
Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...
Big Data Spain 2018: How to build Weighted XGBoost ML model for Imbalance dat...
 
DutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End MLDutchMLSchool 2022 - End-to-End ML
DutchMLSchool 2022 - End-to-End ML
 
VSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsVSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 Sessions
 
Ml - A shallow dive
Ml  - A shallow diveMl  - A shallow dive
Ml - A shallow dive
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1
 
VSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet AllocationVSSML18. Clustering and Latent Dirichlet Allocation
VSSML18. Clustering and Latent Dirichlet Allocation
 
Defcon 21-pinto-defending-networks-machine-learning by pseudor00t
Defcon 21-pinto-defending-networks-machine-learning by pseudor00tDefcon 21-pinto-defending-networks-machine-learning by pseudor00t
Defcon 21-pinto-defending-networks-machine-learning by pseudor00t
 
VSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly DetectionVSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly Detection
 
DutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at ScaleDutchMLSchool 2022 - Anomaly Detection at Scale
DutchMLSchool 2022 - Anomaly Detection at Scale
 

More from BigML, Inc

Digital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in ManufacturingDigital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in ManufacturingBigML, Inc
 
DutchMLSchool 2022 - Automation
DutchMLSchool 2022 - AutomationDutchMLSchool 2022 - Automation
DutchMLSchool 2022 - AutomationBigML, Inc
 
DutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML ComplianceDutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML ComplianceBigML, Inc
 
DutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective AnomaliesDutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective AnomaliesBigML, Inc
 
DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector BigML, Inc
 
DutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly DetectionDutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly DetectionBigML, Inc
 
DutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in MLDutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in MLBigML, Inc
 
DutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven CompanyDutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven CompanyBigML, Inc
 
DutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal SectorDutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal SectorBigML, Inc
 
DutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe StadiumsDutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe StadiumsBigML, Inc
 
DutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing PlantsDutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing PlantsBigML, Inc
 
DutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AIDutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AIBigML, Inc
 
Democratizing Object Detection
Democratizing Object DetectionDemocratizing Object Detection
Democratizing Object DetectionBigML, Inc
 
BigML Release: Image Processing
BigML Release: Image ProcessingBigML Release: Image Processing
BigML Release: Image ProcessingBigML, Inc
 
Machine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your FutureMachine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your FutureBigML, Inc
 
Machine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail SectorMachine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail SectorBigML, Inc
 
ML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a LawyerbotML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a LawyerbotBigML, Inc
 
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...BigML, Inc
 
ML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and ComplianceML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and ComplianceBigML, Inc
 
Intelligent Mobility: Machine Learning in the Mobility Industry
Intelligent Mobility: Machine Learning in the Mobility IndustryIntelligent Mobility: Machine Learning in the Mobility Industry
Intelligent Mobility: Machine Learning in the Mobility IndustryBigML, Inc
 

More from BigML, Inc (20)

Digital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in ManufacturingDigital Transformation and Process Optimization in Manufacturing
Digital Transformation and Process Optimization in Manufacturing
 
DutchMLSchool 2022 - Automation
DutchMLSchool 2022 - AutomationDutchMLSchool 2022 - Automation
DutchMLSchool 2022 - Automation
 
DutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML ComplianceDutchMLSchool 2022 - ML for AML Compliance
DutchMLSchool 2022 - ML for AML Compliance
 
DutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective AnomaliesDutchMLSchool 2022 - Multi Perspective Anomalies
DutchMLSchool 2022 - Multi Perspective Anomalies
 
DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector DutchMLSchool 2022 - My First Anomaly Detector
DutchMLSchool 2022 - My First Anomaly Detector
 
DutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly DetectionDutchMLSchool 2022 - Anomaly Detection
DutchMLSchool 2022 - Anomaly Detection
 
DutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in MLDutchMLSchool 2022 - History and Developments in ML
DutchMLSchool 2022 - History and Developments in ML
 
DutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven CompanyDutchMLSchool 2022 - A Data-Driven Company
DutchMLSchool 2022 - A Data-Driven Company
 
DutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal SectorDutchMLSchool 2022 - ML in the Legal Sector
DutchMLSchool 2022 - ML in the Legal Sector
 
DutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe StadiumsDutchMLSchool 2022 - Smart Safe Stadiums
DutchMLSchool 2022 - Smart Safe Stadiums
 
DutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing PlantsDutchMLSchool 2022 - Process Optimization in Manufacturing Plants
DutchMLSchool 2022 - Process Optimization in Manufacturing Plants
 
DutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AIDutchMLSchool 2022 - Citizen Development in AI
DutchMLSchool 2022 - Citizen Development in AI
 
Democratizing Object Detection
Democratizing Object DetectionDemocratizing Object Detection
Democratizing Object Detection
 
BigML Release: Image Processing
BigML Release: Image ProcessingBigML Release: Image Processing
BigML Release: Image Processing
 
Machine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your FutureMachine Learning in Retail: Know Your Customers' Customer. See Your Future
Machine Learning in Retail: Know Your Customers' Customer. See Your Future
 
Machine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail SectorMachine Learning in Retail: ML in the Retail Sector
Machine Learning in Retail: ML in the Retail Sector
 
ML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a LawyerbotML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
ML in GRC: Machine Learning in Legal Automation, How to Trust a Lawyerbot
 
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
ML in GRC: Supporting Human Decision Making for Regulatory Adherence with Mac...
 
ML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and ComplianceML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
ML in GRC: Cybersecurity versus Governance, Risk Management, and Compliance
 
Intelligent Mobility: Machine Learning in the Mobility Industry
Intelligent Mobility: Machine Learning in the Mobility IndustryIntelligent Mobility: Machine Learning in the Mobility Industry
Intelligent Mobility: Machine Learning in the Mobility Industry
 

Recently uploaded

Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelBoston Institute of Analytics
 
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...Boston Institute of Analytics
 
Presentation of project of business person who are success
Presentation of project of business person who are successPresentation of project of business person who are success
Presentation of project of business person who are successPratikSingh115843
 
Statistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfStatistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfnikeshsingh56
 
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdfEnglish-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdfblazblazml
 
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...Jack Cole
 
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...Dr Arash Najmaei ( Phd., MBA, BSc)
 
Non Text Magic Studio Magic Design for Presentations L&P.pdf
Non Text Magic Studio Magic Design for Presentations L&P.pdfNon Text Magic Studio Magic Design for Presentations L&P.pdf
Non Text Magic Studio Magic Design for Presentations L&P.pdfPratikPatil591646
 
Digital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfDigital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfNicoChristianSunaryo
 
IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaManalVerma4
 
Bank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis ProjectBank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis ProjectBoston Institute of Analytics
 
Role of Consumer Insights in business transformation
Role of Consumer Insights in business transformationRole of Consumer Insights in business transformation
Role of Consumer Insights in business transformationAnnie Melnic
 
DATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etcDATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etclalithasri22
 
Digital Marketing Plan, how digital marketing works
Digital Marketing Plan, how digital marketing worksDigital Marketing Plan, how digital marketing works
Digital Marketing Plan, how digital marketing worksdeepakthakur548787
 

Recently uploaded (17)

Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
 
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
Data Analysis Project Presentation: Unveiling Your Ideal Customer, Bank Custo...
 
