SlideShare una empresa de Scribd logo
1 de 59
Learning, Logic,  and Probability:  A Unified View Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Stanley Kok, Matt Richardson and Parag Singla)
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The Way Things Were ,[object Object],[object Object],[object Object],[object Object]
The Way Things Are ,[object Object],[object Object],[object Object],[object Object],[object Object]
The Way Things Will Be ,[object Object],[object Object],[object Object],[object Object],[object Object]
State of the Art ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning + Logic + Probability ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Questions ,[object Object],[object Object],[object Object]
Markov Logic Networks ,[object Object],[object Object],[object Object],[object Object],[object Object]
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Markov Networks ,[object Object],B D C A ,[object Object]
Markov Networks ,[object Object],B D C A ,[object Object],Weight of Feature  i Feature  i
First-Order Logic ,[object Object],[object Object],[object Object]
Example of First-Order KB Friends either both smoke or both don’t smoke Smoking causes cancer
Example of First-Order KB
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Markov Logic Networks ,[object Object],[object Object],[object Object]
Definition ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example of an MLN Cancer(A) Smokes(A) Smokes(B) Cancer(B) Suppose we have two constants:  Anna  (A) and  Bob  (B)
Example of an MLN Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants:  Anna  (A) and  Bob  (B)
Example of an MLN Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants:  Anna  (A) and  Bob  (B)
Example of an MLN Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants:  Anna  (A) and  Bob  (B)
More on MLNs ,[object Object],[object Object],[object Object],[object Object],[object Object]
MLNs Subsume FOL ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Inference ,[object Object],[object Object],[object Object],[object Object]
Grounding the Template ,[object Object],[object Object],[object Object],[object Object],[object Object]
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
Probabilistic Inference ,[object Object],[object Object],[object Object],[object Object]
Markov Chain Monte Carlo ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning Weights ,[object Object],[object Object],[object Object],Feature count according to data Feature count according to model
Pseudo-Likelihood  [Besag, 1975] ,[object Object],[object Object],[object Object],[object Object]
MLN Weight Learning ,[object Object],[object Object],[object Object],[object Object],where  nsat i (x=v)  is the number of satisfied groundings of clause i  in the training data  when x takes value v
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Domain ,[object Object],[object Object],[object Object],[object Object],[object Object]
Systems Compared ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Sample Clauses in KB ,[object Object],[object Object],[object Object],[object Object],[object Object]
Methodology ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Results 0.04 -0.166 0.02 -0.095 BN 0.19 -0.059 0.17 -0.218 NB 0.04 -0.371 0.03 -0.255 CL 0.08 -0.067 0.16 -0.124 KB 0.03 -0.852 0.02 -0.341 MLN(CL) 0.20 -0.043 0.25 -0.047 MLN(KB) 0.25 -0.040 0.27 -0.044 MLN(KB+CL) Area CLL Area CLL Partial Info All Info System
Results: All Info
Results: Partial Info
Efficiency ,[object Object],[object Object],[object Object],[object Object],[object Object]
Overview ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Related Work ,[object Object],[object Object],[object Object],[object Object],[object Object]
Special Cases of Markov Logic ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Future Work: Inference ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Future Work: Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Future Work: Applications ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusion ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Exploring Session Context using Distributed Representations of Queries and Re...
Exploring Session Context using Distributed Representations of Queries and Re...Exploring Session Context using Distributed Representations of Queries and Re...
Exploring Session Context using Distributed Representations of Queries and Re...Bhaskar Mitra
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalBhaskar Mitra
 
Mesoscale Structures in Networks
Mesoscale Structures in NetworksMesoscale Structures in Networks
Mesoscale Structures in NetworksMason Porter
 
Text Mining for Lexicography
Text Mining for LexicographyText Mining for Lexicography
Text Mining for LexicographyLeiden University
 
Deep belief networks for spam filtering
Deep belief networks for spam filteringDeep belief networks for spam filtering
Deep belief networks for spam filteringSOYEON KIM
 
5 Lessons Learned from Designing Neural Models for Information Retrieval
5 Lessons Learned from Designing Neural Models for Information Retrieval5 Lessons Learned from Designing Neural Models for Information Retrieval
5 Lessons Learned from Designing Neural Models for Information RetrievalBhaskar Mitra
 
[Paper Reading] Unsupervised Learning of Sentence Embeddings using Compositi...
[Paper Reading]  Unsupervised Learning of Sentence Embeddings using Compositi...[Paper Reading]  Unsupervised Learning of Sentence Embeddings using Compositi...
[Paper Reading] Unsupervised Learning of Sentence Embeddings using Compositi...Hiroki Shimanaka
 
Dual Embedding Space Model (DESM)
Dual Embedding Space Model (DESM)Dual Embedding Space Model (DESM)
Dual Embedding Space Model (DESM)Bhaskar Mitra
 
A Simple Introduction to Word Embeddings
A Simple Introduction to Word EmbeddingsA Simple Introduction to Word Embeddings
A Simple Introduction to Word EmbeddingsBhaskar Mitra
 
Neural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progressNeural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progressBhaskar Mitra
 
NBDT : Neural-backed Decision Tree 2021 ICLR
 NBDT : Neural-backed Decision Tree 2021 ICLR NBDT : Neural-backed Decision Tree 2021 ICLR
NBDT : Neural-backed Decision Tree 2021 ICLRtaeseon ryu
 
Deep learning lecture - part 1 (basics, CNN)
Deep learning lecture - part 1 (basics, CNN)Deep learning lecture - part 1 (basics, CNN)
Deep learning lecture - part 1 (basics, CNN)SungminYou
 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringPier Luca Lanzi
 
Introduction to Convolutional Neural Networks
Introduction to Convolutional Neural NetworksIntroduction to Convolutional Neural Networks
Introduction to Convolutional Neural NetworksHannes Hapke
 

La actualidad más candente (19)

Exploring Session Context using Distributed Representations of Queries and Re...
Exploring Session Context using Distributed Representations of Queries and Re...Exploring Session Context using Distributed Representations of Queries and Re...
Exploring Session Context using Distributed Representations of Queries and Re...
 
What is word2vec?
What is word2vec?What is word2vec?
What is word2vec?
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information Retrieval
 
Mesoscale Structures in Networks
Mesoscale Structures in NetworksMesoscale Structures in Networks
Mesoscale Structures in Networks
 
Text Mining for Lexicography
Text Mining for LexicographyText Mining for Lexicography
Text Mining for Lexicography
 
Deepwalk vs Node2vec
Deepwalk vs Node2vecDeepwalk vs Node2vec
Deepwalk vs Node2vec
 
Deep belief networks for spam filtering
Deep belief networks for spam filteringDeep belief networks for spam filtering
Deep belief networks for spam filtering
 
5 Lessons Learned from Designing Neural Models for Information Retrieval
5 Lessons Learned from Designing Neural Models for Information Retrieval5 Lessons Learned from Designing Neural Models for Information Retrieval
5 Lessons Learned from Designing Neural Models for Information Retrieval
 
[Paper Reading] Unsupervised Learning of Sentence Embeddings using Compositi...
[Paper Reading]  Unsupervised Learning of Sentence Embeddings using Compositi...[Paper Reading]  Unsupervised Learning of Sentence Embeddings using Compositi...
[Paper Reading] Unsupervised Learning of Sentence Embeddings using Compositi...
 
Dual Embedding Space Model (DESM)
Dual Embedding Space Model (DESM)Dual Embedding Space Model (DESM)
Dual Embedding Space Model (DESM)
 
Word2Vec
Word2VecWord2Vec
Word2Vec
 
A Simple Introduction to Word Embeddings
A Simple Introduction to Word EmbeddingsA Simple Introduction to Word Embeddings
A Simple Introduction to Word Embeddings
 
Neural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progressNeural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progress
 
Temporal networks - Alain Barrat
Temporal networks - Alain BarratTemporal networks - Alain Barrat
Temporal networks - Alain Barrat
 
NBDT : Neural-backed Decision Tree 2021 ICLR
 NBDT : Neural-backed Decision Tree 2021 ICLR NBDT : Neural-backed Decision Tree 2021 ICLR
NBDT : Neural-backed Decision Tree 2021 ICLR
 
Deep learning lecture - part 1 (basics, CNN)
Deep learning lecture - part 1 (basics, CNN)Deep learning lecture - part 1 (basics, CNN)
Deep learning lecture - part 1 (basics, CNN)
 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clustering
 
Introduction to Convolutional Neural Networks
Introduction to Convolutional Neural NetworksIntroduction to Convolutional Neural Networks
Introduction to Convolutional Neural Networks
 
[PDF]
[PDF][PDF]
[PDF]
 

Destacado

Erik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better MortgageErik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better MortgageMLconf
 
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017MLconf
 
Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017
Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017
Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017MLconf
 