Presentation of project of business person who are success
Presentation of project of business person who are successPresentation of project of business person who are success
Presentation of project of business person who are success
 
Statistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfStatistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdf
 
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdfEnglish-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
English-8-Q4-W3-Synthesizing-Essential-Information-From-Various-Sources-1.pdf
 
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
 
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
 
Non Text Magic Studio Magic Design for Presentations L&P.pdf
Non Text Magic Studio Magic Design for Presentations L&P.pdfNon Text Magic Studio Magic Design for Presentations L&P.pdf
Non Text Magic Studio Magic Design for Presentations L&P.pdf
 
Digital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfDigital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdf
 
IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in India
 
Bank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis ProjectBank Loan Approval Analysis: A Comprehensive Data Analysis Project
Bank Loan Approval Analysis: A Comprehensive Data Analysis Project
 
Role of Consumer Insights in business transformation
Role of Consumer Insights in business transformationRole of Consumer Insights in business transformation
Role of Consumer Insights in business transformation
 
Insurance Churn Prediction Data Analysis Project
Insurance Churn Prediction Data Analysis ProjectInsurance Churn Prediction Data Analysis Project
Insurance Churn Prediction Data Analysis Project
 
2023 Survey Shows Dip in High School E-Cigarette Use
2023 Survey Shows Dip in High School E-Cigarette Use2023 Survey Shows Dip in High School E-Cigarette Use
2023 Survey Shows Dip in High School E-Cigarette Use
 
DATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etcDATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etc
 
Digital Marketing Plan, how digital marketing works
Digital Marketing Plan, how digital marketing worksDigital Marketing Plan, how digital marketing works
Digital Marketing Plan, how digital marketing works
 
Data Analysis Project: Stroke Prediction
Data Analysis Project: Stroke PredictionData Analysis Project: Stroke Prediction
Data Analysis Project: Stroke Prediction
 

DutchMLSchool BigML 1st Edition Logistic Regression Deepnets Time Series

  • 1. 1st edition | July 8-11, 2019
  • 2. #DutchMLSchoolBigML, Inc 2 Logistic Regression, Deepnets and Univariate Time Series Going Further With Supervised Learning Charles Parker VP Machine Learning Algorithms
  • 4. #DutchMLSchoolBigML, Inc Supervised learning review 4 animal state … proximity action tiger hungry … close run elephant happy … far take picture … … … … … Classification animal state … proximity min_kmh tiger hungry … close 70 hippo angry … far 10 … …. … … … Regression label
  • 5. #DutchMLSchoolBigML, Inc Logistic Regression 5 Classification implies a discrete objective. How can this be a regression? Logistic Regression is a classification algorithm Potential Confusion:
  • 9. #DutchMLSchoolBigML, Inc Regression 9 • Linear Regression: 𝛽₀+𝛽1·(INPUT) ≈ OBJECTIVE • Quadratic Regression: 𝛽₀+𝛽1·(INPUT)+𝛽2·(INPUT)2 ≈ OBJECTIVE • Decision Tree Regression: DT(INPUT) ≈ OBJECTIVE NEW PROBLEM • What if we want to do a classification problem: T/F or 1/0 • What function can we fit to discrete data? Regression is the process of "fitting" a function to the data Key Take-Away
  • 12. #DutchMLSchoolBigML, Inc Logistic Function 12 𝑥➝-∞ 𝑓(𝑥)➝0 • Looks promising, but still not "discrete" • What about the "green" in the middle? • Let’s change the problem… 𝑥➝∞ 𝑓(𝑥)➝1 Goal 1 1 + 𝒆− 𝑥𝑓(𝑥) = Logistic Function
  • 14. #DutchMLSchoolBigML, Inc Logistic Regression 14 • Assumes that output is linearly related to "predictors" • Question: how do we "fit" the logistic function to real data? LR is a classification algorithm … that uses a regression …
 to model the probability of the discrete objective Clarification: Caveats:
  • 15. #DutchMLSchoolBigML, Inc Logistic Regression 15 For "𝑖" dimensions, 𝑿﹦[ 𝑥1, 𝑥2,⋯, 𝑥𝑖 ], we solve 𝑃(𝑿)= 1 1+𝑒−𝑓(𝑿) 𝑓(𝑿)=𝛽0+𝞫·𝑿=𝛽0+𝛽1 𝑥1+⋯+𝛽𝑖 𝑥𝑖 where:
  • 16. #DutchMLSchoolBigML, Inc Interpreting Coefficients 16 • LR computes 𝛽0 and coefficients 𝛽𝑗 for each feature 𝑥𝑗 • negative 𝛽𝑗 → negatively correlated: • positive 𝛽𝑗 → positively correlated: • "larger" 𝛽𝑗 → more impact: • "smaller" → less impact: • 𝛽𝑗 "size" should not be confused with field importance 𝑥𝑗↑ then 𝑃(𝑿)↓ 𝑥𝑗↑ then 𝑃(𝑿)↑ 𝑥𝑗≫ then 𝑃(𝑿)﹥ 𝑥𝑗﹥then 𝑃(𝑿)≫
  • 17. #DutchMLSchoolBigML, Inc LR versus DT 17 • Expects a "smooth" linear relationship with predictors. • LR is concerned with probability of a discrete outcome. • Lots of parameters to get wrong: 
 regularization, scaling, codings • Slightly less prone to over-fitting
 • Because fits a shape, might work better when less data available.
 • Adapts well to ragged non-linear relationships • No concern: classification, regression, multi-class all fine. • Virtually parameter free
 • Slightly more prone to over-fitting
 • Prefers surfaces parallel to parameter axes, but given enough data will discover any shape. Logistic Regression Decision Tree
  • 18. #DutchMLSchoolBigML, Inc Summary 18 • Logistic Regression is a classification algorithm that models the probabilities of each class • Expects a linear relationship between the features and the objective, and how to fix it • LR outputs a set of coefficients and how to interpret • Scale relates to impact • Sign relates to direction of impact
  • 20. #DutchMLSchoolBigML, Inc 20 Power To The People! • Why another supervised learning algorithm? • Deep neural networks have been shown to be state of the art in several niche applications • Vision • Speech recognition • NLP • While powerful, these networks have historically been difficult for novices to train
  • 21. #DutchMLSchoolBigML, Inc Goals of BigML Deepnets 21 • What BigML Deepnets are not (yet) • Convolutional networks (Coming Soon!) • Recurrent networks (e.g., LSTM Networks) • These solve a particular type of sub-problem, and are carefully engineered by experts to do so • Can we bring some of the power of Deep Neural Networks to your problem, even if you have no deep learning expertise? • Let’s try to separate deep neural network myths from realities