Jeff Bradshaw, Founder, Adaptris
Jeff Bradshaw, Founder, AdaptrisJeff Bradshaw, Founder, Adaptris
Jeff Bradshaw, Founder, AdaptrisMLconf
 
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017MLconf
 
Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016
Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016
Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016MLconf
 
Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...
Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...
Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...MLconf
 
Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15
Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15
Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15MLconf
 
Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017
Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017 Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017
Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017 MLconf
 
Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017
Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017
Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017MLconf
 
Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017
Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017
Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017MLconf
 

Destacado (11)

Erik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better MortgageErik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better Mortgage
 
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
 
Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017
Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017
Yi Wang, Tech Lead of AI Platform, Baidu, at MLconf 2017
 
Jeff Bradshaw, Founder, Adaptris
Jeff Bradshaw, Founder, AdaptrisJeff Bradshaw, Founder, Adaptris
Jeff Bradshaw, Founder, Adaptris
 
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
 
Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016
Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016
Alex Smola, Director of Machine Learning, AWS/Amazon, at MLconf SF 2016
 
Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...
Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...
Jean-François Puget, Distinguished Engineer, Machine Learning and Optimizatio...
 
Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15
Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15
Pedro Domingos, Professor, University of Washington at MLconf ATL - 9/18/15
 
Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017
Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017 Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017
Byron Galbraith, Chief Data Scientist, Talla, at MLconf NYC 2017
 
Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017
Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017
Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017
 
Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017
Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017
Alexandra Johnson, Software Engineer, SigOpt, at MLconf NYC 2017
 

Similar a Learning, Logic, and Probability: a Unified View

Probabilistic models (part 1)
Probabilistic models (part 1)Probabilistic models (part 1)
Probabilistic models (part 1)KU Leuven
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsClaudia Wagner
 
Multi-Layer Perceptrons
Multi-Layer PerceptronsMulti-Layer Perceptrons
Multi-Layer PerceptronsESCOM
 
Simulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter DaelemansSimulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter Daelemansbutest
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)cdtpv
 
Similarity Features, and their Role in Concept Alignment Learning
Similarity Features, and their Role in Concept Alignment Learning Similarity Features, and their Role in Concept Alignment Learning
Similarity Features, and their Role in Concept Alignment Learning Shenghui Wang
 
Machine Learning
Machine LearningMachine Learning
Machine Learningbutest
 
Machine Learning: An Introduction Fu Chang
Machine Learning: An Introduction Fu ChangMachine Learning: An Introduction Fu Chang
Machine Learning: An Introduction Fu Changbutest
 
240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptx
240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptx240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptx
240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptxthanhdowork
 
Data Mining: Concepts and techniques classification _chapter 9 :advanced methods
Data Mining: Concepts and techniques classification _chapter 9 :advanced methodsData Mining: Concepts and techniques classification _chapter 9 :advanced methods
Data Mining: Concepts and techniques classification _chapter 9 :advanced methodsSalah Amean
 
Introduction to Machine Learning.
Introduction to Machine Learning.Introduction to Machine Learning.
Introduction to Machine Learning.butest
 
Heavy Tails Workshop NeurIPS2023.pdf
Heavy Tails Workshop NeurIPS2023.pdfHeavy Tails Workshop NeurIPS2023.pdf
Heavy Tails Workshop NeurIPS2023.pdfCharles Martin
 
Continuous Architecting of Stream-Based Systems
Continuous Architecting of Stream-Based SystemsContinuous Architecting of Stream-Based Systems
Continuous Architecting of Stream-Based SystemsCHOOSE
 
Spectral clustering with motifs and higher-order structures
Spectral clustering with motifs and higher-order structuresSpectral clustering with motifs and higher-order structures
Spectral clustering with motifs and higher-order structuresDavid Gleich
 
Deep learning ensembles loss landscape
Deep learning ensembles loss landscapeDeep learning ensembles loss landscape
Deep learning ensembles loss landscapeDevansh16
 
08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)dnac
 
An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...
An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...
An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...Pooyan Jamshidi
 
Chapter 9. Classification Advanced Methods.ppt
Chapter 9. Classification Advanced Methods.pptChapter 9. Classification Advanced Methods.ppt
Chapter 9. Classification Advanced Methods.pptSubrata Kumer Paul
 

Similar a Learning, Logic, and Probability: a Unified View (20)

Probabilistic models (part 1)
Probabilistic models (part 1)Probabilistic models (part 1)
Probabilistic models (part 1)
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic Models
 