  • 22. #DutchMLSchoolBigML, Inc Myth #1 22 Deep neural networks are the next step in evolution, destined to perfect humanity or destroy it utterly.
  • 23. #DutchMLSchoolBigML, Inc Some Weaknesses 23 • Trees • Pro: Massive representational power that expands as the data gets larger; efficient search through this space • Con: Difficult to represent smooth functions and functions of many variables • Ensembles mitigate some of these difficulties • Logistic Regression • Pro: Some smooth, multivariate, functions are not a problem; fast optimization • Con: Parametric - If decision boundary is nonlinear, tough luck • Can these be mitigated?
  • 25. #DutchMLSchoolBigML, Inc Logistic Level Up 25 wi Class “a”, logistic(w, b)
  • 26. #DutchMLSchoolBigML, Inc Logistic Level Up 26 Outputs Inputs Hidden layer
  • 27. #DutchMLSchoolBigML, Inc Logistic Level Up 27 Class “a”, logistic(w, b) Hidden node 1, logistic(w, b)
  • 28. #DutchMLSchoolBigML, Inc Logistic Level Up 28 Class “a”, logistic(w, b) Hidden node 1, logistic(w, b) n hidden nodes?
  • 29. #DutchMLSchoolBigML, Inc Logistic Level Up 29 Class “a”, logistic(w, b) Hidden node 1, logistic(w, b) n hidden layers?
  • 30. #DutchMLSchoolBigML, Inc Logistic Level Up 30 Class “a”, logistic(w, b) Hidden node 1, logistic(w, b)
  • 31. #DutchMLSchoolBigML, Inc Myth #2 31 Deep neural networks are great for the established marquee applications, but less interesting for general use.
  • 32. #DutchMLSchoolBigML, Inc 32 Parameter Paralysis Parameter Name Possible Values Descent Algorithm Adam, RMSProp, Adagrad, Momentum, FTRL Number of hidden layers 0 - 32 Activation Function (per layer) relu, tanh, sigmoid, softplus, etc. Number of nodes (per layer) 1 - 8192 Learning Rate 0 - 1 Dropout Rate 0 - 1 Batch size 1 - 1024 Batch Normalization True, False Learn Residuals True, False Missing Numerics True, False Objective weights Weight per class . . . and that’s ignoring the parameters that are specific to the descent algorithm.
  • 33. #DutchMLSchoolBigML, Inc What Can We Do? 33 • Clearly there are too many parameters to fuss with • Setting them takes significant expert knowledge • Solution: Metalearning (a good initial guess) • Solution: Network search (try a bunch)
  • 34. #DutchMLSchoolBigML, Inc Bayesian Parameter Optimization 34 Model and EvaluateStructure 1 Structure 2 Structure 3 Structure 4 Structure 5 Structure 6
  • 35. #DutchMLSchoolBigML, Inc Bayesian Parameter Optimization 35 Model and EvaluateStructure 1 Structure 2 Structure 3 Structure 4 Structure 5 Structure 6 0.75
  • 36. #DutchMLSchoolBigML, Inc Bayesian Parameter Optimization 36 Model and EvaluateStructure 1 Structure 2 Structure 3 Structure 4 Structure 5 Structure 6 0.75 0.48
  • 37. #DutchMLSchoolBigML, Inc Bayesian Parameter Optimization 37 Model and EvaluateStructure 1 Structure 2 Structure 3 Structure 4 Structure 5 Structure 6 0.75 0.48 0.91
  • 38. #DutchMLSchoolBigML, Inc Bayesian Parameter Optimization 38 Structure 1 Structure 2 Structure 3 Structure 4 Structure 5 Structure 6 0.75 0.48 0.91 Machine Learning! Structure → performance Model and Evaluate
  • 39. #DutchMLSchoolBigML, Inc Benchmarking 39 • The ML world is filled with crummy benchmarks • Not enough datasets • No cross-validation • Only one metric • Solution: Roll our own • 50+ datasets, 5 replications of 10-fold CV • 10 different metrics • 30+ competing algorithms (R, scikit-learn, weka, xgboost) http://www.clparker.org/ml_benchmark/
  • 40. #DutchMLSchoolBigML, Inc Myth #3 40 Deep neural networks are not interpretable
  • 41. #DutchMLSchoolBigML, Inc Explainability 41 • Recent work in model interpretation applies broadly to any model • Feature importance (overall) • Prediction explanation (feature importance for a given prediction) • Most (good) techniques rely on data perturbation and multiple predictions
  • 42. #DutchMLSchoolBigML, Inc Myth #4 42 Deep neural networks have such spectacular performance that all other supervised learning techniques are now irrelevant