Multi-Layer Perceptrons
Multi-Layer PerceptronsMulti-Layer Perceptrons
Multi-Layer Perceptrons
 
Simulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter DaelemansSimulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter Daelemans
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)
 
Similarity Features, and their Role in Concept Alignment Learning
Similarity Features, and their Role in Concept Alignment Learning Similarity Features, and their Role in Concept Alignment Learning
Similarity Features, and their Role in Concept Alignment Learning
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
Machine Learning: An Introduction Fu Chang
Machine Learning: An Introduction Fu ChangMachine Learning: An Introduction Fu Chang
Machine Learning: An Introduction Fu Chang
 
Fusing semantic data
Fusing semantic dataFusing semantic data
Fusing semantic data
 
240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptx
240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptx240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptx
240401_JW_labseminar[LINE: Large-scale Information Network Embeddin].pptx
 
Data Mining: Concepts and techniques classification _chapter 9 :advanced methods
Data Mining: Concepts and techniques classification _chapter 9 :advanced methodsData Mining: Concepts and techniques classification _chapter 9 :advanced methods
Data Mining: Concepts and techniques classification _chapter 9 :advanced methods
 
Introduction to Machine Learning.
Introduction to Machine Learning.Introduction to Machine Learning.
Introduction to Machine Learning.
 
Heavy Tails Workshop NeurIPS2023.pdf
Heavy Tails Workshop NeurIPS2023.pdfHeavy Tails Workshop NeurIPS2023.pdf
Heavy Tails Workshop NeurIPS2023.pdf
 
Continuous Architecting of Stream-Based Systems
Continuous Architecting of Stream-Based SystemsContinuous Architecting of Stream-Based Systems
Continuous Architecting of Stream-Based Systems
 
Spectral clustering with motifs and higher-order structures
Spectral clustering with motifs and higher-order structuresSpectral clustering with motifs and higher-order structures
Spectral clustering with motifs and higher-order structures
 
Deep learning ensembles loss landscape
Deep learning ensembles loss landscapeDeep learning ensembles loss landscape
Deep learning ensembles loss landscape
 
08 Exponential Random Graph Models (2016)
08 Exponential Random Graph Models (2016)08 Exponential Random Graph Models (2016)
08 Exponential Random Graph Models (2016)
 
08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)08 Exponential Random Graph Models (ERGM)
08 Exponential Random Graph Models (ERGM)
 
An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...
An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...
An Uncertainty-Aware Approach to Optimal Configuration of Stream Processing S...
 
Chapter 9. Classification Advanced Methods.ppt
Chapter 9. Classification Advanced Methods.pptChapter 9. Classification Advanced Methods.ppt
Chapter 9. Classification Advanced Methods.ppt
 

Más de butest

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEbutest
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jacksonbutest
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer IIbutest
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazzbutest
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.docbutest
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1butest
 
Facebook
Facebook Facebook
Facebook butest
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...butest
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...butest
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTbutest
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docbutest
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docbutest
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.docbutest
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!butest
 

Más de butest (20)

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
 
PPT
PPTPPT
PPT
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
 
Facebook
Facebook Facebook
Facebook
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
 
hier
hierhier
hier
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
 

Learning, Logic, and Probability: a Unified View

  • 1. Learning, Logic, and Probability: A Unified View Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Stanley Kok, Matt Richardson and Parag Singla)
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14. Example of First-Order KB Friends either both smoke or both don’t smoke Smoking causes cancer
  • 16.
  • 17.
  • 18.
  • 19. Example of an MLN Cancer(A) Smokes(A) Smokes(B) Cancer(B) Suppose we have two constants: Anna (A) and Bob (B)
  • 20. Example of an MLN Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants: Anna (A) and Bob (B)
  • 21. Example of an MLN Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants: Anna (A) and Bob (B)
  • 22. Example of an MLN Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants: Anna (A) and Bob (B)
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 29. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 30. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 31. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 32. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 33. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 34. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 35. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 36. Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A) Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49. Results 0.04 -0.166 0.02 -0.095 BN 0.19 -0.059 0.17 -0.218 NB 0.04 -0.371 0.03 -0.255 CL 0.08 -0.067 0.16 -0.124 KB 0.03 -0.852 0.02 -0.341 MLN(CL) 0.20 -0.043 0.25 -0.047 MLN(KB) 0.25 -0.040 0.27 -0.044 MLN(KB+CL) Area CLL Area CLL Partial Info All Info System
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.