  • 43. #DutchMLSchoolBigML, Inc Caveat Emptor 43 • Things that make deep learning less useful: • Small data (where that could still be thousands of instances) • Problems where you could benefit by iterating quickly (better features always beats better models) • Problems that are easy, or for which top-of-the-line performance isn’t absolutely critical • Remember deep learning is just another sort of supervised learning algorithm “…deep learning has existed in the neural network community for over 20 years. Recent advances are driven by some relatively minor improvements in algorithms and models and by the availability of large data sets and much more powerful collections of computers.” — Stuart Russell
  • 45. #DutchMLSchoolBigML, Inc Beyond IID Data 45 • Traditional machine learning data is assumed to be IID • Independent (points have no information about each other’s class) and • Identically distributed (come from the same distribution) • But what if you want to predict just the next value in a sequence? Is all lost? • Applications • Predicting battery life from change-discharge cycles • Predicting sales for the next day/week/month
  • 46. #DutchMLSchoolBigML, Inc Machine Learning Data 46 Color Mass Type red 11 pen green 45 apple red 53 apple yellow 0 pen blue 2 pen green 422 pineapple yellow 555 pineapple blue 7 pen Discovering patterns within data: • Color = “red” Mass < 100 • Type = “pineapple” Color ≠ “blue” • Color = “blue” PPAP = “pen”
  • 47. #DutchMLSchoolBigML, Inc Machine Learning Data 47 Color Mass Type red 53 apple blue 2 pen red 11 pen blue 7 pen green 45 apple yellow 555 pineapple green 422 pineapple yellow 0 pen Patterns valid despite reshuffling • Color = “red” Mass < 100 • Type = “pineapple” Color ≠ “blue” • Color = “blue” PPAP = “pen”
  • 48. #DutchMLSchoolBigML, Inc Time Series Data 48 Year Pineapple Harvest 1986 50,74 1987 22,03 1988 50,69 1989 40,38 1990 29,80 1991 9,90 1992 73,93 1993 22,95 1994 139,09 1995 115,17 1996 193,88 1997 175,31 1998 223,41 1999 295,03 2000 450,53 Pineapple Harvest Tons 0 125 250 375 500 Year 1986 1988 1990 1992 1994 1996 1998 2000 Trend
  • 49. #DutchMLSchoolBigML, Inc Time Series Data 49 Year Pineapple Harvest 1986 139,09 1987 175,31 1988 9,91 1989 22,95 1990 450,53 1991 73,93 1992 40,38 1993 22,03 1994 295,03 1995 50,74 1996 29,8 1997 223,41 1998 115,17 1999 193,88 2000 50,69 Pineapple Harvest Tons 0 125 250 375 500 Year 1986 1988 1990 1992 1994 1996 1998 2000 Patterns invalid after shuffling
  • 50. #DutchMLSchoolBigML, Inc Prediction 50 Use the data from the past to predict the future
  • 52. #DutchMLSchoolBigML, Inc Exponential Smoothing 52 Weight 0 0,05 0,1 0,15 0,2 Lag 1 3 5 7 9 11 13
  • 53. #DutchMLSchoolBigML, Inc Trend 53 y 0 12,5 25 37,5 50 Time Apr May Jun Jul y 0 50 100 150 200 Time Apr May Jun Jul Additive Multiplicative
  • 54. #DutchMLSchoolBigML, Inc Seasonality 54 y 0 30 60 90 120 Time 1 4 7 10 13 16 19 y 0 35 70 105 140 Time 1 4 7 10 13 16 19 Additive Multiplicative
  • 55. #DutchMLSchoolBigML, Inc Error 55 y 0 150 300 450 600 Time 1 4 7 10 13 16 19 y 0 125 250 375 500 Time 1 4 7 10 13 16 19 Additive Multiplicative
  • 56. #DutchMLSchoolBigML, Inc Model Types 56 None Additive Multiplicative None A,N,N M,N,N A,N,A M,N,A A,N,M M,N,M Additive A,A,N M,A,N A,A,A M,A,A A,A,M M,A,M Additive + Damped A,Ad,N M,Ad,N A,Ad,A M,Ad,A A,Ad,M M,Ad,M Multiplicative A,M,N M,M,N A,M,A M,M,A A,M,M M,M,M Multiplicative + Damped A,Md,N M,Md,N A,Md,A M,Md,A A,Md,M M,Md,M M,N,A Multiplicative Error No Trend Additive Seasonality
  • 57. #DutchMLSchoolBigML, Inc Evaluating Model Fit 57 • AIC: Akaike Information Criterion; tries to trade off accuracy and model complexity • AICc: Like the AIC, but with a sample size correction • BIC: Bayesian Information Criterion; like the AIC but penalizes large numbers of parameters more harshly • R-squared: Raw performance, the number of model parameters isn’t considered